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We show that time series of different complexities can be transformed into networks
that host individuals playing evolutionary games. The irregularity of the time series is
thereby faithfully reflected in the fraction of cooperators surviving the evolutionary pro-
cess, thus effectively linking time series with evolutionary games. Pivotal to the linkage
is a simple visibility algorithm that transforms time series into networks. More specifi-
cally, periodic series yield regular networks, chaotic series yield random networks, while
fractal series yield scale-free networks. As an example, we use a chaotic time series from
the Logistic map and a fractal time series of Brownian motion, yielding an interac-
tion network with an exponential and a power-law degree distribution, respectively. By
employing the prisoner’s dilemma and the snowdrift game, we demonstrate that such
heterogeneous interaction networks facilitate the evolution of cooperation if compared
to the traditional square lattice topology. Due to the simplicity of the employed method-
ology, newcomers with a basic command of nonlinear dynamics or stochastic processes
can become easily acquainted with evolutionary games, and moreover, integrate these
interesting and vibrant subfields of physics more effectively into their research.
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1. Introduction

Evolutionary games on graphs [1] offer fascinating insights into how and why coop-
erators can coexist with defectors in a competitive, success driven environment.
One of the fundamental observations thereby has been that heterogeneous interac-
tion networks promote cooperation in different types of social dilemmas [2]. Recent
research efforts have been focused on further disentangling the role of heterogene-
ity by the evolution of cooperation, not just in terms of the underlying interaction
network [3-9], but also in general [10-13]. In addition, following the inspiring ear-
liest efforts [14-16], coevolutionary rules have been introduced that may generate
appropriate heterogeneities spontaneously [17].

307


http://dx.doi.org/10.1142/S0219525911002974

308 A. Murks and M. Perc

Given the existence of an impressive array of different algorithms for the gener-
ation of complex networks [18, 19], a novice can easily feel overwhelmed by which
algorithm to choose and how to approach the subject. Apart from mainstream
algorithms for the generation of scale-free [20] and small-world [21, 22] networks,
common variations include regular small-world and regular random graphs as well
as networks subject to assortative or disassortative mixing, to name a few. Here
we demonstrate that the visibility algorithm [23] can yield suitable interaction net-
works depending on the complexity of the time series that is used as input, and
more importantly, that the irregularity of the trace is then directly reflected in the
outcome of evolutionary games played on the resulting graphs.

Time series analysis is a fascinating field of research [24], and there are sev-
eral methods and approaches developed for quantifying the complexity of observed
traces [25]. Notably, recent advances also include complex networks as a means
to differentiate between periodicity, deterministic chaos and noise [26-28]. Here,
however, the emphasis is not on using the outlined approach to characterize time
series, but rather to use potentially existing knowledge about nonlinear dynamics
and stochastic processes to bridge the gap between two seemingly very different
fields of research. Using as the input a time series with a given complexity, e.g.
periodic, chaotic, random or fractal [24], the visibility algorithm retrieves an inter-
action network of which the degree distribution mirrors the properties of the series.
More precisely, chaotic and random series convert into networks with an exponential
degree distribution, while fractal series yield as output networks with a power-law
degree distribution. Thus, it is possible to link the existing knowledge about nonlin-
ear dynamics and stochastic processes with the complexity of networks, and further
with evolutionary games.

Subsequently, networks generated in this way can be used to demonstrate the
impact of network heterogeneity on the evolution of cooperation in the light of pre-
vious results obtained on square lattices [29-32]. From the set of social dilemmas we
here consider the evolutionary prisoner’s dilemma and the evolutionary snowdrift
game as the two most representative examples [33, 34]. We demonstrate that net-
works with exponential and power-law degree distributions strongly facilitate the
evolution of cooperation irrespective of the governing social dilemma, thus captur-
ing the essence of recent advances in evolutionary games on complex networks by
means of a straightforward approach, simply by switching the input time series for
the visibility algorithm. In the following sections, we give a description of the visi-
bility algorithm that converts time series into networks, and subsequently present
the outcome of evolutionary games in dependence on the complexity of the time
series that is used as input and the temptation to defect.

2. Visibility Algorithm

Given a time series, the corresponding visibility graph is obtained by treating every
point of the series z;=1,. n as a node (i.e. the length of the time series thus
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Fig. 1. (Color online) Visibility algorithm and the resulting networks. (a) Short segment (out of
N = 10% points in total) of the logistic map series obtained for r = 3.6, featuring a schematic
presentation of the visibility algorithm. The node marked by the arrow is connected to all green
nodes (green solid lines) but not to the red ones (dotted red lines), since the latter do not fulfil the
visibility condition given by Eq. (1). (b) Degree distribution W (k) (gray ¢) and the cumulative
degree distribution Q(k) (black @) of the network obtained by using the chaotic time series of the
Logistic map [see panel (a)] as input. Since the vertical axis has a logarithmic scale and both data
sets can be fitted fairly accurately by a straight line with an identical slope the degree distribution
is exponential. (¢) First N = 2- 10 points of the Brownian series, corresponding to a random walk
in one dimension. (d) Degree distribution W (k) (gray ¢) and the cumulative degree distribution
Q(k) (black @) of the network obtained by using the Brownian time series [see panel (c)] as input.
Since both axis have a logarithmic scale and W (k) o« k=% as well as Q(k) o< k= (@~ the degree
distribution is a power-law with o & 2.0 (as indicated by the two dashed lines).
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corresponds to the network size N) and connecting a given node with all those
nodes that can be “seen” from the top of it [23]. Figure 1(a) features a short seg-
ment of the logistic map z; = ra;—1(1 — ;1) obtained at r = 3.6, where the
algorithm is schematically presented. Green lines depict valid links while red lines
depict forbidden links. Note that the nodes depicted red cannot be seen from the
node marked by the arrow without intersecting the series at least once. On the
other hand, all nodes marked green are directly visible to one another. Taking into
consideration basic geometric relations, it is possible to derive a simple criteria for
the visibility of any two data points. In particular, two arbitrary points of the series
(,2;) and (j, z;) will have visibility, and thus will become two connected nodes in
the corresponding visibility graph, if any other point (m, z,,) placed between them
fulfils [23]:

j—m
i

T < 2j + (T — 25) (1)
In order to obtain the visibility graph from a time series one has to check the
condition given by Eq. (1) for every possible pair of points, whereby taking into
account all the points that are placed between them. If the visibility criteria are
fulfilled for all m the two points ¢ and j should be connected, but otherwise not.
This simple procedure warrants that the visibility graph is always connected since
each point is connected to at least its two nearest neighbors (left and right), and
moreover, is undirected since the algorithm does not distinguish between different
link directions. These properties make the obtained networks suitable candidates
as underlying interaction topologies for evolutionary games.

We characterize the resulting networks by means of the degree distribution and
the cumulative degree distribution [19]. By defining k; as the degree of node i, the
degree distribution W (k) gives the probability that a node chosen uniformly at ran-
dom has degree k. As a very useful alternative, the cumulative degree distribution
Q(k) can be defined as the probability that a node chosen uniformly at random
has degree at least k (i.e. k or smaller). Note that if W (k) o< k= (is a power-law
with slope «), then also Q(k) will be a power-law, but with the slope a — 1 rather
than «. Thus, having W (k) o £~ and Q(k) o< k= (®~1 is a firm indicator of a
scale-free network. On the other hand, if W (k) o exp™®/* (is exponential with
slope ) then Q(k) will also be exponential, but with the same exponent [19]. Thus,
plotting W (k) and Q(k) on logarithmic or semi-logarithmic scales makes it easy to
distinguish power-law from exponential distributions.

If one considers as input a periodic time series, it is straightforward to reckon
that the visibility criteria will be periodically fulfilled every oscillation period.
Accordingly, the resulting network will be regular having a discrete degree dis-
tribution with a finite number of peaks corresponding to the number of points
forming one period of the series. Much more interesting scenarios are possible if
one uses random, chaotic or fractal series as input. First, it is important to realize
that any large value (larger than the surrounding values) of the time series will
map to a hub of the corresponding visibility network. Second, for random as well
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as chaotic time series it holds that two consecutive extreme values of the series are
highly improbable. In fact, the time distribution of extreme events in a sequence
of uniformly distributed random numbers is exponential. From these two facts it
follows directly that the networks constructed from a random or a chaotic time
series will have an exponential degree distribution. Indeed, in Fig. 1(b) this line
of thought is fully confirmed, whereby as input we have used a series from the
well-known Logistic map x; = ra;—1(1 — x;—1) with » = 3.6 (note that for this
value of the parameter the map is chaotic) [35]. Extending the outlined reasoning
further, one finds that time series that violate the exponentially infrequent occur-
rence of extreme events, such as for example those that are fractal, convert to
networks having a power-law degree distribution. Figure 1(d) confirms this expec-
tation, whereby as input we have used the random walk in one dimension, i.e. the
Brownian series. From these results it follows that the described visibility algorithm
offers fascinating possibilities with respect to fast, efficient and extremely versatile
generation of complex networks, which can all be applied as underlying interaction
topologies when studying the evolution of cooperation in the context of evolutionary
games.

3. Evolutionary Games

In what follows, both the prisoner’s dilemma game as well as the snowdrift game
will be used as representative examples of social dilemmas, whereby we adopt the
same parametrization as used recently in Ref. 7. Accordingly, the prisoner’s dilemma
game is characterized by the temptation to defect T' = b, reward for mutual cooper-
ation R = 1, and punishment P as well as the suckers payoff S equaling 0, whereby
1 < b < 2 ensures a proper payoff ranking [29]. The snowdrift game, on the other
hand, has T'= 38, R = 3 — %, S = —1and P = 0, where the temptation to
defect can be expressed in terms of the cost-to-benefit ratio r = 1/(25 — 1) with
0 <r < 1. In both games two cooperators facing one another acquire R, two defec-
tors get P, whereas a cooperator receives S if facing a defector who then gains
T. Initially each player i, corresponding to a node of the underlying network, is
designated either as a cooperator (C) or defector (D) with equal probability. Irre-
spective of the game, evolution of the two strategies is performed in accordance
with the Monte Carlo simulation procedure comprising the following elementary
steps. First, a randomly selected player ¢ acquires its payoff p; by playing the game
with all its k; neighbors. Next, one randomly chosen neighbor of i, denoted by 7j,
also acquires its payoff p; by playing the game with all its k; neighbors. Last, if
p; > p; player ¢ tries to enforce its strategy s; on player j in accordance with the
probability W (s; — s;) = (p; — pj)/bkq, where kq is the largest of the two degrees
ki and k;. In accordance with the random sequential update, each player is selected
once on average during a full Monte Carlo step. Presented results were obtained
on networks hosting N = 10*—10° players and the equilibrium fractions of cooper-
ators pc were determined within 108 full Monte Carlo steps after sufficiently long
transients were discarded.
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Fig. 2. (Color online) Evolution of cooperation. (a) Fraction of cooperators pc in dependence

on the temptation to defect b for the prisoner’s dilemma game. (b) Fraction of cooperators pc
in dependence on the cost-to-benefit ratio r for the snowdrift game. In both panels the dashed
green line depicts results obtained on the square lattice, while red ¢ and blue @ depict results
obtained on the network with an exponential [see Fig. 1(b)] and a power-law [see Fig. 1(d)] degree
distribution, respectively. It can be observed that heterogeneous interaction topologies in form of
above-introduced visibility graphs strongly promote the evolution of cooperation irrespective of
the governing social dilemma.

In Fig. 2 we present the main results of the evolutionary process for the two
considered games. Taking the evolution of cooperation on the square lattice [30, 36]
as a benchmark (dashed green lines in both panels of Fig. 2), it is inferable at a
glance that heterogeneous interaction networks have a very positive effect on the
survivability of cooperators. While cooperators on the square lattice die out at
b~ 1.12 and r =~ 0.68 in the prisoner’s dilemma and the snowdrift game, respec-
tively, they prevail across large spans of b and r if networks with an exponential
(red ¢ in both panels of Fig. 2) or a power-law (blue @& in both panels of Fig. 2)
degree distribution are used as underlying interaction topologies. Comparatively,
it can be observed that scale-free networks are more efficient in promoting the
evolution of cooperation than networks with an exponential degree distribution.
This is in agreement with the results reported in several previous studies [37-39],
where it was shown that the degree heterogeneity of scale-free networks, along with
the interconnectedness of hubs, strongly reinforces cooperative behavior. It is also
worth pointing out that the networks generated by means of the visibility algo-
rithm yield very similar results as networks generated with the more traditional
algorithms; for example the one proposed by Barabési and Albert [20] (compare
with Fig. 1 in Ref. 37). Importantly, while on the square lattice cooperators form
clusters to protect themselves against being exploited by defectors [29], on heteroge-
neous interaction networks hubs (i.e. nodes with a high degree) act as robust sources
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of cooperative behavior. This difference in the way cooperators defend themselves
against defectors is also the main reason for the facilitative effect of heterogeneity
on the evolution of cooperation, which thus cannot be observed in this form on
regular lattices and graphs. The promotion of cooperation via heterogeneity has
been a source of inspiration ever since its discovery [37], and herewith we shown
that this fascinating result can be reproduced elegantly by means of evolutionary
games on networks that are generated by means of the visibility algorithm.

4. Summary

In summary, we have outlined a simple approach that links time series with the
outcome of evolutionary games, thereby enabling graduate students and teachers
to become easily acquainted with different subfields of physics by means of an inter-
disciplinary approach. Since the visibility algorithm enables altering the network
properties simply by switching the input time series, it is possible to study how
different levels of heterogeneity influence the outcome of evolutionary games in an
effective and accessible manner. By using networks derived from a chaotic Logis-
tic map and the Brownian motion, we have shown that networks with exponential
and power-law degree distributions facilitate the evolution of cooperation across a
wide span of defection temptation values and irrespective of the governing social
dilemma. Especially if compared to the outcome of games on a square lattice the
facilitative impact on the evolution of cooperation is remarkable and very convinc-
ing. We hope the study will succeed in drawing further attention to this currently
very vibrant field of research [1, 17, 40-44].
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