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We focus on earthquakes that were recorded in Serbia between 1970 and 2011 within shal-
low parts of the Earth’s crust, having local magnitudes from the 1.2–5.8 interval. The main
goal of the performed analysis is to examine whether the temporal sequence of these
recorded magnitudes exhibits some deterministic pattern or whether it simply represents
a series of random events. For this purpose, the temporal distribution of earthquake mag-
nitudes above the magnitude of completeness is analyzed by means of nonlinear time ser-
ies analysis and surrogate data testing, as well as by means of the autocorrelation function.
Piece-wise low cross-prediction errors, with 75% of segment pairs having the error smaller
than its average value, indicate stationary properties of the examined sequence. Results of
surrogate data testing indicate high zeroth-order prediction error that is independent of
prediction time for the original dataset and 20 different surrogates, implying that the
observed magnitude sequence is a series of independent random events drawn from some
fixed but unknown distribution. These findings are supported further by a low value of the
determinism factor for an earthquake treated as a system with four degrees of freedom
(epicentral latitude and longitude, hypocentral depth and magnitude). The randomness
in observed data is indicated further by the properties of the autocorrelation function,
whose values for different time lags fall within the 95% confidence limit without an appar-
ent pattern.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Basic statistical properties of seismicity are implied by a special temporal pattern of earthquake occurrence along a single
fault or a fault segment (i.e. recurrent events) and by spatial and temporal distribution of earthquakes recorded in one tec-
tonic (seismic) area (i.e. interoccurrent events), which are typically examined by analyzing the corresponding earthquake
catalogs [1]. Extensive seismological studies of these seismic databases have shown that temporal distribution of earth-
quakes in one region usually follows a discrete Poisson distribution, indicating temporal independence of the recorded seis-
mic events [2,3]. This time-independent occurrence is a prominent feature of large earthquakes, which are assumed to occur
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as a stationary Poisson process inside a specific region [4–7]. Besides the assumption of Poisson distribution, some authors
also propose non-Poisson models, which are more consistent with underlying physics and take into account the occurrence
history, like Markov processes [8]. Another frequent hypothesis on temporal seismic distribution relies on the assumption
that magnitudes of all the seismic events (including large events, foreshocks and aftershocks) are independent random vari-
ables, which is the main starting point of a widely used epidemic-type aftershock sequence (ETAS) model. This ETAS model
describes the space–time magnitude distribution of earthquake occurrences, by presuming that the squared distance
between an aftershock and its triggering event follows a Pareto distribution [9]. Following the same assumption of earth-
quakes as random events, Ben-Naim et al. [10] showed that the series of recorded earthquakes is consistent with a random
process for magnitudes in the range M e [7.0,8.3].

In contrast to aforementioned models of earthquakes as predominantly independent events, there are certain claims of
periodic, quasi-periodic and chaotic temporal distribution of recorded earthquakes, as a result of extensive analyses in
the area of nonlinear dynamics and chaos theory [11,12]. Supporting this point of view, Beltrami and Mareshal [13] tried
to reconstruct the strange attractor for the earthquake time series recorded in the Parkfield seismic region between 1969
and 1987. They came to ambiguous results – either this series cannot be distinguished from a random one, or it has a strange
attractor with dimension higher than 12. Matcharashvili et al. [14] found evidence of low-dimensional attractor for earth-
quakes in Caucasian region by using the inter-event times between successive events. Tiwari et al. [15] applied a nonlinear
forecasting approach in a reconstructed phase space of earthquake frequency in the Central Himalayan Region. Results of
their studies indicated a low positive correlation between predicted and observed data suggesting that the earthquake
dynamics in this area is characterized by a mix of stochastic and chaotic behavior.

Having in mind these previous divergent evidences and assertions on temporal distribution of seismic events, we apply a
series of tests in order to examine whether there is some underlying pattern of temporal distribution of earthquake magni-
tudes recorded in Serbia, between 1970 and 2011. The research is done by applying the methods of nonlinear time series
analysis [16], which were previously rarely used in the field of seismology [17], even though they were successfully applied
in many other fields of geophysics [18,19].

The scheme of the paper is as follows. Seismic activity in Serbia is described in Section 2, while the applied methods are
detailed in Section 3. The obtained results are presented in Section 4, while in the last section we give a brief discussion on
the applied methods and obtained results, with suggestions for further research.

2. Seismic activity in Serbia

According to Advanced National Seismic System composite earthquake catalog (ANSS), hosted by Northern California
Earthquake Data Center [20], 757 earthquakes of local magnitudes ML e [1.2,5.8] were recorded in Serbia between
1970 and 2011 (Fig. 1). In this period only four moderate earthquakes of local magnitudes ML e [5.2,5.8] were recorded,
with epicenters located at a wider area of Kopaonik, Mionica, Trstenik and Kraljevo. One could note from Fig. 1 that
the major seismic activity in this period was caused by the fault motion in west/northwest-east/southeast direction,
due to compression along the contact of Adriatic table and Dinarides, on one hand, and extension generated by the
regressive roll-back of the subducted lithosphere in Carpathian zone, on the other hand [21,22]. Majority of earthquakes
in this period was recorded during 2002 (Fig. 2) with most frequent magnitude of 2.7 (Fig. 3a). Hypocentral depth was less
than 40 km, with the most frequent value of 10 km, implying that only shallow seismic events were registered in the
observed period (Fig. 3b).

3. Applied methods

In present paper, we analyze temporal distribution of earthquake magnitudes recorded in Serbia between 1970 and 2011,
because there are no instrumental recordings of earthquakes before 1970. Since the observed seismic data set contains many
earthquakes with magnitude under the completeness of the catalog, it means that the corresponding analysis would be miss-
ing many low magnitude earthquakes, which could likely affect the results. In other words, a first and compulsory step in our
analysis would be to calculate a magnitude of completeness Mc, as the lowest magnitude at which 100% of the earthquakes in
a space–time volume are detected [23]. In present paper, magnitude of completeness was calculated in ZMAP software [24],
by applying Maximal Curvature technique, as a catalog-based method to assess Mc. This technique represents fast and
straightforward way to estimate Mc and consists in defining the point of the maximum curvature by computing the maxi-
mum value of the first derivative of the frequency-magnitude curve. The advantages of applying this technique are its easy
applicability and the fact that it requires fewer events than other techniques to reach a stable result [25].

After determining the magnitude of completeness, a series of main shocks, without foreshocks and aftershocks, with local
magnitude equal or larger than Mc is examined by the means of nonlinear time series analysis. In order to conduct this anal-
ysis, we had to embed the observed scalar series into the appropriate phase space via the Takens embedding procedure [26]
by using the open-source software [27]. The optimal embedding delay is calculated using average mutual information
method [28], while the minimum embedding dimension is examined by the method of false nearest neighbors [29], consid-
ering that two points are false neighbors if the normalized distance between their embedding coordinates is larger than a
given threshold (Rtr). According to [29], the value of Rtr = 10 proves to be a good choice for most data sets.



Fig. 1. Seismicity of the territory of Serbia, for the period 1970–2011, with tectonic map including major tectonic units and distribution of seismically active
faults. It is clear that central and western part of Serbia represent seismically active areas, whereas eastern and, particularly, northern part of Serbia are not
prone to frequent occurrence of earthquakes.

Fig. 2. Annual number of earthquakes in Serbia, recorded between 1970 and 2011. Maximum number of earthquakes is recorded in 2002 (83), 1987 (56),
1999 (54), 1992 (48) and 2006 (46).
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Fig. 3. Number of recorded earthquakes between 1970 and 2011 as a function of: (a) magnitude; (b) hypocentral depth. Hypocenter of the largest number
of earthquakes is at 10 km, with the most frequent magnitude of 2.7.
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With the observed series properly reconstructed in phase space, we were able to conduct a stationarity test [16], which is
a necessary prerequisite for a random dataset. This test is based on the quality of prediction of unknown data value, using
similar events happened in the past (neighboring points). For each point of the equally sized non-overlapping segment i at
time t, predictions of the value of an unknown data are performed in the segment j at time t + Dt. Afterwards, the accuracy of
obtained predictions is evaluated by calculating the average prediction error dij, which is repeated for all combinations of i
and j. The resulting high prediction error dji is a clear indicator that the stationarity requirements in the examined series are
not fulfilled.

As a next step in our analysis, we conducted the surrogate data testing, by assuming that the observed data are indepen-
dent random numbers drawn from some fixed but unknown distribution [30]. For this purpose, we generated 20 surrogates,
as already proposed in [16], using Matlab toolkit MATS developed in [31]. Then, in order to compare the original data and
generated surrogates, we calculated the zeroth-order prediction error e [30], according to the algorithm in C suggested in
[16]. If this error for the original dataset (e0) is smaller in comparison to the calculated error for surrogate data (e), then a
null hypothesis can be rejected. On the other hand, if e0 > e at any instance of the test, the null hypothesis cannot be rejected.
Usually, more than one wrong result out of 20 is not considered acceptable [16].

As a final step in the performed time series analysis, we applied a determinism test [32]. This test is based on the assump-
tion that if a time series originates from a deterministic process, it can be described by a set of the first-order ordinary dif-
ferential equations, whose vector field consist solely of vectors that have unit length. In other words, if the system is
deterministic, the average length of all directional vectors j will be 1, while for a completely random system, j � 0 [32].
The calculation was also done by using the open-source software presented in [27]. Finally, results of nonlinear time series
analysis were additionally verified by calculating the autocorrelation function [33].

4. Results

Application of Maximal Curvature technique has shown that the function of cumulative number of recorded earthquakes
against their magnitude abruptly changes its direction at the value of magnitude of completeness, Mc = 2.7 (Fig. 4). In present
study, only the earthquakes with local magnitudes over the magnitude of completeness are taken into account for inquiry of
the possible randomness in the observed dataset, in order to exclude possible artifacts in any kind of analysis. In this way, the
observed dataset is made even shorter (512 events), but it better preserves the physics of the phenomenon under study.

Regarding the optimal values of embedding parameters, the performed analysis showed that mutual information takes
the first local minimum for s = 3 (Fig. 5), while fraction of false nearest neighbors rises with the increase of embedding
dimension, which could indicate random signature in the input data. However, in order to be able to perform stationarity
and determinism test, we have chosen m = 4 as an optimal embedding dimension, since earthquakes as macroscopic events
have four degrees of freedom (epicentral latitude and longitude, hypocentral depth and magnitude).

In order to question the stationarity of the magnitude distribution under study, the original dataset is divided into short
series, each occupying approximately 10 points. In that way, a total of 52 segments is obtained, with 522 possible combina-
tions to evaluate the statistics. The color of each map segment indicates the cross-prediction error of using segment i as the
neighbor source for making predictions in segment j. The average cross-prediction errors for all possible combinations of i
and j are presented in Fig. 6, from which it is clear that the piece-wise low cross-prediction error prevails (green to blue
color), confirming that the random process underlying the generation of the earthquakes did not change over the observed
period. Approximately 75% of segment pairs exhibits cross-prediction error dij < 0.93, which is the average value of the
observed error range [0,1.78].

In order to test the null hypothesis that the data are independent random numbers drawn from some fixed but unknown
distribution, 20 surrogates are generated by randomly shuffling the data (without repetition), thus yielding surrogates with



Fig. 4. Cumulative number of earthquakes versus recorded magnitudes for the overall catalog. It is obvious that magnitude of completeness (Mc) is equal to
2.7, where the function of cumulative number of recorded earthquakes against their magnitude abruptly changes its direction. Only the earthquakes with
local magnitude equal or higher than magnitude of completeness are taken into account for the performed analysis.

Fig. 5. Determination of the proper embedding delay – mutual information has the first minimum at minimum embedding delay s = 3, meaning that the
values of the recorded magnitudes at dimensionless discrete time units, t + 3, t + 6, ... (depending on the value of optimal embedding dimension) could be
used for the embedding of the observed dataset in phase space.
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exactly the same distribution yet independent construction. Then the zeroth-order prediction error is calculated for the ori-
ginal dataset (e0) and for each of the 20 generated surrogates (e). It is clear from Fig. 7 that e0 is well within e in all the cases,
so the null hypothesis cannot be rejected.

In order to further exclude the possible deterministic signatures in the observed dataset, we applied determinism test by
coarse-graining the embedding space into 26 boxes in one dimension, which is a half of the maximum number of boxes, due
to the relatively small data set (further coarse-graining would give spurious results). Only those boxes visited more than one
time by the trajectory are included in the analysis. The obtained value of determinism factor, j = 0.76, indicates possible ran-
domness in the sequence of recorded earthquake magnitudes.

As an additional test for hypothesis of random magnitude series, apart from nonlinear time series analysis, we examined
the autocorrelations of the observed dataset, in order to find any possible repeating pattern, which would indicate a deter-
ministic signature. However, as it is shown in Fig. 8, the majority of autocorrelations fall within the 95% confidence limits
(dashed lines), without the apparent pattern, which we expect to see if the data are random. A few lags slightly outside



Fig. 6. Stationarity test. The whole time series is partitioned into 52 non-overlapping segments each occupying approximately 10 data points. The color
map displays average cross-prediction errors dij in dependence on different segment combinations (i, j). The obtained results indicate that the piece-wise
low cross-prediction error prevails (green to blue color), confirming stationarity in the observed dataset. This further corroborates the randomness in
magnitude distribution, since random series have relatively uniform statistical characteristics over time. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 7. Surrogate data test for the hypothesis that the data are independent random numbers drawn from some fixed but unknown distribution. Red line
denotes the zeroth-order prediction error for the original series and black lines – zeroth-order prediction error for the surrogates, for n prediction units. The
obtained results indicate that the error for the original dataset (e0) is within the error for surrogate data (e), following that the null hypothesis could not be
rejected. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

922 S. Kostić et al. / Applied Mathematics and Computation 244 (2014) 917–924
the 95% confidence limits do not necessarily indicate non-randomness, since we might expect approximately one out of
twenty lags to be statistically significant due to random fluctuations [33].

5. Discussion

Results of the performed analyses indicate random distribution of earthquake magnitudes between 1970 and 2011 in
Serbia, which might put under suspicion the possibility of deterministic feature in dataset of this type, including the plau-
sible chaotic behavior, previously claimed by some authors [14,15]. Moreover, the absence of determinism could question



Fig. 8. Autocorrelation plot for temporal magnitude distribution. It is clear that the majority of the autocorrelations fall within the 95% confidence limits
(dashed lines), which indicates possible randomness in the observed dataset.
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the reliability of prediction that is solely based on temporal distribution of recorded main shocks within a specific region.
However, before reaching the general conclusion, one should bear in mind that the results of this analysis are valid only
for the seismicity detected on the territory of Serbia, which represents an area of weak to moderate seismicity with rare
and medium-size events, as it was already stated in Section 2. The question of possible determinism in earthquake magni-
tude distribution still remains open for the seismic active areas, with more frequent events of greater magnitudes.

One should be aware of the fact that the analysis of a small data set could lead to ambiguous results. However, regarding
the research on dynamics of the recorded earthquakes, the analysis of short series is not an exception. For example, De Santis
et al. [18] also considered limited number of data (782 earthquakes) and showed that the seismic sequence of foreshocks
culminating with the Mw = 6.3 main shock on April 6, 2009 in L’Aquila (Central Italy) evolved as a chaotic process, by using
the method based on the Accelerated Strain Release analysis in time and on the nonlinear approach in a reconstructed phase
space.

Another important issue that has to be emphasized is the analysis of the relatively short period of seismicity, which
is not a standard approach in seismological research within a specific area. Usually, the recurrence time of great
earthquakes is taken as an optimal period (100 years in Serbia). Nevertheless, previous studies on seismicity in different
areas also considered relatively short time period of the observed seismicity, including the analysis of seismicity in
Pakistan for the similar period, 1973–2008 [34] or principal component and cluster analysis of seismicity in Iran for
the period 1957–2006 [35].

Regarding the reliability of the applied techniques and methods, it has to be emphasized that the method of false nearest
neighbors did not give the specific value of optimal embedding dimension. Instead, it showed the increase of the percentage
of false neighbors with the increase of embedding dimension, which could intuitively lead to a conclusion of a random mag-
nitude distribution. However, since the specific value of embedding dimension is needed for stationarity and deterministic
test, its value had to be assumed, which, in this case, was chosen to be equal to the number of degrees of freedom for earth-
quakes (m = 4). We believe this approximation did not affect the results obtained by nonlinear time series analysis in any
significant way, which was additionally verified by surrogate data testing and analysis of autocorrelations.

In order to further examine the temporal distribution of recorded earthquakes, it would be interesting to separately
investigate two different features (if possible for the area of higher frequency of earthquakes): interoccurrent events, for
the whole area, and recurrent events, which appear only along a single fault. In that way, by comparing these events,
and, in the same time, by confronting the results of the research in different seismic areas, we could determine the general
nature of the earthquake magnitude distribution.
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