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We show that in defection prone environments influential players must be rare and weakly
interconnected to optimally promote cooperation in the prisoner’s dilemma game. Con-
versely, low temptations to defect warrant a high level of social welfare even if influential
players are common, yet still demand the latter be weakly interconnected for cooperation
to thrive.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Cooperation between competitive players or firms is a perplexing puzzle faced by scientists across fields of research as
different as economics and anthropology [10]. The core of the problem lies in the fact that cooperation implies working
for the common good of a society on the expense of individual prosperity, which is in contradiction with the premise of Dar-
winian evolution and results in a social dilemma. The most commonly adopted theoretical framework for addressing the
issue is the evolutionary game theory, and the prisoner’s dilemma game in particular [1], which succinctly captures the una-
dorned scenario of social downfall due to the egoistic and heedless urge of individuals to outperform competitors by tem-
porarily harvesting the highest possible profit. In particular, the game originally consists of two players or firms who have to
decide simultaneously whether they want to cooperate or defect as they venture into a joint enterprise. The dilemma is given
by the fact that although mutual cooperation yields the highest collective payoff, a defector will do better if the opponent
cooperates. In the long run this fact inflicts mutual defection that ultimately results in an irreversible economic decline
and social poverty, as reviewed by Crawford [4].

The breakthrough discovery promoting cooperation arguably came in the form of spatial games [11,16], where the par-
ticipating players no longer abide to the principles of well-mixed dynamics, but instead, cooperators are able to survive via
clustering that protects the inner individuals against the exploitation by invading defectors. This approach has recently been
extended further by considering structured populations where interactions amongst individuals are defined by complex net-
works [17], and also, by the introduction of asymmetry in influence [18] as well as payoff uncertainties [12,13], thus reveal-
ing additional mechanisms promoting mutually beneficial alliances not just in economy (e.g., [9] or [3], but also in ecology
and biology in general.
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Presently, we study the impact of two crucial factors on the evolution of cooperation within the prisoner’s dilemma game;
namely the density and interconnectedness of influential players. The basic premise of our study is that influence is seldom
equally distributed amongst members of human societies. Throughout history, many phrases and titles have been invented
to distinguish influential individuals from those having little impact, and more often than not ‘‘being influential’’ is reserved
for few selected individuals only. To take this fact into account we introduce a fraction q. of influential players on the grid,
which are much more likely to enforce their strategy on the opponent than the rest. In addition, amongst all the possible
connections existing between the influential players, we introduce a fraction j that actually exist, and study how different
values of q and j affect the evolution of cooperation by different temptations to defect b. First, we show that the introduction
of influential players and shortcut connections amongst them in general facilitates cooperation, which suggests that the role
of leaders in societies might have emerged spontaneously in order to warrant optimal conditions for cooperative alliances
and with it related social welfare. Yet more precisely, we reveal that in defection prone environments governed by large
b influential players must be rare (q << 1) and weakly connected (j << 1) to sustain cooperation, whereas on the other hand,
by small b a high level of social welfare is warranted even if q is substantial, but still j must remain small for cooperation to
flourish best. Importantly, all results are obtained by full anonymity of players and incognito actions (for related literature
see e.g., [5] or [15], as well as without the aid of additional strategies (see e.g., [14]. Finally we discuss that, although large
differences in status may evoke dissatisfaction and rebellion amongst the deprived, our study suggests that such social states
might have appeared spontaneously from an initially nonpreferential setup and are in fact optimal for the evolution of
cooperation.

2. Mathematical model

For the purpose of this study, we used the prisoner’s dilemma game having temptation to defect T = b, reward R = 1, and
both punishment P as well as the suckers payoff S equaling 0, whereby 1 < b 6 2 ensures a proper payoff ranking. The game is
staged on a regular L � L square grid with nearest neighbor interactions and periodic boundary conditions, whereon initially
each agent on site x is designated either as a cooperator (strategy sx = C) or defector (sx = D) with equal probability. Forward
iteration is performed in accordance with the Monte Carlo simulation procedure comprising the following elementary steps.
First, a randomly selected agent x acquires its payoff Px by playing the game with all its neighbors (here neighbors are
assumed to be all players that are directly connected to agent x). Next, one randomly chosen neighbor, denoted by y, also
acquires its payoff Py by playing the game with all its neighbors. Last, agent x tries to enforce its strategy sx on player y in
accordance with the probability
Wðsy ! sxÞ ¼ wx
1

1þ exp½ðPy � PxÞ=K� ; ð1Þ
where K = 0.5 denotes the level of uncertainty by strategy adoptions due to imperfect information (see e.g., [15] and wx

determines the influence of agent x. The parameter wx is assigned to each agent at the beginning of the game and remains
fixed during the evolutionary process. In particular, amongst all N = L2 players, and irrespective of their initial strategies, a
fraction q is chosen randomly and designated as having wx = 1, whereas the remaining N(1 � q) are assigned the influence
wx = 0.01. In accordance with Eq. (1), players characterized by wx = 1 are 100 times more likely to enforce their strategy on
the opponent than those having wx = 0.01, and are thus termed as the influential ones. Furthermore, we introduce a proba-
bility j that determines the fraction of all possible (qN � 1)qN/2 connections linking the influential individuals that actually
exist. If j = 1 all possible pairs of influential players are connected with one another as depicted in Fig. 1(a), whereas if
0 < j < 1 the corresponding fraction of some of these links is randomly removed as shown in Fig. 1(b). Finally, the network
characterizing the interconnectedness of influential players is merged with the underlying nearest-neighbor grid to form the
final interaction structure for the considered evolutionary prisoner’s dilemma game.

Results obtained via Monte Carlo simulations presented below were obtained on populations comprising 400 � 400 indi-
viduals, whereby the stationary fraction of cooperators fC was determined within 106 full Monte Carlo steps after sufficiently
long transients were discarded. In what follows, we will focus on different values of density q and interconnectedness j of
influential players to determine their impact on cooperation and social welfare by different values of the temptation to
defect b.

3. Results and discussion

We start by presenting results obtained with the classical version of the prisoner’s dilemma game when all players have
the same probability of enforcing their strategy on the opponents and there are no additional shortcut links defining the
interaction structure amongst them. In accordance with the above description of the game, this setup is obtained by setting
j = 0 and q = 0. Results presented in Fig. 1 (circles) evidence that under such conditions cooperators vanish already by
b = 1.065. In sharp contrast, by setting j = 0.0012 and q = 0.15, cooperators persist virtually throughout the whole range
of b 2 (1, 2] applicable for the prisoner’s dilemma game, as depicted by squares in Fig. 1. Noteworthy, by introducing this
fairly small fraction of weakly linked influential players, the cooperators are able to dominate the game completely by
b � 1 and outnumber defectors up to b = 1.15. Clearly, the presently studied additions to the game in form of positive j



Fig. 1. Interconnectedness of influential players obtained by different j. In panel (a) j = 1 whereas in (b) j = 0.2. Gray lines connect only those having wx = 1
(marked with larger black squares), whereas the rest (marked with smaller light-gray squares) is connected only via nearest-neighbor links. For clarity only
100 � 100 spatial grids with q = 0.004 randomly distributed influential players are depicted.
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and q may have a notable impact on the evolution of cooperation and markedly facilitate altruistic behavior and social
welfare.

To quantify the ability of interconnected influential players to facilitate and maintain cooperation in the studied spatial
prisoner’s dilemma game more precisely, we calculate the fraction of cooperators fC over a broad range of j and q by three
different values of b 2 (1, 2]. The left panel of Fig. 3 features results obtained by b = 1.2. Remarkably, there exists a double
resonance-like dependence of fC on j and q, implying that both parameters can be fine-tuned to yield an optimal environ-
ment for cooperation. In particular, by setting j = 0.0003 and q = 0.2 almost a complete dominance of cooperators can be
warranted despite b = 1.2. This is rather astonishing in view of the fact that by j = 0 and q = 0 cooperators never dominate
completely and go extinct already by b = 1.065 (see Fig. 2). Features observed by b = 1.2 prevail also by higher b, although
expectedly the maximally attainable fC decreases as the environment becomes increasingly prone to defection. In particular,
by b = 1.5 (note that this is the middle of the interval spanned by b) cooperators may still become widespread provided
j = 0.0004 and q = 0.11, as depicted in the middle panel of Fig. 3. Finally, even by the largest possible temptation to defect
given by b = 2 cooperators may still survive and reach respectable fC = 0.07 if j = 0.001 and q = 0.04, as shown in the right
panel of Fig. 3. This more precise analysis reveals that the facilitative effect on cooperation (with respect to the classical ver-
sion of the game) depicted in Fig. 2 is by no means maximal and may be further refined and enhanced with respect to the
governing temptation to defect.
Fig. 2. Fraction of cooperators fC in dependence the temptation to defect b by j = 0, q = 0 (circles) and j = 0.0012, q = 0.15 (squares). Lines are just to guide
the eye. The presented results were obtained on a square lattice, but are expected to be robust also on the honeycomb and triangular lattice.



Fig. 3. Color-coded fraction of cooperators fC in dependence on j and q for b = 1.2 (left panel), b = 1.5 (middle panel) and b = 2.0 (right panel). The color
profile is linear, white depicting 0.0 and black 0.9 (left panel), 0.4 (middle panel) and 0.07 (right panel) values of fC.
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In view of results presented in Fig. 3, we conclude that strongly defection prone environments characterized by b > > 1
require minute fractions of influential players (q = 0.04) in order to assure the best survival chances for cooperators. On
the other hand, if b is close to 1, as much as a fifth of all participants may constitute just the optimal density of influential
players needed to propel cooperators to dominance. Irrespective of b, however, influential players must always be weakly
interconnected for cooperation to thrive best. This is constituted by the fact that no more than 0.1% of all possible links
between influential players must exist if the socially optimal cooperative state is to be reached, whereby by small b even
this small fraction may be preclusive, and indeed as low as 0.03% of all possible links constitute the best interaction structure
for the studied prisoner’s dilemma game.

As emphasized already in the Introduction, across human societies influence is seldom equally distributed amongst their
members, and indeed, large segregations in status and wealth abound. Understandably, such states may evoke grief and des-
pair by the less fortunate, leading to gatherings and riots that serve as opportunities for expressing discomfort and anger.
Despite of this potentially disturbing fact, our study reveals that societies incorporating an innate segregation of influence
are better adapted for sustaining unselfish cooperative alliances amongst their members, and should therefore be more suc-
cessful in warranting a comfortable level of social welfare for all involved. It thus seems reasonable to argue that, although
large differences in status may evoke dissatisfaction and rebellion amongst the deprived, such social states likely appeared
spontaneously from an initially nonpreferential setup and are in fact optimal for the evolution of cooperation. Presented
results may also provide insights as to why developed and successful economies, characterized by low temptations to defect,
incorporate more influential players than those soaked with corruption and bribery.

Promising avenues of research further along this line concern the evolution of cooperation on interdependent and mul-
tilayer networks [20,6,21,22,7,19,23]. Indeed, several mechanisms have already been discovered by means of which the
interdependence between different networks or network layers may help to resolve social dilemmas. Specific examples
include interdependent network reciprocity [21,22], non-trivial organization of cooperators across the interdependent layers
[6], and information transmission [19]. We hope that our study will help contribute to the continued vibrancy of this field of
research (for recent reviews see [2] or [8].
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