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a b s t r a c t 

We investigate the performance of two different small-world feedforward neural networks 

for the diagnosis of diabetes. We use the Pima Indians Diabetic Dataset as input. We have 

previously shown than the Watts–Strogatz small-world feedforward neural network de- 

livers a better classification performance than conventional feedforward neural networks. 

Here, we compare this performance further with the one delivered by the Newman–Watts 

small-world feedforward neural network, and we show that the latter is better still. More- 

over, we show that Newman–Watts small-world feedforward neural networks yield the 

highest output correlation as well as the best output error parameters. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Diabetes is a very common health problem of the modern life, spreading rapidly in the world due to the change of

nutritional habits [1] . Although type-1, type-2 and gestational diabetes are all common, especially type 2 diabetes mellitus

causes significant morbidity and mortality [2] . Therefore, its early detection is of vital importance. Since some forms of

diabetes result in a worldwide epidemic that has made it one of the most serious health problem faced by the humankind

[3] , enormous effort s have been devoted to its early diagnosis and treatment. 

Expert systems and artificial intelligence techniques are widely used to aid the diagnosis of diabetes. In this context,

the Artificial Neural Network (ANN), originally inspired from real biological networks, has been preferred due to its high

classification capability [4] . The architecture of the ANN enables users to construct different types of networks such as

feedforward, recurrent and competitive [5] . Among them, a feedforward ANN (FFANN) stands out with its remarkable com-

putational speed [4] . In this context, the FFANN has been proved to be an efficient intelligent system for the diagnosis of

diabetes [6–11] . Temurtas et al. [12] used a multilayer neural network (MLNN) structure for the diagnosis of Pima Indians

diabetes and found that the classification accuracy of MLNN trained by the Levenberg–Marquardt algorithm was better than

that of conventional neural networks. Moreover, Wang et al. [2] have developed and evaluated an effective classification ap-

proach by means of ANN to identify those at high risk of type-2 diabetes mellitus without biochemical parameters. Soltani

and Jafarian [13] used probabilistic ANN (PNN) for diagnosis of diabetes with type-2. 
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Table 1 

Features of the Pima Indians Diabetic Dataset. 

Features Diagnosis Unit 

1 Number of times pregnant –

2 Plasma glucose concentration Mg/dl 

3 Diastolic blood pressure mmHg 

4 Triceps skin fold thickness Mm 

5 2-h serum insulin mu U/ml 

6 Body mass index kg/m 

2 

7 Diabetes pedigree function –

8 Age Year 

9 Result –

Table 2 

Brief statistical analysis of Pima Indians Diabetic 

Dataset. 

Features Mean Deviation Min Max 

1 3.301 3.211 0 17 

2 122.628 30.861 56 198 

3 70.663 12.496 24 110 

4 29.145 10.516 7 63 

5 156.056 118.842 14 846 

6 33.086 7.028 18.2 67.1 

7 0.523 0.345 0.085 2.42 

8 30.865 10.201 21 81 

9 0.471 0.332 0 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, new network topologies have been developed to understand the dynamics of daily life networks

because both regular and random networks do not prove fully useful in striving towards the understanding of the real

networks [14–18] . In this context, Watts and Strogatz [14] introduced a new network topology called as a Small-World (SW)

network. The rewiring algorithm provides a range where the network behaves in a way neither regular nor random. Watts

and Strogats [14] showed that some Daily life networks exhibits SW property. Latora and Marchiori [15] analyzed the real

data from neural, communication and transport networks and showed that these networks also exhibits SW behavior. SW

networks has been proven to be powerful tool to understand the dynamics and information processing capability of the

biological neural networks [18–20] . Then, some effort s have been devoted on the application of the rewiring algorithms

of the SW networks into the FFANN. Simard et al. [21] carried out a comparative study on the learning performance of

regular, SW and random networks using FFANN, and showed that the performance of the SW–FFANN is better than those

of regular and random ones. Li et al. [22] developed a multilayer feedforward SW neural network controller and showed

that it exhibits better controller performance. We analyzed the real data for estimating the thermal performance of solar

air collectors and predicting the modulus of rupture values of oriented strand boards and showed that SW–FFANN results

in better accuracy than the conventional FFANN [23] . In a recent study, we compared the performance of the SW–FFANN

and the conventional FFANN for diagnosis of diabetes on PIDD [24] . We showed that the SW–FFANN exhibits the highest

classification performance. 

Literature surveys indicate that SW–FFANNs are constructed based on the Watts and Strogatz rewiring algorithm in Watts

and Strogatz [14] . On the other hand, Newman and Watts [25] proposed a different the rewiring algorithm leading to SW

behavior. Newman–Watts SW networks have been also widely used to understand the dynamics of different real networks

[ 18–20 , 26–28 ]. Therefore, our aim in this study is to extend the subject in Erkaymaz and Ozer [24] , and to investigate the

impact of both rewiring algorithms on the performance of SW–FFANN for diagnosis of diabetes based on PIDD. 

2. Mathematical model 

In order to compare the performance of the proposed model with that reported in Erkaymaz and Ozer [24] , we use the

same Pima Indians Diabetic Dataset (PIDD), taken from the UCI machine learning repository [29–34] , which includes 768

samples and two classes (normal: 500, diabetic: 268). Each samples have eighth features and one response. These features

are shown in Table 1 . 

We followed the same methodology for the dataset. Therefore, since we have cleared the dataset from missing data, the

new dataset has 392 samples (normal: 262, diabetic: 130). The statistical analysis of this dataset is shown in Table 2 [24] . 

We consider a four layered FFANN for the comparison of the proposed model with that reported in Erkaymaz and Ozer

[24] , involving 8 input, one output neuron and two hidden layers. We use three different network topology for the FFANN:

the first one is the conventional multi-layer FFANN which has a regular topology, the second one is the Watts–Strogatz SW–

FFANN and the third one is the Newman–Watts SW–FFANN. The conventional FFANN regular topology is created through



24 O. Erkaymaz et al. / Applied Mathematics and Computation 311 (2017) 22–28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

back-propagation algorithm. The Watts–Strogatz SW–FFANN is constructed by following the rewiring algorithm of Watts 

and Strogatz [14] , where the rewiring process starts with disconnecting a randomly selected link from its end point and

rewiring it to a randomly selected neuron in the network. Notably, if the new connection already exists between 2 nodes,

we cancel this rewiring and select a new node randomly. This process is continued for up to the number of maximum

possible rewirings [14,15,23] . On the other hand, the Newman–Watts SW–FFANN is constructed by following the rewiring

algorithm of Newman and Watts [25] , where the rewiring process starts with drawing two neurons randomly. Subsequently,

only if they are not already connected, a new link is added between them. This process is repeated until a total of maximum

possible rewirings are added in the network [19] . 

In order to obtain the SW–FFANN, we follow the methodology proposed by Simard et al. [21] and use the global efficiency

( D Global ) and the local efficiency ( D Local ) parameters as in Erkaymaz et al. [23,24] . The global efficiency and the local efficiency

are defined as follows [21,23,24] : 

D Global = 

1 

1 
N (N −1) 

∑ 

i � = j∈ N 
1 

d i j 

(1) 

D Local = 

1 

E Local 

(2a) 

E Local = 

1 

N 

∑ 

x ∈ N 
E( G x ) (2b) 

E(G x ) = 

1 

N x ( N x − 1) 

∑ 

m � = n ∈ N 

1 

d mn 
(2c) 

where d ij is the shortest path length between two nodes, and N denotes the number of nodes in the network, d mn is the

shortest path length between the neighboring nodes when the node x is disconnected from them. N x is the number of

neighbor nodes that are connected directly to node x . In the methodology proposed by Simard et al. [21] , D Global and D Local 

correspond to L and 1/C in the SW network topology, respectively. L denotes the characteristic path length and C denotes the

clustering coefficient [14] . When both D Local and D Global are small, the network exhibits a small-world property [15,21,23,24] .

We use a bipolar-sigmoid function to activate each neuron in the layers and perform the back-propagation learning

algorithm with momentum coefficient (traingdm) for training process of SW–FFANN as in Erkaymaz and Ozer [24] . This

process is defined for the neuron in the output layer as follows [24] : 

δo (t) = y o (1 − y o )( d o − y o ) (3a) 

�W no (t) = αy n δo (x ) (3b) 

W no (t + 1) = W no (t) + �W no (t) + m �W no (t) (3c) 

The process is defined for the neuron in the hidden layers as follows [24] : 

δn (t) = y n (t)(1 − y n (t )) 
l ∑ 

o=1 

δo (t ) w no (t ) (3d) 

�w in (t) = αx i (t ) δn (t ) (3e) 

W in (t + 1) = W in (t) + �W in (t) + m �W in (t) (3f) 

where y and d denote the network output and the desired output, respectively. W represents the synaptic weight and �W

represents its change. α and m are the parameters of learning and momentum coefficients, respectively. Finally, δ is the

derivative of output error. 

We use the k-fold cross-validation method for training phase as in Erkaymaz and Ozer [24] , which is commonly used to

avoid over-fitting problem for ANN models [35] . In this method, the dataset is split into k equal-sized parts and randomly

selected one part is used as the test set and the remaining k −1 parts are used as the training dataset. For each trial, we

calculate the Mean Square Error ( MSE ), the Mean Absolute Error ( MAE ), and the Root Mean Square Error ( RMSE ) as follows

[24] : 

MSE = 

1 

SN 

SN ∑ 

i =1 

( y i − d i ) 
2 

(4) 
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Table 3 

The confusion matrix. 

Predicted class 

Positive Negative 

Actual class Positive TP FN 

Negative FP TN 

Fig. 1. The constructed networks, (a) the conventional FFANN network, (b) Watz–Strogatz SW–FFANN, and (c) Newman–Watts SW–FFANN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAE = 

1 

SN 

SN ∑ 

i =1 

| y i − d i | (5)

RMSE = 

√ 

1 

SN 

SN ∑ 

i =1 

( y i − d i ) 
2 

(6)

This process is repeated k = 10 times and the calculated values of the statistical parameters for each trial are then aver-

aged as in Erkaymaz and Ozer [24] . Both of the MAE and RMSE must be closer to zero for reliability of the model. Since the

system performance is commonly calculated based on the data in the contingency table (confusion matrix) [36] , we use the

confusion matrix to determine the rate of true and false predictions as in Erkaymaz and Ozer [24] . The confusion matrix

with a two class classifier is shown in Table 3 . 

In Table 3 , TP, FP, TN and FN indicate true positives, false positives and true negatives, false negatives, respectively [37] .

The performance of each model is defined as follows [24] : 

Sensitivity (%) = 100 

TP 

TP + FN 

(7a)

Specificity (%) = 100 

TN 

TN + FP 

(7b)

Accuracy (%) = 100 

TP + TN 

TP + TN + FP + FN 

(7c)

3. Results 

In order to compare the performance of the Newman–Watts SW–FFANN with that of the Watts–Srogatz SW–FFANN for

the diagnosis of diabetes based on the PIDD reported in Erkaymaz and Ozer [24] , we constructed the same FFANN with four

layers, involving 8 input, one output neuron and two hidden layers. Since we have already obtained the best performance of

the conventional FFANN with 9 neurons in the hidden layers in [ 24 , Fig. 2], the conventional FFANN is constructed with two

hidden layers each has 9 neurons as illustrated in Fig. 1 . In order to construct SW–FFANN, we need to know the number of
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Table 4 

The change of the performance of the network with the rewiring number 

(RN) for the constructed FFANN through the rewiring (a) by the Watts–

Strogatz algorithm, and (b) by the Newman–Watts algorithm. 

(a) (b) 

RN MSE MAE RMSE RN MSE MAE RMSE 

0 0.1113 0.2172 0.3336 0 0.2502 0.1207 0.5002 

5 0.1070 0.1773 0.3271 5 0.2277 0.1275 0.4772 

10 0.2094 0.2628 0.4576 10 0.2125 0.1121 0.4610 

15 0.1566 0.2259 0.3958 15 0.2387 0.1095 0.4886 

20 0.1076 0.1797 0.3280 20 0.2430 0.1179 0.4929 

25 0.1153 0.2118 0.3396 25 0.2530 0.1479 0.5030 

30 0.1294 0.1662 0.3597 30 0.2279 0.1061 0.4774 

35 0.1264 0.1963 0.3556 35 0.2862 0.1621 0.5350 

40 0.1352 0.1673 0.3677 40 0.2307 0.1152 0.4803 

45 0.1405 0.1871 0.3748 45 0.2294 0.1087 0.4789 

50 0.1248 0.2251 0.3533 50 0.2264 0.1226 0.4758 

55 0.2411 0.2838 0.4910 55 0.2487 0.1177 0.4987 

60 0.1272 0.1710 0.3567 60 0.2400 0.1111 0.4899 

65 0.1061 0.1628 0.3257 64 0.2124 0.0917 0.4608 

70 0.1308 0.1928 0.3617 70 0.2362 0.1205 0.4860 

75 0.1724 0.2308 0.4152 75 0.2224 0.1014 0.4716 

80 0.1108 0.1760 0.3328 80 0.2238 0.1039 0.4731 

85 0.1319 0.1989 0.3631 85 0.2300 0.1117 0.4795 

89 0.1107 0.2244 0.3327 89 0.2287 0.0997 0.4782 

Fig. 2. The change of D Global and D Local with the rewiring number (RN) for the constructed FFANN through the rewirings (a) by the Watts–Strogatz algorithm, 

and (b) by the Newman–Watts algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

maximum possible rewirings. We have also already calculated it as 89 for 9 neurons in the hidden layers in (see Table 4 in

Erkaymaz and Ozer [ 24 , Table 4]). 

We first construct the Watts–Strogatz FFANN and the Newman–Watts FFANN following the algorithms described in Mate-

rials and methods section. For each rewiring step, D Global and D Local parameters are calculated for each type of the SW–FFANN

and shown in Fig. 2 . As shown in Fig. 2 , as the rewiring number (RN) increases, D Local decreases whereas D Global increases for

the Watts–Strogatz FFANN. On the other hand, both D Local and D Global decreases with the increasing of the rewiring number

for the Newman–Watts FFANN. Since when both D Local and D Global are small, the network exhibits a small-world property

[15,21,23,24] , it is seen that the number of rewirings required to obtain a small-world property for the FFANN should be

greater than 8 for the Watts–Strogatz SW–FFANN and be greater than 16 for the Newman–Watts FFANN. 

Secondly, we applied the training and test processes for each FFANN following the each rewiring algorithms. We cal-

culated the MSE, MAE and RMSE of the both network types for each rewiring number. The quantitative results repooled

from simulations of 20 different realizations of the each network for any given value of RN. The obtained results are given

in Table 4 . We show that the rewiring numbers resulting in the best performance for both network types are within the

range of the SW–FFANNs. The best performance is obtained for an optimal rewiring number of 65 for the Watts–Strogatz

SW–FFANN and for an optimal rewiring number of 64 for the Newman–Watts SW–FFANN. 

Then, we statistically analyzed the classification performance with RN = 65 for the Watts–Strogatz SW–FFANN and

RN = 64 for the Newman–Watts SW–FFANN based on the confusion matrix as in Erkaymaz and Ozer [24] . The obtained
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Table 5 

Statistical performance results for three network models: the conventional 

FFANN network, Watz–Strogatz SW–FFANN, and Newman–Watts SW–FFANN. 

Model Sensitivity Specificity Accuracy (%) 

Conventional FFANN 0.60 0.92 83.33 

Watz–Strogatz SW–FFANN 0.80 0.96 91.66 

Newman–Watts SW–FFANN 0.85 0.96 93.06 

Table 6 

Comparison of the classification accuracies of the Newman–Watts SW–FFANN and the existing models based 

on the PIDD. 

Study Method Classification accuracy (%) 

Deng and Kasabov (2001) ESOM (10x FC) 78.40 

Polat and Gunes (2007) PCA–ANFIS (10x FC) 89.47 

Polat et al. (2008) LS-SVM (10x FC) 78.21 

GDA–LS-SVM (10x FC) 79.16 

Kayaer and Yildirim (2003) GRNN (conventional valid) 80.21 

MLNN with LM 77.08 

Carpenter and Markuzon (1998) ARTMAP-IC 81.00 

Other studies reported. Detailed list 

can be accessible in Polat and 

Gunes (2007) 

Various methods (3x FC. 10x FC. 

conventional valid) 

Between 59.5 and 77.7 

Temurtas et al. (2009) MLNN with LM 82.37 

PNN 78.13 

Erkaymaz and Ozer (2016) FFANN 83.33 

Watts–Strogatz SW–FFANN 91.66 

This study Newman–Watts SW–FFANN 93.06 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

results are given in Table 5 . We have already shown that the Watts–Strogatz SW–FFANN results in better performance on

the diagnosis of diabetes with an accuracy of 91.6% than the conventional FFANN with an accuracy of 83.3% [24] . In this

study, we also show that the Newman–Watts SW–FFANN improves this performance and results in an accuracy of 93.06%. It

is also seen that the Newman–Watts SW–FFANN model shows robust character to detect of disease by having a sensitivity

of 0.85 and a specificity of 0.96. 

Finally, we compared the classification accuracy of the Newman–Watts SW–FFANN and those reported in literature based

on the PIDD in Table 6 (compare it with Table 7 in [24] ). As shown in Table 6 , the previous classification accuracies is lower

than that of the Newman–Watts SW–FFANN. 

4. Discussion 

In sum, we propose a new intelligent decision system for the diagnosis of diabetes based on the conventional FFANN

and construct a non-conventional SW–FFANN through the rewiring algorithms of SW networks. In our previous study in

Erkaymaz and Ozer [24] , we obtained the Watts–Strogatz SW–FFANN through the rewiring algorithm of Watts and Strogatz

[14] , and showed that the Watts–Strogatz SW–FFANN warrants the best performance for the diagnosis of diabetes based

on the PIDD. In this study, we revisited it and constructed the SW–FFANN based on the rewiring algorithm proposed by

Newman and Watts [25] . Our results indicate that both Watts–Strogatz and Newman–Watts SW–FFANN exhibit better clas-

sification performance than the conventional FFANN. We may suggest that there is an optimal rewiring number within the

SW behavior warranting the better performance. On the other hand, we also showed that the Newman–Watts SW–FFANN

results in better performance than the Watts–Strogatz SW–FFANN. Since only if randomly drawn two neurons are not al-

ready connected, a new link is added between them, both D Local and D Global decreases with the increasing of the rewiring

number for the Newman–Watts FFANN. This rewiring algorithm results in better SW behavior for the FFANNs. Therefore, we

conclude that the Newman–Watts SW–FFANN model results in the best performance for the diagnosis of diabetes based on

the PIDD. The proposed model suggests a clear advantage for the diagnosis of diabetes, which is crucial for our attempts at

successfully mitigating the epidemics. 

We hope that our study will inspire further approaches aimed at the diagnosis of disease by means of new intelligent

decision-making approaches. We also hope that new applications areas, such as modeling memory in the brain [38] , the

use of intelligent algorithms for local search heuristic [39] , or for computational intelligence in sports [40] , will continue

to emerge. As for the future, we plan to use the Levenberg–Marquardt algorithm for network training and compare its

performance with the results presented in this study. 
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