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a b s t r a c t 

Recently, a mathematical model describing the illicit drug consumption in a population 

consisting of drug users and non-users has been proposed. The model describes the dy- 

namics of non-users, experimental users, recreational users, and addict users within a pop- 

ulation. The aim of this work is to propose a modified version of this model by analogy 

with the classical predator-prey models, in particular considering non-users as prey and 

users as predator. Hence, our model includes a stabilizing effect of the growth rate of the 

prey, and a destabilizing effect of the predator saturation. Functional responses of Verhulst 

and of Holling type II have been used for modeling these effects. To forecast the mari- 

juana consumption in the states of Colorado and Washington, we used data from Hanley 

(2013) and a genetic algorithm to calibrate the parameters in our model. Assuming that 

the population of non-users increases in proportion with the demography, and following 

the seminal works of Sir Robert May (1976), we use the growth rate of non-users as the 

main bifurcation parameter. For the state of Colorado, the model first exhibits a limit cycle, 

which agrees quite accurately with the reported periodic data in Hanley (2013). By further 

increasing the growth rate of non-users, the population then enters into two chaotic re- 

gions, within which the evolution of the variables becomes unpredictable. For the state of 

Washington, the model also exhibits a periodic solution, which is again in good agreement 

with observed data. A chaotic region for Washington is likewise observed in the bifurcation 

diagram. Our research confirms that mathematical models can be a useful tool for better 

understanding illicit drug consumption, and for guiding policy-makers towards more effec- 

tive policies to contain this epidemic. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

1. Introduction 

Mathematical modeling of illicit drug consumption is a very difficult and complex problem. To this aim predator-prey

models have been used at the end of the nineties. Then, in 2013 a model called NERA has been built to describe the
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dynamics of the non (N), experimental (E), recreational (R) and addict (A) user categories, respectively, within a given pop-

ulation. However, the original NERA model did not involve limitation in drug consumption and was consequently unable to

transcribe the periodic evolution of each category. So, we have modified this model by analogy with the classical predator–

prey models and while considering non-users (N) as prey and users (E, R and A) as predator. Then, using data from the

state of Colorado and Washington and a genetic algorithm, we calibrated our predator–prey NERA models by estimating

their parameters sets. This allowed us to account for the periodic evolution of each category. Then, by considering that the

population of Non-users increases in proportion of the demography we highlighted chaotic regions within which the evo-

lution of the variables becomes unpredictable. Thus, it appears that our validated NERA model can be a precious tool in

forecasting of illicit drug consumption and can be of substantial interest to policy-makers in the problematic of illicit drug

consumption. 

Since the beginning of the nineties, many continuous time models have been proposed to describe the dynamics of drug

consumption [1–5,13,15] . They mainly consisted in second order nonlinear models involving two variables which were used

for predicting the long term dynamics of addicts and dealers of a large drug market, like that of an entire country. Few

years later, Gragnani et al. [14] proposed an extension to such models by adding a third ordinary differential equation to

the original two-dimensional dynamical systems. This third variable represented the enforcement exerted by the authorities.

Let’s notice on the one hand that these models already used limitations in the growth and decay of each variable (at least

for the two first) and on the other hand that, Gragnani et al. [14] proved the existence of slow-fast limit cycles according to

the singular perturbation theory as solution of their three-dimensional dynamical system. Recently, Dauhoo et al. [6,7] have

considered that drug users are generally classified into three main categories, depending on their consumption frequency

and the control they have over the drug, i.e., Experimental (E), Recreational (R) and Addicts (A) users. By adding a fourth

variable, i.e., the Non (N) users to these first three ones, they proposed the NERA model. Although this four-dimensional

dynamical system takes into account the mutual influence that drug users (E, R and A) can have on non-users (N) and

on each other it does not contain any limitation in the growth and decay of each variable. Thus, no oscillatory or chaotic

regime could be observed. That is the reason why we have proposed to modify Dauhoo’s NERA model [6] by introducing a

limitation in each “functional response”. In their paper, Dauhoo et al. [6] wrote the following sentence: “Anyone could be a

‘prey’ to illicit drugs”. This led us to make the analogy with predator–prey models. 

2. General predator–prey NERA model 

This deterministic model aims at transcribing into mathematical functions variations of the number of individuals of each

group due to their interactions with others. We make the assumption that such interactions are mainly characterized by the

influence that individuals of one group may exert on the others. Thus, we consider that people influenced by a group leaves

the group to which they belong to join the group which has influenced them. As a consequence, some individuals disappear

of one group and appear in another. So, by analogy with the predator–prey models used for a long time in Theoretical

Ecology [21,25] , these influences, which cause such appearances and disappearances, i.e. , increases and decreases (variations)

of the number of individuals of each group can be regarded as predation of on group on another. In the predator–prey model

that we propose, Non-users (N) represent prey for all other groups (E, R and A). Then, Experimental-users (E) are predator

of both Recreational-users (R) and Non-users (N) while Addict-users (A) are predator of all R, E and N-users. According to

Kuznetsov [20] , for the model to be realistic it is necessary to introduce a “stabilizing effect of the competition among prey

and a destabilizing effect of the predator saturation”. To this aim, we have used two different types of “functional responses”

for the growth of prey (N) and for the growth of the predators (E, R, A). We have first considered that, in the absence of

any predator, prey growth (N) must be limited. Such limitation or stabilizing effect is generally introduced by using the

logistic law introduced by Verhulst [26] . Concerning the predators (E, R, A), the saturation of the predator rate (destabilizing

effect) can be modeled with the classical Holling type II “functional response” [17,18] . Of course, various other “functional

responses” could have been chosen to this aim [12] . Let’s notice that such saturation in the predator rate represents a

limitation in the influence of each predator group on the others. At last, we consider that in the absence of its predators,

the number of individuals of one group (E, R, and A except N) can decrease by a kind of “natural mortality” which can

correspond to individuals leaving this group. In the most dramatic case of drug addict, this could be due to overdose. 

2.1. Functional responses 

In 1837, the Belgian biologist Pierre-François Verhulst proposed a model that took into account the limitation imposed by

the increasing population size of a prey called X in absence of any predator. This model, called logistic law , can be written

as follows: 

dX 

dt 
= βX ( 1 − X ) 

In 1926, the Italian mathematician Vito Volterra developed the very first predator–prey models. The formulation of the

equation representing the predation is based on the méthode des rencontres (method of encounters) and on the hypothèse

des équivalents (hypothesis of equivalents) [27–30] . The former assumes that for predation to occur between a predatory

species ( X ) and a prey species ( Y ), it is first necessary to have encounters between these two species and that the number of



504 J.-M. Ginoux, R. Naeck and Y.B. Ruhomally et al. / Applied Mathematics and Computation 347 (2019) 502–513 

Table 1 

Interpretation of the parameters in NERA model. 

Parameter Sociological meaning 

r 1 Influence rate of E(t) on N(t) 

r 2 Influence rate of R (t) on E(t) 

r 3 Rate at which recreational users change to addicts 

α1 Influence rate of A (t) on N(t) 

α2 Influence rate of R (t) on N(t) 

γ1 Influence rate of A (t) on E(t) 

β1 Rate of moving in and out of the Non-user category 

β2 Rate at which experimental users quit drugs 

β3 Rate at which recreational users quit drugs 

β4 Rate at which addicts quit drugs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

encounters between them is proportional to the product of the number of individuals composing them, that is αX ( t ) Y ( t ), the

coefficient of proportionality α being equal to the probability of an encounter. The second hypothesis consists in assuming

that “there is a constant ratio between the disappearances and appearances of individuals caused by the encounters”, that

is, that predation of the preys is equivalent to increase of the predators. At the beginning, Volterra considers this increase

as immediate. This means that predation is immediately transcribed in terms of growth of the predator species, whereas

its effect naturally occurs with some delay. In his works Volterra [30] also took this delay into account. This will not be

the case in this paper. In the following, we will consider that the effects of influence that individuals of one group ( X ) may

exert on another ( Y ) are analogous to the effects of predation of ( Y ) on ( X ). The mathematical function corresponding to the

modeling of a behavior such as influence or predation is called a “functional response”. The functional response proposed by

Volterra to describe predation does not take into account any limitation, i.e. “satiety” of the predator and so, the predation

rate is a “linear function” of the prey. Thus, from the beginning of the thirties various types of “function responses” were

proposed while using nonlinear mathematical functions presenting an asymptotic behavior and so a limitation [10,11] . 

In the late 1950s, entomologist Crawford Stanley Holling [17,18] developed two new functional responses for predation,

also intended to describe a certain satiety of the predator ( Y ) with respect to its prey ( X ): Holling function of type II and

Holling function of type III. In this paper, we will only use the Holling type II functional response which can be represented

by: 

X 

h + X 

Y 

where h represents half-saturation, that is, the value of the prey density X = h for which the predation level reaches a value

equal to half its maximum. 

So, in this work we propose to used both logistic law and Holling type II functional response for modeling the influence

that exert the predators A, R and E on each others and on the prey N (See Fig. 1 ). 

2.2. Model equations 

So, we have the following system of ordinary differential equations: 

dN 

dt 
= β1 N ( 1 − N ) − r 1 

N 

h + N 

E − α1 
N 

h + N 

A − α2 
N 

h + N 

R, 

dE 

dt 
= r 1 

N 

h + N 

E − r 2 
E 

h + E 
R − β2 E − γ1 

E 

h + E 
A, 

dR 

dt 
= r 2 

E 

h + E 
R − β3 R − r 3 

R 

h + R 

A + α2 
N 

h + N 

R, 

dA 

dt 
= r 3 

R 

h + R 

A − β4 A + α1 
N 

h + N 

A + γ1 
E 

h + E 
A, 

(1) 

where β1 is the growth rate of the population of the prey ( N ) in the absence of any predator ( E , R , A ), β i with i = 2 , 3 , 4

are the “natural mortality” of each predator ( E , R , A ) in the absence of all others and r i with i = 1 , 2 , 3 is the predation rate

of A on R , R on E and E on N respectively. α1 and γ 1 represent the predation rate of A on N and E respectively while α2 is

that of R on N . Thus, in this four-dimensional dynamical system, a set of 11 positive parameters: ( β1 , β2 , β3 , β4 , r 1 , r 2 , r 3 ,

α1 , α2 , γ 1 , h ) is used. 

Remark. Let’s notice that for each Holling type II functional response a different half saturation h could have been chosen.

Nevertheless, the aim of this work is to propose the most simple and consistent model for illicit drug consumption. 

The sociological meaning of each parameter used in this model (1) is given in Table 1 . 



J.-M. Ginoux, R. Naeck and Y.B. Ruhomally et al. / Applied Mathematics and Computation 347 (2019) 502–513 505 

Fig. 1. Schematic representation of the predator–prey NERA model. 
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2.3. Dynamic aspects 

Due to the presence of the Holling type II functional responses, the determination of the fixed points of this four-

dimensional dynamical system (1) is not trivial while using the classical nullclines method. Nevertheless, by posing E =
R = A = 0 two obvious fixed points can be easily found: 

O (0 , 0 , 0 , 0) and I 1 (1 , 0 , 0 , 0) . 

By posing R = A = 0 , a third fixed point can be also obtained: 

I 2 (N 

∗
2 , E 

∗
2 , 0 , 0) = 

(
β2 h 

r 1 − β2 

, 
r 1 − β2 ( 1 + h ) 

( r 1 − β2 ) 
2 

β1 h, 0 , 0 

)

It follows that this fixed point I 2 is positive provided that: 

r 1 − β2 > 0 and r 1 − β2 ( 1 + h ) > 0 . (2) 

Then, by posing E = R = 0 , a fourth fixed point can be also obtained: 

J 2 (N 

∗
2 , 0 , 0 , A 

∗
2 ) = 

(
β4 h 

α1 − β4 

, 0 , 0 , 
α1 − β4 ( 1 + h ) 

( α1 + β4 ) 
2 

β1 h 

)

It follows that this fixed point J 2 is positive provided that: 

α1 − β4 > 0 and α1 − β4 ( 1 + h ) > 0 . (3) 

Finally, while posing A = 0 , a fifth fixed point I 3 (N 

∗
3 
, E ∗

3 
, R ∗

3 
, 0) can be determined but its expression is too long to be

written here. 

Remark. Let’s notice that all fixed points depend on parameters ( β1 ). 

Following the works of Freedman [9] , the system (1) may be written as: 

dN 

dt 
= N g ( N ) − ( r 1 E + α1 A + α2 R ) p 1 ( N ) , 

dE 

dt 
= E ( −β2 + r 1 p 1 ( N ) ) − ( r 2 R + γ1 A ) p 2 ( E ) , 

dR 

dt 
= R ( −β3 + r 2 p 2 ( E ) + α2 p 1 ( N ) ) − r 3 Ap 3 ( E ) , 

dA 

dt 
= A [ −β4 + r 3 p 3 ( R ) + α1 p 1 ( N ) + γ1 p 2 ( E ) ] , 

(4) 

where g(N) = β1 (1 − N ) , p 1 (N ) = 

N 

h + N 

, p 2 (E) = 

E 

h + E 
and p 3 (R ) = 

R 

h + R 
. Such a formulation will simplify the computa-

tion of the eigenvalues of the functional Jacobian matrix (5) presented below. 

2.3.1. Functional Jacobian matrix 

The Jacobian matrix of system (4) reads: 

J = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

J 11 −r 1 p 1 (N) −α2 p 1 (N) −α1 p 1 (N) 

r 1 E p ′ 1 (N) J 22 −r 2 p 2 (E) −γ1 p 2 (E) 

α2 Rp ′ 1 (N) r 2 Rp ′ 2 (E) J 33 −r 3 p 3 (R ) 

α1 Ap ′ 1 (N) γ1 Ap ′ 2 (E) −r 3 Ap ′ 3 (R ) J 44 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(5) 

where the diagonal terms read: 

J 11 ( N, E, R, A ) = g ( N ) + N g ′ ( N ) − ( r 1 E + α1 A + α2 R ) p ′ 1 ( N ) , 

J 22 ( N, E, R, A ) = −β2 + r 1 p 1 ( N ) − γ1 up ′ 2 ( E ) , 
J 33 ( N, E, R, A ) = −β3 + r 2 p 2 ( E ) + α2 p 1 ( N ) − r 3 Ap ′ 3 ( R ) , 

J 44 ( N, E, R, A ) = −β4 + r 3 p 3 ( R ) + α1 p 1 ( N ) + γ1 p 2 ( E ) . 

Let’s notice that for i = 1 , 2 , 3 we have for N = 0 and then for N = 1 : 

g ( 0 ) = β1 , g 
′ ( 0 ) = −β1 , p i ( 0 ) = 0 , p ′ i ( 0 ) = 

1 

h 

, 

g ( 1 ) = 0 , g ′ ( 1 ) = −β1 , p i ( 1 ) = 

1 

, p ′ i ( 1 ) = 

h 

2 
. 

(6) 
h + 1 ( h + 1 ) 
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2.3.2. Eigenvalues at O (0, 0, 0, 0) 

Taking into account the above conditions (6) , the functional Jacobian matrix (5) is diagonal. Thus, the four eigenvalues

are: 

λ1 = β1 ; λ2 = −β2 ; λ3 = −β3 ; λ4 = −β4 . 

It follows that the origin O is a saddle . 

2.3.3. Eigenvalues at I 1 (1, 0, 0, 0) 

Taking into account the above conditions, the functional Jacobian matrix (5) is diagonal. Thus, the four eigenvalues are: 

λ1 = −β1 ; λ2 = −β2 + 

r 1 
h + 1 

; λ3 = −β3 + 

α2 

h + 1 

; λ4 = −β4 + 

α1 

h + 1 

. 

According to conditions ( 2 and 3 ), both λ2 and λ3 are positive. So, whatever the values of the parameters, it follows that

I 1 is also a saddle . 

2.3.4. Eigenvalues at I 2 ( N 

∗
2 , E 

∗
2 , 0 , 0) and at J 2 ( N 

∗
2 , 0 , 0 , A 

∗
2 ) 

Although the four eigenvalues evaluated at I 2 and J 2 are too long to be expressed, two of them contain a square root.

So, according to the choice of the parameters, these eigenvalues may be complex conjugate. Thus, if we assume that the

expression in the square root is negative, we can look for the sign of the remaining part which can be considered as the

real part of these eigenvalues. Such a real part is positive provided that: 

0 < r 1 − β2 ( 1 + h ) − hr 1 and 0 < r 1 − β2 , 

0 < α1 − β4 ( 1 + h ) − hα1 and 0 < α1 − β4 . 

Combining these conditions with the previous one ( 2 and 3 ), we find that 

0 < hr 1 < r 1 − β2 ( 1 + h ) , 

0 < hα1 < α1 − β4 ( 1 + h ) . 
(7)

It follows that I 2 and J 2 are a saddle-foci (two eigenvalues are complex conjugate with positive real parts and the two

others eigenvalues are real). 

2.3.5. Eigenvalues at I 3 ( N 

∗
3 
, E ∗

3 
, R ∗

3 
, 0) 

Concerning this last point I 3 , the analytical analysis of stability is no more possible and it becomes then necessary to

choose a parameter set. 

Remark. Let’s notice that the number of real positive fixed points depends on the choice of parameters. 

2.3.6. Bifurcation analysis 

Since I 2 , J 2 and I 3 do not depend on parameters ( β4 , r 3 , α1 , γ 1 ), bifurcations can occur in these models (for both states

of Colorado and Washington). Following the works of May [22] , we propose to choose the parameter β1 , i.e. , the growth rate

of the population of the prey ( N ) or the rate of moving in and out of the Non-user category, as bifurcation parameter. Let’s

notice that this choice is based on the assumption according to which the population of Non-users increases in proportion

of the demography. Then, for the same reasons as previously, an analytical analysis would be difficult even impossible. So,

in the next section we will set all the parameters except β1 and then we will use a bifurcation diagram to determine the

values of the bifurcation parameters. 

2.3.7. Existence of bounded solutions 

Following the works of Freedman [9] and while posing N = x 1 , E = x 2 , R = x 3 and A = x 4 , the system (1) can be rewritten

as follows: 

dx 1 
dt 

= x 1 g ( x 1 ) − ( r 1 x 2 + α1 x 4 + α2 x 3 ) p 1 ( x 1 ) , 

dx 2 
dt 

= x 2 ( −β2 + r 1 p 1 ( x 1 ) ) − ( r 2 x 3 + γ1 x 4 ) p 2 ( x 2 ) , 

dx 3 
dt 

= x 3 ( −β3 + r 2 p 2 ( x 2 ) + α2 p 1 ( x 1 ) ) − r 3 x 4 p 3 ( x 3 ) , 

dx 4 
dt 

= x 4 [ −β4 + r 3 p 3 ( x 3 ) + α1 p 1 ( x 1 ) + γ1 p 2 ( x 2 ) ] , 

(8)

where g(x 1 ) = β1 (1 − x 1 ) , p i (x i ) = 

x i 
h + x i 

with i = 1 , 2 , 3 . 



508 J.-M. Ginoux, R. Naeck and Y.B. Ruhomally et al. / Applied Mathematics and Computation 347 (2019) 502–513 

Table 2 

Parameter values for the consumption of Marijuana in Colorado. 

r 1 r 2 r 3 α1 α2 α3 β1 β2 β3 β4 

0.44 0.193 0.029 0.103 0.043 0.031 0.042 0.016 0.052 0.047 

Table 3 

Parameter values for the consumption of Marijuana in Washington. 

r 1 r 2 r 3 α1 α2 α3 β1 β2 β3 β4 

0.38 0.142 0.034 0.099 0.112 0.032 0.015 0.03 0.066 0.039 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, analysis of experimental data available on the prevalence of marijuana in the population of 21 + in the states

of Colorado and Washington [16] has shown that the influence of A on N and E as well as that of R on N are in fact very

weak. So, we will consider that α1 � 1, α2 � 1 and γ 1 � 1. Thus, under these assumptions, model (8) reads: 

dx 1 
dt 

= x 1 g ( x 1 ) − r 1 x 2 p 1 ( x 1 ) , 

dx 2 
dt 

= x 2 [ −β2 + r 1 p 1 ( x 1 ) ] − r 2 x 3 p 2 ( x 2 ) , 

dx 3 
dt 

= x 3 [ −β3 + r 2 p 2 ( x 2 ) ] − r 3 x 4 p 3 ( x 3 ) , 

dx 4 
dt 

= x 4 [ −β4 + r 3 p 3 ( x 3 ) ] . 

(9) 

Then, according to Theorem 2.1 stated by Freedman [9] , “all solutions initiating in the nonnegative cone are bounded

and eventually enter a certain attracting set described below.”

3. Applications of predator–prey NERA model 

In order to perform numerical experiments for forecasting the marijuana consumption in the states of Colorado and

Washington beyond the year of the I – 502 implementation, we used data from Hanley [16] . The Washington State Institute

for Public Policy conducted a benefit-cost analysis of the implementation of I – 502, which legalizes recreational marijuana

use for adults within the two states [16] . The data collected in the latter report is the result of an analysis of population-

level data in order to monitor four key indicators of marijuana use, namely, current marijuana use, lifetime marijuana use,

marijuana abuse or dependency and age of initiation prior to implementation of I – 502. In the case of our NERA model, the

first three categories correspond to the Recreational, Experimental and Addict category respectively [6] . The report highlights

the importance of examining trends in that manner will allow them to monitor whether the implementation of I – 502

appears to affect these key indicators of marijuana use over time. Our numerical experiments aim to forecast the marijuana

consumption in the states of Colorado and Washington beyond the year of the I – 502 implementation using data from

Hanley [16] . The NERA predator–prey model is calibrated by estimating the parameters r 1 , r 2 , r 3 , α1 , α2 , α3 , β1 , β2 , β3 

and β4 . Parameter h has been arbitrarily chosen equal to 1/2 as usually done in theoretical ecology [25] . To this aim, we

used these data and a genetic algorithm as explained in Dauhoo et al. [6] . The fitness function used has been chosen to

minimize the error that our model generates. MATLAB Optimtool is used and the fitness function is inserted in the genetic

algorithm. We hence obtain the set of values in Table 2 and Table 3 corresponding to the NERA predator–prey model for

Colorado and Washington. Obviously, since the parameters sets of both NERA predator–prey models have been calibrated

starting from the data from Hanley [16] , numerical integration of Eq. (1) with parameters sets from Tables 2 and 3 are in

perfect agreement with the observed data. Thus, it confirms that the NERA predator–prey models can be a precious tool in

forecasting of illicit drug consumption in the population of the state considered. 

3.1. NERA model for Colorado 

Still using experimental data [16] , we set the parameters from Table 2 where β1 is the bifurcation parameter. By varying

continuously β1 from 0.02 to 0.8 (all other parameters are those given in Table 2 ), we determine the values for which

bifurcations occur by plotting the bifurcation diagram presented in Fig. 2 . 

We observe in this diagram ( Fig. 2 ), that for the value of β1 ∈ [0.02, 0.31] the solution of the NERA model (1) for Colorado

is a limit cycle (LC) as exemplified in Fig. 3 a. Then, still increasing parameter β1 up to the first bifurcation value β
b 1 
1 

= 0 . 3175 ,

the solution becomes chaotic (C) as highlighted in Fig. 3 b. Such chaotic feature persists up to the second bifurcation value

β
b 2 
1 

= 0 . 37 starting from which the solution becomes again a limit cycle (LC) (see Fig. 3 c). Then, starting from the third

bifurcation value β
b 3 
1 

= 0 . 55 a chaotic attractor (C) appears again (see Fig. 3 d). 
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Fig. 2. Bifurcation diagram of model (1) u max as function of β1 . 

Fig. 3. Phase portraits of model (1) in the ( N , E , R )-space for various values β1 . 
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Table 4 

LCEs of NERA model (1) for Colorado for various values of β1 . 

β1 LCE spectrum Dynamics of the attractor Hausdorff dimension 

0.02 < β1 < 0.31 ( 0 , −, −, −) Periodic Motion (Limit Cycle) D = 1 

0.31 < β1 < 0.37 ( 0 , 0 , −, −) 3-Torus (Quasi-Periodic Motion) D = 2 

0.37 < β1 < 0.55 ( 0 , −, −, −) Periodic Motion (Limit Cycle) D = 1 

0.55 < β1 < 0.8 ( 0 , 0 , −, −) 3-Torus (Quasi-Periodic Motion) D = 2 

Fig. 4. Bifurcation diagram of model (1) u max as function of β1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The algorithm developed by Sandri [24] for Mathematica ® has been used to perform the numerical calculation of

the Lyapunov characteristics exponents (LCE) of the NERA predator–prey model (1) for Colorado with the parameters

from Table 2 and with β1 ∈ [0.02, 0.8]. As an example for β1 = 0 . 3 , 0 . 35 , 0 . 4 and 0.6, Sandri’s algorithm has provided

respectively the following LCEs (0 , −0 . 0022 , −0 . 013 , −0 . 029) , (0 , 0 , −0 . 0010 , −0 . 065) , (0 , −0 . 0011 , −0 . 0011 , −0 . 0 6 6) and

(0 , 0 , −0 . 0017 , −0 . 085) . Then, according to the works of Klein and Baier [19] , a classification of (autonomous) continuous-

time attractors of dynamical system (1) on the basis of their Lyapunov spectrum, together with their Hausdorff dimension

is presented in Table 4 . LCEs values have been also computed with the Lyapunov Exponents Toolbox (LET) developed by

Pr. Steve Siu for MatLab ® and involving the two algorithms proposed by Wolf et al. [31] and Eckmann and Ruelle [8] (see

https://fr.mathworks.com/matlabcentral/fileexchange/233-let ). Results obtained by both algorithms are consistent. 

3.2. NERA model for Washington 

Now, we set the parameters from Table 3 where β1 is still the bifurcation parameter. By varying continuously β1 from

0.02 to 0.36 (all other parameters are those given in Table 3 ), we determine the values for which bifurcations occur by

plotting the bifurcation diagram presented in Fig. 4 . 

We observe from this diagram ( Fig. 4 ) that for the value of β1 ∈ [0.02, 0.334] the solution of the NERA model (1) for

Washington is a limit cycle (LC) in the ( N , E )-plane as exemplified in Fig. 5 a. Then, still increasing parameter β1 up to

the first bifurcation value β
b 1 
1 

= 0 . 335 , the solution becomes chaotic (C) as highlighted in Fig. 5 b & c. Such chaotic feature

persists up to the second bifurcation value β
b 2 
1 

= 0 . 357 starting from which the solution becomes again a limit cycle (see

Fig. 5 d). 

Still using the algorithm developed by Sandri [24] we numerically compute the Lyapunov characteristics exponents (LCE)

of the NERA model (1) for Washington with the parameters from Table 3 and with β1 ∈ [0.02, 0.36]. In this case, for

β1 = 0 . 27 , 0 . 34 , 0 . 345 and 0.3485, Sandri’s algorithm provides respectively the following LCEs (0 , −0 . 0078 , −0 . 0089 , −0 . 019) ,

(0 , 0 , −0 . 010 , −0 . 017) , (0 , 0 , −0 . 0092 , −0 . 016) and (0 , 0 , −0 . 011 , −0 . 016) . Then, as previously, a classification of attractors of

dynamical system (1) on the basis of its Lyapunov spectrum, together with its Hausdorff dimension is presented in Table 5 .

Here again, LCEs values have been also computed with the Lyapunov Exponents Toolbox (LET) and results obtained by both

algorithms are consistent. 

https://fr.mathworks.com/matlabcentral/fileexchange/233-let
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Fig. 5. Phase portraits of model (1) in the ( N , E , R )-space for various values β1 . 

Table 5 

LCEs of NERA model (1) for Washington for various values of β1 . 

β1 LCE spectrum Dynamics of the attractor Hausdorff dimension 

0.2 < β1 < 0.33 ( 0 , −, −, −) Periodic Motion (Limit Cycle) D = 1 

0.3375 < β1 < 0.44 ( 0 , 0 , −, −) 3-Torus D = 2 

0.44 < β1 < 0.45 ( 0 , −, −, −) Periodic Motion (Limit Cycle) D = 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion 

By considering that drug users are classified into four main categories: non (N), experimental (E), recreational (R) and

addicts (A) users, Dauhoo et al. [6] have proposed the NERA model. Nevertheless, although this four-dimensional dynamical

system took into account the mutual influence that drug users (E, R and A) can have on non-users (N) and on each other,

it did not contain any limitation in the growth and decay of each variable. Thus, no oscillatory or chaotic regime could

be observed. So, the aim of this work was to propose a modified version of this NERA model by analogy with the classical

predator–prey models and while considering non-users (N) as prey and users (E, R and A) as predator. Thus, this new model

included a “stabilizing effect” of the growth rate of the preys (N) and a “destabilizing effect” of the predators (E, R and A)

saturation. Functional responses of Verhulst and Holling type II have been used for modeling these effects. Then, in order

to perform numerical experiments for forecasting the marijuana consumption in the states of Colorado and Washington

beyond the year of the I – 502 implementation, we used data from Hanley [16] and a genetic algorithm as explained in

Dauhoo et al. [6] . Thus, the NERA predator–prey model has been calibrated by estimating all the parameters except h which

has been arbitrarily chosen equal to 1/2 as usually done in theoretical ecology [25] . We hence obtained two parameters

sets corresponding to the NERA predator–prey model for the state of Colorado and Washington. Following the works of May
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[22] , we chose the parameter β1 , i.e. , the growth rate of the population of the prey ( N ) or the rate of moving in and out of

the Nonuser category, as bifurcation parameter. This choice was based on the assumption that the population of Non-users

increases in proportion of the demography. A stability and bifurcation analysis of the NERA model for Colorado and for

Washington has therefore been performed. 

Concerning the NERA model for Colorado, the bifurcation diagram has shown that when the value of parameter

β1 ∈ [0.02, 0.31], the solution is a limit cycle confirming thus the behavior of the observed data from Hanley [16] . So, the

number of individuals of each group N, E, R and A oscillates in a deterministic way with a period and amplitude that

can be numerically computed. Then, still increasing parameter β1 up to the first bifurcation value β
b 1 
1 

= 0 . 3175 , we have

shown that the solution becomes quasi periodic (3-Torus). Such chaotic attractor persists up to the second bifurcation value

β
b 2 
1 

= 0 . 37 starting from which the solution becomes again a limit cycle . When parameter β
b 3 
1 

= 0 . 55 reaches the third bi-

furcation value a chaotic attractor appears again. These results have been confirmed by the computation of the Lyapunov

characteristics exponents. 

Concerning the NERA model for Washington, the bifurcation diagram has shown that when the value of parameter

β1 ∈ [0.02, 0.26] the solution is a limit cycle confirming thus the behavior of the observed data from Hanley [16] . Then,

still increasing parameter β1 up to the first bifurcation value β
b 1 
1 

= 0 . 34 , the solution becomes quasi periodic (3-Torus).

Such chaotic attractor persists up to the second bifurcation value β
b 2 
1 

= 0 . 357 starting from which the solution becomes

again a limit cycle . These results have been also confirmed by the computation of the Lyapunov characteristics exponents. 

Thus, we have shown that an increase of the population of non-users (N) leads first to a periodic evolution of drug-users

(E, R, A). But when this increase reaches a certain threshold for both states of Colorado and Washington, the evolution of all

variables becomes unpredictable. Such result can be also interpreted by analogy with the so-called “paradox of enrichment”

which states that increasing the food available to the prey caused the predator’s population to destabilize [23] . We have thus

confirmed on one hand that the NERA predator–prey models can be a precious tool in forecasting of illicit drug consumption

in the population of the state considered and, on the other hand that they can be of substantial interest to policy-makers in

the problematic of illicit drug consumption. 
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