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We use nonlinear time series analysis methods to analyze the dynamics of the sound-producing apparatus
of the American crocodile (Crocodylus acutus). We capture its dynamics by analyzing a recording of the
singing activity during mating time. First, we reconstruct the phase space from the sound recording
and thereby reveal that the attractor needs no less than five degrees of freedom to fully evolve in the
embedding space, which suggests that a rather complex nonlinear dynamics underlies its existence.
Prior to investigating the dynamics more precisely, we test whether the reconstructed attractor satisfies
haos
ime series analysis
ound
eptile behavior
ating

the notions of determinism and stationarity, as a lack of either of these properties would preclude a
meaningful further analysis. After positively establishing determinism and stationarity, we proceed by
showing that the maximal Lyapunov exponent of the recording is positive, which is a strong indicator
for the chaotic behavior of the system, confirming that dynamical nonlinearities are an integral part of
the examined sound-producing apparatus. At the end, we discuss that methods of nonlinear time series
analysis could yield instructive insights and foster the understanding of vocal communication among

certain reptile species.

. Introduction

Nonlinear time series analysis (Abarbanel, 1996; Kantz and
chreiber, 1997; Sprott, 2003) offers tools that bridge the gap
etween experimentally observed irregular behavior and the the-
ry of deterministic dynamical systems (Schuster, 1989; Ott, 1993;
trogatz, 1994; Kaplan and Glass, 1995). It is thus a powerful the-
ry that enables the determination of characteristic quantities, e.g.
he number of active degrees of freedom or invariants such as Lya-
unov exponents, of a particular system solely by analyzing the
ime course of one of its variables. Thereby, intimate links between
he chaos theory and experimental observations can be weaved.
ince famous chaotic attractors, like for example the Lorenz butter-
y attractor (Lorenz, 1963) or the Rössler attractor (Rössler, 1976)
ave inspired generations of scientists, and continue to inspire even
oday, this basic concept is truly enchanting. Importantly, however,
are should be exercised when applying methods of nonlinear time
eries analysis to real-life data. In particular, the notions of deter-
inism and stationarity should always be tested for, since they

annot be taken for granted as in dynamical systems theory. An

bserved irregular behavior can be easily advertised as chaos. How-
ver, since deterministic chaos is neither the only nor the most
robable origin of irregularity in real-life systems, other potential
ources, such as noise or varying parameters during data acquisi-
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tion, have to be eliminated. These are important issues that have
to be addressed before attempting further analyses, especially on
real-life recordings, as we will emphasize throughout this work.

Presently, we analyze the sound recording of the mating sound
of the American crocodile (Crocodylus acutus), belonging to the
genus Crocodylus, family Crocodylidae, order Crocodilia, living at
the Atlantic and Pacific coasts extending from southern Mexico
to Central America, as well as in South America as far as Peru
and Venezuela. It also breeds on Cuba and Jamaica, and there is
a remnant population in Florida. American crocodiles predomi-
nantly inhabit freshwater or brackish water coastal regions, and
mangrove swamps. For a comprehensive review on various aspects
of C. acutus as well as other crocodile species we refer the reader
to the relevant “Status survey and conservation action plan” (Ross,
1998), while here we constrain ourselves to the most important
facts. The American crocodile is one of the largest crocodile species,
with males reaching lengths of up to 6 m. Despite its impressive
size and strength, and history of existence reaching back 65 mil-
lion years, the species could barely withstand exploitations from
humans, and although some quite ambitious attempts have been
made to increase the numbers of wild specimens, the U.S. Fish and
Wildlife Service still classifies the American crocodile as a threat-
ened species, thus protecting the reptile from illegal harassing,

poaching or killing under the federal Endangered Species Act. Cur-
rently, no more than 2000 American crocodiles exist in Mexico,
Central and South America.

Of a more direct importance for the present work is the fact that
Crocodilia are considered the most vocal of all reptiles. Although

http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:matjaz.perc@uni-mb.si
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sing physical displays, chemical and vocal signals to communi-
ate, the sound plays a key role during mating time, as it is used
y both female and males to signal either readiness or attempts
f courtship. Since American crocodiles have no vocal cords, they
roduce sounds by forcing air out of their lungs through the back
f the throat or nostrils situated on the top of their heads. Impor-
antly though, they do posses a pair of membranous folds within
he glottis that serve as vocal cords, which indeed may be respon-
ible for a qualitatively identical dynamics as reported previously
or vocal cord vibrations in mammals (Wilden et al., 1998). It is the
ynamics of this sound-producing apparatus that we are currently

nvestigating with methods of nonlinear time series analysis.
In the past, animal sound recordings have often been analyzed

ith methods of nonlinear time series analysis. Wilden et al. (1998),
or example, introduced the concept of nonlinear dynamics to

ammalian bioacoustics in order to quantify the complexity of
ammal vocalization. Mammalian sounds were investigated also

n Riede et al. (2000, 2001, 2005) and Fitch et al. (2002). Other exam-
les where nonlinear dynamics was found to play an important role

or sound generation include bird songs (Fee et al., 1998; Fletcher,
000) as well as human speech signals (Mende et al., 1990; Titze et
l., 1993; Herzel et al., 1994; Narayanan and Alwan, 1995; Kumar
nd Mullick, 1996; Behrman, 1999). However, despite the rather
xtensive literature existing on this topic, we found no applications
f nonlinear time series analysis methods on reptile sounds. The
resent study thus aims to fill this gap.

We start the analysis by applying the embedding theorem
Takens, 1981; Sauer et al., 1991), which enables the reconstruction
f the phase space from a single observed variable, thereby laying
oundations for further analyses. To determine proper embed-
ing parameters for the phase space reconstruction, we use the
utual information method (Fraser and Swinney, 1986) and the

alse nearest neighbor method (Kennel et al., 1992). Next, we apply
determinism test (Kaplan and Glass, 1992) and draw a recur-

ence plot (Eckmann et al., 1987; Marwan, 2003; Marwan et al.,
007) to verify if the studied sound recording originates from a
eterministic stationary system. By applying the determinism test
e determine whether the analyzed irregular behavior is indeed
consequence of deterministic nonlinear dynamics, whereas the

ecurrence plot analysis enables us to verify if system parameters
ere constant during the recording (i.e. if the signal resulted from a

tationary dynamical system). After establishing that the recording
riginated from a deterministic stationary sound-producing appa-
atus, we calculate the maximal Lyapunov exponent (Rosenstein
t al., 1993; Kantz, 1994). We find that the latter is positive, from
hich we conclude that the studied mating sound of the Ameri-

an crocodile, and thus also its sound-producing apparatus, possess
roperties typical of nonlinear deterministic chaotic systems. At the
nd, we summarize and discuss presented results in view of poten-
ial biologically motivated applications and extensions towards
ther reptile species.

. Methods and results

.1. Studied sound recording and its spectrogram

We analyze a mating sound of the American crocodile. The audio
le was sampled at 16 kHz, thus occupying 1.12 × 106 points at a

ength of 70 s. An insert of the time series xi resulting from the audio
le is shown in Fig. 1, whereby i is an integer indexing consecutive

oints in time t. A visual inspection and a simple spectral analysis of
he time series presented in Fig. 1 reveal that the signal is character-
zed by a predominant frequency � spanning 100–300 Hz. Since the
tudied recording does not have a precisely defined oscillation fre-
uency, and because its overall appearance is irregular, the sound
Fig. 1. The studied sound recording of the American crocodile. The insert above the
main panel shows an excerpt of the series before (gray line) and after (black line) the
application of the Wiener filter. Note also that for simplicity the span of the series
has been rescaled to the unit interval (y axis) prior to performing further analyses.

might originate from a nonlinear or even chaotic deterministic sys-
tem. In what follows, we will apply methods of nonlinear time series
analysis to confirm this conjecture in a more rigorous manner. Prior
to that, however, we apply a standard high-frequency Wiener filter
with a cut-off at 1.0 kHz to eliminate background noise and other
sounds of nature not inherent to that of the crocodile. The result
of this procedure is shown in the insert above the main panel of
Fig. 1. Clearly, the overall outlay and markers of nonlinearity of the
series are preserved, while at the same time high-frequency pollu-
tion (marked with gray) is eliminated. It is also worth noting that
such noise filtering serves mostly a faster and more accurate con-
vergence of the subsequently applied methods for nonlinear time
series analysis, but other than that has no appreciable impact on
the final results.

Before starting with the nonlinear time series analysis, we show
the spectrogram (Kantz and Schreiber, 1997) of the full series,
resulting from the whole 70 s long sound recording, in Fig. 2.
The spectrogram is a classical tool of sound/speech processing,
used predominantly to determine spectral properties of examined
recordings. Results presented in Fig. 2 were obtained by calculat-
ing power spectra for 545 segments comprising 4096 points each,
whereby the overlap between segments was 2048 points. It can
be observed that, as already noted, the sound recording of the
American crocodile is characterized by a predominant oscillation
frequency within the interval � = 100 Hz and � = 300 Hz (note that in
Fig. 2 this horizontal stripe is the whitest, indicating that the largest
portions of overall signal power are contributed within this fre-
quency span). Moreover, it can be observed nicely that the singing
activity varies in time. In particular, there exist bursts of intense
singing activity (vertical white stripes in Fig. 2), which are intermit-
tently disrupted by phases of quiescence. This fact directly implies
that the complete (whole 70 s) sound recording is non-stationary,
and thus that care must be exercised when applying methods of

nonlinear time series analysis in order to examine it. Note that prop-
erties like non-stationarity or lack of determinism may manifest
as markers of nonlinearity or even chaos, yet they have nothing
in common with deterministic chaos observed in some nonlin-
ear deterministic dynamical systems (Lorenz, 1963; Rössler, 1976).
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ig. 2. Spectrogram of the full 70-s long sound recording. Results were obtained by
alculating power spectra for 545 segments comprising 4096 points each, whereby
he overlap between segments was 2048 points. The color profile is logarithmic,
hite depicting maximal and black minimal values of the resulting power spectra.

e overcome this important issue by considering for the following
nalyses only an activity excerpt of the whole recoding, for which
e show conclusively that it is stationary as well as deterministic.

.2. Phase space reconstruction

We reconstruct the phase space from the sound recording by
pplying the embedding theorem (Takens, 1981; Sauer et al., 1991),
hich states that for a large enough embedding dimension m the

elay vectors

(i) = [xi, xi+�, xi+2�, . . . , xi+(m−1)�] (1)

ield a phase space that has exactly the same properties as the one
ormed by the original variables of the system. In Eq. (1) variables xi,
i+� , xi+2� , . . ., xi+(m−1)� denote values of the sound recording at times
= i dt, t = (i + �) dt, t = (i + 2�) dt, . . ., t = [i + (m − 1)�] dt, respectively,
hereby � is the embedding delay and dt is the sampling time of

ata points, currently equaling 6.25 × 10−5 s.
Although the implementation of Eq. (1) is straightforward, we

rst have to determine proper values for the embedding param-
ters � and m. For this purpose, the mutual information (Fraser
nd Swinney, 1986) and false nearest neighbor method (Kennel et
l., 1992) can be used, respectively. Since the mutual information
etween xi and xi+� quantifies the amount of information we have
bout the state xi+� presuming we know xi (Shaw, 1981), Fraser and
winney (1986) proposed to use the first minimum of the mutual
nformation as the optimal embedding delay. The algorithm for cal-
ulating the mutual information can be summarized as follows.
iven a time series xi, one first has to find the minimum (xmin)
nd the maximum (xmax) of the sequence. The absolute value of
heir difference |xmax − xmin| then has to be partitioned into j equally
ized intervals, where j is a large enough integer number. Finally,
ne calculates the expression

(�) = −
j∑

h=1

j∑

k=1

Ph,k(�) ln
Ph,k(�)
PhPk

, (2)

here Ph and Pk denote the probabilities that the variable assumes

value inside the hth and kth bin, respectively, and Ph,k(�) is the

oint probability that xi is in bin h and xi+� is in bin k. For the studied
ound recording presented in Fig. 1, the first minimum of I(�) is
btained at � = 17, as can be inferred from Fig. 3. We will use this �

n all future calculations. Noteworthy, the steadily decaying mutual
Fig. 3. Determination of the optimal embedding delay �. The mutual information I
has the first minimum at � = 17, as denoted by the dashed vertical line. This is also
the embedding delay we use in all subsequent calculations.

information implies that the system looses memory of its initial
state as � increases, thus suggesting that nonlinear or even chaotic
dynamics might underlie the recorded mating sound.

We now turn to establishing a proper embedding dimension
m for the examined sound recording by applying the false nearest
neighbor method introduced by Kennel et al. (1992). The method
relies on the assumption that the phase space of a deterministic
system folds and unfolds smoothly with no sudden irregularities
appearing in its structure. By extrapolating this assumption one
comes to the conclusion that points that are close in the recon-
structed embedding space have to stay sufficiently close also during
forward iteration. If a phase space point has a close neighbor that
does not fulfill this criterion it is marked as having a false near-
est neighbor. As soon as m is chosen sufficiently large, the fraction
of points that have a false nearest neighbor � should converge to
zero. In order to calculate � the following algorithm is used. Given
a point p(i) in the m-dimensional embedding space, one first has
to find a neighbor p(j), so that ||p(i) − p(j)|| < ε, where ||. . .|| is the
square norm and ε is a small constant usually not larger than 1/10
of the standard data deviation. We then calculate the normalized
distance Ri between the m + 1st embedding coordinate of points p(i)
and p(j) according to the equation:

Ri = |xi+m� − xj+m� |
||p(i) − p(j)|| . (3)

If Ri is larger than a given threshold Rtr, then p(i) is marked as
having a false nearest neighbor. Eq. (3) has to be applied for the
whole time series and for various m = 1,2,. . . until the fraction of
points � for which Ri > Rtr is negligible. According to Kennel et al.
(1992), Rtr = 10 has proven to be a good choice for most data sets.
The results obtained with the false nearest neighbor method are
presented in Fig. 4. It can be observed that � drops to zero (<1%) con-
vincingly for m = 5. Hence, the underlying system that produced the
studied sound recording has five active degrees of freedom. In other
words, it would be justified to mathematically model the American
crocodile’s sound-producing apparatus with no more than five first
order ordinary differential equations.

By now we have determined all the parameters that are neces-
sary to successfully reconstruct the phase space of the system from
a single observed variable. However, prior to investigating crucial

dynamical properties of the dynamics, we first have to verify if the
studied signal originated from a deterministic stationary system. As
already emphasized in Section 1, determinism and stationarity are
crucial properties that guarantee a relevant analysis and are the best
protection against spurious results and false claims. Thus, in order
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recordings of real-life activities almost always yield non-stationary
data sets since subjects under study often cannot be isolated from
environmental effects, or even more likely, it is explicitly not of
interest to do so.
ig. 4. Determination of the minimal required embedding dimension. The fraction
f false nearest neighbors � drops convincingly to zero (<1%) at m = 5.

o justify further analyses, we have to verify if the studied sound
ecording possesses properties typical of deterministic stationary
ignals.

.3. Determinism test

We apply a simple yet effective determinism test, originally
roposed by Kaplan and Glass (1992), that measures average direc-
ional vectors in a coarse-grained embedding space. The idea is that
eighboring trajectories in a small portion of the embedding space
hould all point in the same direction, thus assuring uniqueness of
olutions in the phase space, which is the hallmark of determinism.
o perform the test, the embedding space has to be coarse grained
nto equally sized boxes. The average directional vector pertaining
o a particular box is obtained as follows. Each pass p of the trajec-
ory through the kth box generates a unit vector ep, whose direction
s determined by the phase space point where the trajectory first
nters the box and the phase space point where the trajectory leaves
he box. In fact, this is the average direction of the trajectory through
he box during a particular pass. The average directional vector Vk
f the kth box is then

k = 1
n

n∑

p=1

ep, (4)

here n is the number of all passes through the kth box. Completing
his task for all occupied boxes gives us a directional approximation
or the vector field of the system. If the time series originates from
deterministic system, and the coarse grained partitioning is fine

nough, the obtained directional vector field should consist solely
f vectors that have unit length (note that each ep is also a unit
ector). Hence, if the system is deterministic, the average length
f all directional vectors � will be 1, while for a completely ran-
om system � ≈ 0. The determinism factor pertaining to the whole
ve-dimensional embedding space (using � = 17 and m = 5) that
as coarse grained into a 16 × 16 ×· · ·×16 grid is � = 0.98, which

learly confirms the deterministic nature of the studied sound
ecording.
.4. Stationarity test

It remains of interest to verify if the studied sound recording
riginated from a stationary system. For this purpose, we apply the
ethod of recurrence plots (Eckmann et al., 1987). The recurrence
s 97 (2009) 154–159 157

plot is a powerful graphical tool enabling the assessment of sta-
tionarity in the system, as well as execution of other tasks, like for
example the estimation of the noise level in a signal, or the eval-
uation of the correctness of chosen embedding parameters for the
phase space reconstruction (Marwan, 2003; Marwan et al., 2007).
Recurrent behavior is an inherent property of oscillatory systems.
For regular oscillators time-distinct states in the phase space can be
arbitrarily close, i.e. ||p(i) − p(j)|| = 0 if times i and j differ exactly by
some integer of the oscillation period, whereas for chaotic systems
this distance is always finite (larger than zero). The recurrence plot
is a 2D square-grid graph with time units on both axes, whereby, in
the most common case, points (i,j) that satisfy ||p(i) − p(j)|| < ε are
marked with black dots while all others are marked white. The most
important feature of each recurrence plot is its large- and small-
scale structure, being termed typology and texture (Eckmann et
al., 1987), respectively. By visually inspecting the typology and tex-
ture of a recurrence plot, stationarity as well as determinism can be
assessed. In particular, a homogenous typology indicates that the
studied data set originated from a stationary process. Contrary, a
non-homogenous or disrupting typology indicates non-stationarity
in the system. Texture, on the other, provides information regard-
ing the deterministic vs. stochastic origin of the signal, as well as
gives insights on the complexity of oscillations. Lack of texture, i.e.
solely isolated recurrence points, often indicate stochastic origin of
the examined time series, while diagonal lines indicate determinis-
tic oscillations, which depending on the complexity of small-scale
patterns can be classified further into simple, complex, or chaotic
oscillations. The recurrence plot of the studied time series obtained
for � = 17, m = 5 and ε = 0.1 (note that the span of the series has been
rescaled to the unit interval; see Fig. 1 and the pertaining caption)
is presented in Fig. 5. Since the typology is clearly homogenous,
and also because the small-scale structure is characterized by diag-
onal lines of variable length, we can clearly refute non-stationarity
in the studied sound recording. Notably, this implies that during
the recording time the environmental influences on the crocodile
did not change, and thus its humming was stationary both from
the listeners as well as from the dynamical point of view. This is of
course not surprising since not much can happen in a few seconds
time (note that we consider only a short excerpt from the whole 70 s
long recording). However, it is important to bear in mind that longer
Fig. 5. Recurrence plot of the examined time series obtained with � = 17, m = 5 and
ε = 0.1 (note that the span of the series has been rescaled to the unit interval; see
Fig. 1 and the pertaining caption). Both axes feature the time index i in dimensionless
units.
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ig. 6. Determination of the maximal Lyapunov exponent. The slope of the lin-
ar part of the graph indicated by the two dashed lines is a robust estimate for
he maximal Lyapunov exponent, currently equaling 0.013 ± 0.001 in dimensionless
nits.

.5. Maximal Lyapunov exponent

Finally, it is of interest to determine the maximal Lyapunov expo-
ent pertaining to the studied sound recording. In order to calculate
he maximal Lyapunov exponent of the system, we use the algo-
ithm developed independently by Kantz (1994) and Rosenstein et
l. (1993). The algorithm tests the exponential divergence of nearby
rajectories directly, thus allowing a robust estimation of the max-
mal Lyapunov exponent. To estimate the exponent, we first have
o find all neighbors p(k) that are closer to a particular reference
oint p(i) than ε. Thereby, we obtain a set of starting points for
earby trajectories. Further, we have to calculate the average dis-
ance of all trajectories to the reference trajectory (Di) as a function
f the relative time �n (counted from i and k onwards). Finally, the
verage of the logarithm of Di, obtained for several different refer-
nce points p(i), is the effective expansion rate S(�n), of which the
inear slope in dependence on �n is a robust estimate for the max-
mal Lyapunov exponent. To obtain an accurate result, the whole
lgorithm has to be repeated for a few hundred different p(i) and
arious ε. In particular, ε should be chosen as small as possible, but
till large enough so that on average each reference point p(i) has at
east a few neighbors. For further details we refer the reader to the
riginal articles (Rosenstein et al., 1993; Kantz, 1994). The results
btained for ε = 0.07, 0.1, 0.14 (note that the span of the series has
een rescaled to the unit interval; see Fig. 1 and the pertaining cap-
ion) and m = 4,5,6 are presented in Fig. 6. The function S(�n) shows
robust linear increase from �n = 20 to 120 for all ε and m. Thus,

he slope of S(�n), indicated by the two linear lines, is a good esti-
ate for the maximal Lyapunov exponent of the system. We find

hat the latter equals ≈0.013 in dimensionless units (note that in
nits of s−1 this is much larger given the 16 kHz sampling of the
ound), from which we conclude that the studied short stationary
ata segment of the American crocodile mating sound possesses
roperties typical of time series that are produced by deterministic
onlinear chaotic systems.

. Discussion

We systematically analyze the sound recording of an American

rocodile with methods of nonlinear time series analysis. In partic-
lar, we outline a careful approach, encompassing a determinism
nd stationarity test, which largely eliminates the occurrence of
purious results, and thus guarantees a relevant analysis of the
bserved system. We find that the studied sound recording orig-
s 97 (2009) 154–159

inates from a deterministic stationary system and is characterized
by a positive maximal Lyapunov exponent. Thus, we conclude that
the sound-producing mechanism of the American crocodile pos-
sesses properties that are characteristic for deterministic chaotic
systems.

In this respect presented results are similar to what was reported
earlier for mammalian vocal communication (see e.g. Fitch et al.,
2002), both in terms of the chaotic nature of the sound as well as
quantities that characterize it. The reason for this similarity lies in
the fact that, although Crocodilia – crocodiles, alligators, caimans
or gavials, for example – do not have vocal cords as mammals, they
do posses a pair of membranous folds within the glottis that serve
as vocal cords, which are responsible for a qualitatively identical
dynamics as reported previously for vocal cord vibrations in mam-
mals. By snorting air through the back of the throat or nostrils, the
membranous folds vibrate in much the same fashion as mammalian
vocal cords. Despite the fact that the vocal repertoire of crocodiles
cannot match that of the mammals (their vocal cords are more
sophisticated and governed by typically higher intelligence), the
overall similarity of the sound-producing apparatus nevertheless
leads to the sound of the American crocodile having very similar
characteristics in terms of its chaotic dynamics as reported previ-
ously for mammalian vocal communication.

Furthermore, we would like to note that the above-performed
analysis is a viable approach for obtaining insights into mecha-
nisms of reptile sound generation. In particular, it can been seen
as the necessary prelude to mathematical modeling since it pro-
vides important information regarding the dynamical properties of
the underlying system, such as for example the number of active
degrees of freedom given by the dimensionality of the phase space
or estimates for the Lyapunov exponents. In this sense, nonlinear
time series analysis provides the basic theoretical framework for
such studies, indicating the dimensionality as well as the complex-
ity of a potentially appropriate mathematical model. Furthermore,
as already noted by Wilden et al. (1998) for mammalian vocal
communication, such analyses can lay foundations for a more
broad classification of acoustic communication also among reptiles,
which surpasses the rather limited dichotomous separation of sig-
nals on harmonic and atonal sounds (Hauser, 1993) that is often
employed by biologists.

However, it should be emphasized that reptiles, in general, are
not particularly vocal animals, and that indeed Crocodilia are rather
special in this respect. Although lacking vocal cords, they can hiss,
grunt, cough, growl, and bellow to convey quite an impressive array
of up to 20 different messages, including threats, distress signals,
hatching calls, contact calls, and courtship readiness. Moreover, the
sounds of crocodiles may vary by species, age, size, sex and con-
text, and individualized differences in tones, intensity and calling
patterns can also occur, just as individual humans have distinct
voices and speech mannerisms. Notably, a recent study of the Nile
crocodile (Crocodylus niloticus) hatchlings (Britton, 2001) showed
that a baby actually begins calling while still in the egg and contin-
ues immediately after coming out. The calls do not seem to identify
the hatchling as an individual, but they do influence the behavior
of other nearby juveniles and elicit maternal care from the mother.
During the first several days after hatching, the baby Nile crocodiles
gradually change the sounds of their calls. It has been suggested that
the new sounds give the mother information about the age and size
of each hatchling so that she can customize her care for each indi-
vidual. The theory of nonlinear dynamics employed in the present
work offers tools for evaluating and quantifying the specific char-

acteristics of the dynamical system that produces chaotic outputs.
Here we focused on the analysis of the mating sound of the Ameri-
can crocodile, and it will be interesting to examine further potential
applications of this approach in the light of above-mentioned
facts.
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Other notable exceptions of reptiles that may qualify for such an
nalysis include the Tokay Gecko (Gekko gecko) (Moore et al., 1991),
hich is unique in having vocal cords able to produce a multipart

dvertisement call that begins with a rattling sound that is followed
y a series of two-syllable chirps (Brillet and Paillette, 1991), as well
s some species of Testudinidae (Testudo hermanni, T. graeca, and T.
arginata) (Sacchi et al., 2004), which are also known to use vocal-

zation as part of their communication. The approach outlined in
his work may be useful in further extending the understanding of
ocalization in these particular examples, whereas in general rep-
iles seem to be more mysterious in their vocal skills than mammals
r birds.

An interesting avenue to study further is also the interrelation
etween the biomechanical sound-producing apparatus and the
eural network (Enquist and Ghirlanda, 2005) that controls it; in
articular, given that the output is chaotic, what can we say about
he neural network? Given that Crocodilia do poses an organ that is
imilar to vocal cords in mammals, and that they are the most vocal
f all reptiles, able to communicate quite an impressive array of dif-
erent messages via sound, it seems safe to claim that the nervous
ystem responsible for the control of such a complex apparatus,
hich in some ways is similar to our own, needs to be highly devel-

ped, and that certainly both, the sound-producing apparatus and
he neural network that controls it, contribute to the complexity of
he mating sound in a synergetic fashion. In particular, it seems rea-
onable to argue that the neural network generates the blueprint
nd the apparatus needs to be sophisticated enough to produce the
esired sound.

At the end, we would like to note that since this work is intended
o inspire physicists, mathematicians and biologists alike, we also
eveloped a set of user-friendly programs (Kodba et al., 2005; Perc,
005a, 2005b) for each implemented method in this paper, so that

nterested readers can easily apply the theory on their own record-
ngs. An even more comprehensive set of programs is available
hrough the TISEAN project (Hegger and Kantz, 1999; Hegger et
l., 2007). We recommend greatly exploiting the benefits offered
y these sources.
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