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a b s t r a c t

Prevalence of cooperation within groups of selfish individuals is puzzling in that it contradicts with the
basic premise of natural selection. Favoring players with higher fitness, the latter is key for understanding
the challenges faced by cooperators when competing with defectors. Evolutionary game theory provides
a competent theoretical framework for addressing the subtleties of cooperation in such situations, which
are known as social dilemmas. Recent advances point towards the fact that the evolution of strategies
alone may be insufficient to fully exploit the benefits offered by cooperative behavior. Indeed, while spa-
tial structure and heterogeneity, for example, have been recognized as potent promoters of cooperation,
coevolutionary rules can extend the potentials of such entities further, and even more importantly, lead
to the understanding of their emergence. The introduction of coevolutionary rules to evolutionary games
eywords:
volutionary games
oevolution
ocial dilemmas
ooperation

implies, that besides the evolution of strategies, another property may simultaneously be subject to evo-
lution as well. Coevolutionary rules may affect the interaction network, the reproduction capability of
players, their reputation, mobility or age. Here we review recent works on evolutionary games incorpo-
rating coevolutionary rules, as well as give a didactic description of potential pitfalls and misconceptions
associated with the subject. In addition, we briefly outline directions for future research that we feel are
promising, thereby particularly focusing on dynamical effects of coevolutionary rules on the evolution of

ill wi
cooperation, which are st

. Introduction

Cooperation and defection are the two strategies that are usu-
lly at the heart of every social dilemma (Dawes, 1980). While
ooperative individuals contribute to the collective welfare at a
ersonal cost, defectors choose not to. Due to the resulting lower

ndividual fitness of cooperators the selection pressure acts in
avor of the defectors, thus designating the evolution of cooper-
tion as a dilemma standing on its own. Established by Maynard
mith and Price (1973), evolutionary game theory (Maynard Smith,
982; Weibull, 1995; Gintis, 2000; Nowak, 2006a) provides a
ompetent theoretical framework to address the subtleties of coop-
ration among selfish and unrelated individuals. The prisoner’s
ilemma game in particular, is considered a paradigm for tackling
he problem of cooperation (Axelrod, 1984). The game promises

defecting individual the highest fitness if facing a cooperator.

t the same time, the exploited cooperator is worse off than a
efector playing with another defector. According to the funda-
ental principles of Darwinian selection, cooperation extinction is

herefore inevitable. This unadorned scenario is actually realized
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dely open to research and thus hold promise of exciting new discoveries.
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in the well-mixed prisoner’s dilemma game, where defectors reign
supreme (Hofbauer and Sigmund, 1998). Relaxing the inevitabil-
ity of a social downfall constituted by the well-mixed prisoner’s
dilemma is the snowdrift or hawk-dove game (Maynard Smith and
Price, 1973), where mutual defection is individually less favorable
than a cooperation–defection pair-up. Accordingly, the snowdrift
game allows for stable coexistence of cooperators and defectors in
well-mixed populations (Taylor and Jonker, 1978). Completing the
triplet is the stag-hunt game (Skyrms, 2004), which together with
the prisoner’s dilemma and the snowdrift game, forms the standard
set of social dilemmas that is frequently explored in the current
literature [see e.g. Macy and Flache (2002); Santos et al. (2006b);
Szolnoki and Perc (2009c); Roca et al. (2009a)]. Compared with the
prisoner’s dilemma, the stag-hunt game offers more support for
cooperative individuals in that the reward for mutual cooperation
is higher than the temptation to defect. Still, cooperation in the
stag-hunt game is compromised by the fact that mutual defection
is individually more beneficial than being an exploited cooperator,
as recently highlighted by Pacheco et al. (2009).

An important realization by the pursuit of cooperation in the

context of social dilemmas was the fact that the outcome of evolu-
tionary games in structured populations can be very different from
the well-mixed case. In a pioneering work, Nowak and May (1992)
showed that the introduction of spatial structure via nearest neigh-
bor interactions enabled the cooperators to form clusters on the

http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:matjaz.perc@uni-mb.si
mailto:szolnoki@mfa.kfki.hu
dx.doi.org/10.1016/j.biosystems.2009.10.003
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quare lattice and so protect themselves against the exploitation by
efectors. Following this discovery, the impact of the spatial struc-
ure on the evolution of cooperation has been investigated in detail
Nowak and May, 1993; Huberman and Glance, 1993; Nowak et al.,
994a,b; Lindgren and Nordahl, 1994; Durrett, 1994; Grim, 1995;
illingback and Doebeli, 1996; Nakamaru et al., 1997; Szabó and
őke, 1998; Brauchli et al., 1999; Szabó et al., 2000; Tanimoto and
agara, 2007; Alonso-Sanz, 2009; Newth and Cornforth, 2009), and
he subject has since been reviewed comprehensively on differ-
nt occasions (Hauert, 2002; Doebeli and Hauert, 2005; Szabó and
áth, 2007; Roca et al., 2009a). Notably, the theoretical conjecture
hat spatial structure may promote cooperation, or at least sustain
multitude of competing strategies has been confirmed experi-
entally (Kerr et al., 2002), but there also exist evidences that

patial structure may not necessarily favor cooperation (Hauert and
oebeli, 2004). Since the impact of the spatial structure on the evo-

ution of cooperation depends on the governing social dilemma,
nd due to the difficulties associated with the payoff rankings in
xperimental and field work (Milinski et al., 1997; Turner and Chao,
999), it is certainly good practice to test new mechanisms aimed
t promoting cooperation on different evolutionary games.

The recent shift from evolutionary games on regular grids
o evolutionary games on complex networks [for the latter see
.g. Albert and Barabási (2002); Newman (2003); Dorogovtsev
nd Mendes (2003); Boccaletti et al. (2006)] can be considered a
tep towards more realistic conditions. Indeed, the shift is by no
eans trivial and bears fascinating results, as recently reviewed

y Szabó and Fáth (2007). Quite remarkably, scale-free networks
Barabási and Albert, 1999) turned out to sustain cooperation by
ll three above-described social dilemmas (Santos and Pacheco,
005; Santos et al., 2006b,c), owing predominantly to the hetero-
eneity that characterizes their degree distribution. Following this
eminal discovery, several studies have since elaborated on differ-
nt aspects of cooperation on scale-free networks, as for example
ts dynamical organization (Gómez-Gardeñes et al., 2007; Pusch et
l., 2008), evolution under clustering (Assenza et al., 2008), mix-
ng patterns (Rong et al., 2007), memory (Wang et al., 2006) and
ayoff normalization (Santos and Pacheco, 2006; Masuda, 2007;
u et al., 2007; Szolnoki et al., 2008b), as well as its robustness in

eneral (Poncela et al., 2007; Chen et al., 2008a) and under inten-
ional attack and error (Perc, 2009). The body of literature devoted
o the study of evolutionary games on complex network is exten-
ive, aside from the scale-free architecture hosting the prisoner’s
ilemma (Pacheco and Santos, 2005; Ohtsuki et al., 2006; Tang et al.,
006; Y.-S. Chen and Wu, 2007; Du et al., 2008; Gómez-Gardeñes
t al., 2008; Floría et al., 2009; Li et al., 2009; Yang et al., 2009b)
nd the snowdrift game (Wang et al., 2006; Lee et al., 2008; Roca et
l., 2009b), covering also small-world (Abramson and Kuperman,
001; Kim et al., 2002; Masuda and Aihara, 2003; Tomochi, 2004;
antos et al., 2005; Zhong et al., 2006; Tomassini et al., 2006; Fu et
l., 2007c; Chen and Wang, 2008; Yang et al., 2008), social as well
s other real-world networks (Holme et al., 2003; Lieberman et al.,
005; Vukov and Szabó, 2005; Wu et al., 2006a; Chen et al., 2007;
u et al., 2007b; Luthi et al., 2008, 2009; Lozano et al., 2008; Liu
t al., 2009). Notably, the impact of different interaction topologies
as also been studied for evolutionary games outside the realm of
he above-described social dilemmas. Examples include the rock-
aper-scissors game (Szabó et al., 2004; Szöllősi and Derényi, 2008),
he ultimatum game (Kuperman and Risau-Gusman, 2008) or the
ublic goods game (Yang et al., 2009c), and indeed many more stud-

es of the latter games on complex network are expected in the near

uture.

Besides the conditions generated by spatiality and complex
nteraction networks, many different mechanisms have been
dentified that can promote or otherwise affect the evolution
f cooperation, and we mention them here briefly. Aside from
ms 99 (2010) 109–125

network reciprocity inherent to games on graphs and complex
networks, other prominent rules promoting cooperative behavior
are kin selection (Hamilton, 1964a,b), direct reciprocity (Axelrod
and Hamilton, 1981; Brandt and Sigmund, 2006; Pacheco et al.,
2008), indirect reciprocity (Nowak and Sigmund, 1998a,b; Fehr and
Gächter, 2002; Brandt and Sigmund, 2004; Nowak and Sigmund,
2005; Tanimoto, 2007c) and group selection (Dugatkin and
Mesterton-Gibbons, 1996; Traulsen and Nowak, 2006; Traulsen
et al., 2008), as recently reviewed in (Nowak, 2006b). Moreover,
voluntary participation (Hauert et al., 2002; Szabó and Hauert,
2002a,b; Semmann et al., 2003; Hauert and Szabó, 2003; Szabó and
Vukov, 2004; Wu et al., 2005; Hauert et al., 2007; Chen et al., 2008c),
social diversity (Perc and Szolnoki, 2008; Santos et al., 2008), asym-
metric influence of links and partner selection (Kim et al., 2002;
Wu et al., 2006b), heterogeneous teaching activity (Szolnoki and
Szabó, 2007; Szolnoki et al., 2008c), and the impact of long-term
learning (Wang et al., 2008) have been suggested as interesting
possibilities that may emerge in real-life systems. The necessary
overlap between interaction and replacement graphs (Ohtsuki et
al., 2007a,b; Wu and Wang, 2007) has also been recognized as an
important agonist in the evolution of cooperation. Furthermore, the
importance of time scales in evolutionary dynamics (Pacheco et al.,
2006a,b; Roca et al., 2006), the role of finite population size (Nowak
et al., 2004; Traulsen et al., 2005, 2006), and the impact of noise and
uncertainties on evolution in general (Nowak et al., 1995; Traulsen
et al., 2004; Szabó et al., 2005; Perc, 2006a,b,c; Perc and Marhl,
2006; Vukov et al., 2006; Tanimoto, 2007b; Perc, 2007b; Ren et al.,
2007; Perc and Szolnoki, 2007) have been investigated as well. Very
recently, random explorations of strategies (Traulsen et al., 2009)
and simultaneous adoptions of different strategies depending on
the opponents (Wardil and da Silva, 2009) have also been identi-
fied as potent promoters of cooperation. Some of these mechanisms
will be described more accurately in the subsequent sections, but
otherwise the reader is referred to the original works for details.

In the focus of this mini review are evolutionary games with
coevolutionary rules. Initiated by Zimmermann et al. (2001) and by
Ebel and Bornholdt (2002b), and in some sense motivated by then
very vibrant advances in network growth and evolution (Strogatz,
2001; Albert and Barabási, 2002), the subject has evolved into a
mushrooming avenue of research that offers new ways of ensuring
cooperation in situations constituting a social dilemma. Coevolu-
tionary rules constitute a natural upgrade of evolutionary games
since in reality not only do the strategies evolve in time, but so
does the environment, and indeed many other factors that in turn
affect back the outcome of the evolution of strategies. Coevolu-
tionary rules can affect the links players make (or break) (Ebel
and Bornholdt, 2002b; Zimmermann et al., 2004; Zimmermann
and Eguíluz, 2005; Equíluz et al., 2005; Pacheco et al., 2006a,b,
2008; Santos et al., 2006a; Hanaki et al., 2007; Biely et al., 2007;
Li et al., 2007; Tanimoto, 2007a; Fu et al., 2007a; Szolnoki et
al., 2008a; Perc et al., 2008; Chen et al., 2008b; Pestelacci et al.,
2008; Van Segbroeck et al., 2008; Fu et al., 2008, 2009b; Kun and
Scheuring, 2009; Szolnoki and Perc, 2009c; Tanimoto, 2009a,b; Van
Segbroeck et al., 2009; Gräser et al., 2009) (see Section 3.1), the
size of the network (or population) (Ren et al., 2006; Poncela et
al., 2008, 2009) (see Section 3.2), the teaching activity (or repro-
duction capability) (Szolnoki and Perc, 2008, 2009b) (see Section
3.3) and mobility of players (Majeski et al., 1999; Vainstein and
Arenzon, 2001; Vainstein et al., 2007; Helbing and Yu, 2008, 2009;
Meloni et al., 2009; Droz et al., 2009) (see Section 3.4), their age
(McNamara et al., 2008; Stark et al., 2008a,b; Szolnoki et al., 2009;

Yang et al., 2009a) (see Section 3.5), as well as several other fac-
tors (Kirchkamp, 1999; Gintis, 2003; Axelrod et al., 2004; Hamilton
and Taborsky, 2005; Fort, 2008a; Hatzopoulos and Jensen, 2008;
Ding et al., 2009; Moyano and Sánchez, 2009; Scheuring, 2009;
Rankin and Taborsky, 2009; Szabó et al., 2009) (see Section 3.6) that
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Fig. 1. Schematic presentation of the two-dimensional T–S parameter plane encom-
passing the stag-hunt (SH), the prisoner’s dilemma (PD) and the snowdrift (SD)
game. Borders between games are denoted by dashed green lines. Dotted blue diag-
onal depicts the r-parametrization of the snowdrift game, while the thick red line
shows the span of the weak prisoner’s dilemma game having T = b as the only main
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arameter. The upper left quadrant represents the so-called harmony game (HG).
he latter, however, does not constitute a social dilemma because there cooperation
s always the winning strategy. (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of the article.)

ventually affect the outcome of the underlying evolutionary game.
lthough the majority of coevolutionary rules studied so far affects

he network architecture and size, it is important to distinguish
hese studies from previous, partially closely related works where
etworks also change or evolve in the course of time (Caldarelli et
l., 1998; Pfeiffer et al., 2005; Holme and Ghostal, 2006; Gross and
lasius, 2008; Castellano et al., 2009); in particularly so, since the
erm ‘coevolution’ has in the past been used quite frequently and
or rather different processes.

In the continuation of this paper we will review recent advances
n evolutionary games with coevolutionary rules, affecting, as
entioned above, the interaction network, the reproduction capa-

ility of players, their reputation, mobility or age, more thoroughly.
efore that, however, we give in Section 2 a more technical descrip-
ion of the evolutionary games and strategy adoption rules that we
ill encounter throughout the paper. Following the main body of

he review given in Section 3, we conclude our work and give an
utlook in Section 4.

. Evolutionary Games

As noted in the first paragraph of Section 1, the three main social
ilemmas involving pairwise interactions are constituted by the
risoner’s dilemma game, the snowdrift game and the stag-hunt
ame. At least one of these three games is employed in the major-
ty of the works we will review below, and hence we give a more
ccurate description of them in what follows.

Irrespective of which game applies, players can choose either
o cooperate or to defect. Notably, other strategies, such as lon-
rs [see e.g. Hauert and Szabó (2005)] or punishers [see e.g. Dreber
t al. (2008)] are also possible, but their inclusion to evolutionary
ames with coevolutionary rules has not yet been considered. In
eneral, mutual cooperation yields the reward R, mutual defection
eads to punishment P, and the mixed choice gives the cooperator
he sucker’s payoff S and the defector the temptation T. The stan-
ard scaled parametrization entails designating R = 1 and P = 0 as

xed, while the remaining two payoffs can occupy −1 ≤ S ≤ 1 and
≤ T ≤ 2. Then, if T > R > P > S we have the prisoner’s dilemma

ame, T > R > S > P yields the snowdrift game, and R > T > P > S
he stag-hunt game, as schematically depicted in Fig. 1. Without

uch loss of generality, this parametrization is often further sim-
ms 99 (2010) 109–125 111

plified for the prisoner’s dilemma game, so that T = b is the only
free parameter while R = 1 and P = S = 0 are left constant (thick
red line in Fig. 1). However, since then the condition P > S is not
strictly fulfilled, this version is traditionally referred to as the weak
prisoner’s dilemma game (Nowak and May, 1992). An option is
also to use T = b, R = b − c, P = 0 and S = −c, thus strictly adher-
ing to the prisoner’s dilemma payoff ranking T > R > P > S while
still having a single tunable parameter in the form of the ratio
b/c. For the snowdrift game one can, in a similar fashion, intro-
duce r ∈ [0, 1] such that T = 1 + r and S = 1 − r [see e.g. Wang et al.
(2006)], thereby again decreasing the effective dimensionality of
the parameter space by one. Note also that r characterizes the cost-
to-benefit ratio (Santos and Pacheco, 2005) and in fact constitutes
a diagonal in the snowdrift quadrant of the T − S parameter plane,
as shown in Fig. 1 by the dotted blue line. It is worth mentioning
that other types of parametrization of two-strategy games are pos-
sible as well (Tanimoto, 2007a), but we focus on the one presented
above since it is the most widely used, thus enabling an efficient
comparison of different works.

The most frequently employed setup entails that initially each
player x is designated either as a cooperator (sx = C) or defector
(sx = D) with equal probability, and is placed on one of the nodes of
the network with degree kx. Evolution of the two strategies is then
performed in accordance with a pairwise comparison rule, during
which players accumulate their payoffs �x by playing the game
with their neighbors. Subsequently, player x tries to enforce its
strategy sx on player y in accordance with some probability W(sx →
sy) to be specified below. During the simulation procedure the
player x and one of its neighbors y are chosen randomly, whereby
in accordance with the random sequential update each player is
selected once on average during N (network size) such elementary
steps, together constituting one full Monte Carlo step (Newman and
Barkema, 1999). Alternatively, players can be selected sequentially,
albeit this may cause artificial effects. Independently on whether
synchronized or the random sequential update is used, however,
the time evolution is always discrete. The probability of strategy
adoption W(sx → sy) can be defined in several ways. If the degree
kx of all players is the same and does not change in time, the Fermi
function

W(sx → sy) = 1
1 + exp[(�y − �x)/K]

(1)

is a viable option, as proposed by Szabó and Tőke (1998). In Eq.
(1) K denotes the amplitude of noise (Vukov et al., 2006; Ren et
al., 2007), or equivalently its inverse (1/K) the so-called intensity
of selection (Fudenberg et al., 2006; Traulsen et al., 2007a; Altrock
and Traulsen, 2009). In the K → 0 limit player x always succeeds in
enforcing its strategy to player y if only �x > �y but never other-
wise. For K > 0, however, strategies performing worse may also be
adopted based on unpredictable variations in payoffs (Perc, 2006b)
or errors in the decision making, for example. Importantly, if the
degree distribution of the interaction network (note that this is a
property that may likely change due to a coevolutionary rule), at
any instance of the game, deviates from the case where all play-
ers have the same degree, the application of the Fermi function
may introduce additional effects since then the impact of the same
value of K effectively varies from one player to the other. Indeed,
if the degree distribution characterizing the interaction network is
heterogeneous, a more successful player (i.e. having a larger payoff)
can pass its strategy with the probability

�x − �y

W(sx → sy) =

� · kq
(2)

where kq is the largest of the two degrees kx and ky, and � = T − S
for the prisoner’s dilemma game, � = T − P for the snowdrift game
and � = R − S for the stag-hunt game (note that the ranking of pay-
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12 M. Perc, A. Szolnoki / Bi

ff elements for each specific game ensures the positive sign of Eq.
2).) Introduced by Santos and Pacheco (2005), it is still a popular
hoice surpassing the difficulties associated with the Fermi func-
ion described above, albeit with the downside of being unable to
djust the level of uncertainty by strategy adoptions.

Finally, we mention another frequently used strategy adoption
ule in coevolutionary models; namely the so-called richest-
ollowing (or ‘learning from the best’) rule (Abramson and
uperman, 2001; Hu et al., 2007; Wu et al., 2007), where the focal
layer always imitates the strategy of its most successful neigh-
or (Zimmermann et al., 2004; Equíluz et al., 2005; Li et al., 2007;
animoto, 2007a, 2009b). Contrary to the preceding two strategy
doption rules, the richest-following is completely deterministic, in
act exercising the strongest selection between players. Naturally,
here also exist other microscopic strategy adoption rules, such as
he win-stay-lose-shift rule where the focal player has restricted
nformation on its neighbors, for which the reader is advised to
onsult the comprehensive review by Szabó and Fáth (2007) for
ore details.
We will use the notation introduced above throughout this

ork unless explicitly stated otherwise. Also, any deviations with
espect to the employed initial setup, simulation procedure or
he definition of strategy adoption probability will be noted when
pplicable.

. Coevolutionary Rules

While it is obvious that strategies of players engaging in evo-
utionary games evolve in time, the fact that other properties
haracterizing either their individual attributes or the environment
n which the game is staged may simultaneously evolve as well
ained foothold only in recent years. Yet the preceding transitions
rom well-mixed populations to spatial grids and further to com-
lex networks, and in particular their success in explaining the
volution of cooperation, are inviting to further extensions of the
heoretical framework, and indeed, the introduction of coevolu-
ionary rules seems like the logical next step. It should need little
ersuasion to acknowledge that links we make with others change

n time, that all of us age, that our roles in life evolve, and that
he society we are part of may itself be subject to transforma-
ions on a global scale. Coevolutionary rules aim to integrate these
rocesses into the framework of evolutionary games. Perhaps the
iggest challenge thereby is, how to do this without directly (or
bviously) promoting cooperation. For example, if one introduces
rule that, in the course of time, cooperators should aim to link

nly with cooperators and defectors only with defectors, it should
ome as no surprise that such a coevolutionary rule will likely favor
he evolution of cooperation. It is demanding, however, to explore
nd identify successful mechanisms that do not attribute special,
ot to say fictitious, cognitive skill to players, and do not use a
iscriminative set of rules for every participating strategy. Thus,
oming up with plausible coevolutionary rules is not straightfor-
ard, and care must be exercised in order to give both strategies

qual credentials. Simply because a strategy is bad for social wel-
are it should not be assumed that the individuals adopting it are
ess skillful or sly than their opponents. In fact, rather the oppo-
ite seems to apply. For example, defectors should be assumed
eing just as skilful by selecting appropriate partners as cooper-
tors.

In the following we will review coevolutionary rules affecting

he interactions between players (Section 3.1), population growth
Section 3.2), teaching activity (Section 3.3), mobility (Section 3.4)
nd aging (Section 3.5) of players, as well as related aspects (Section
.6) of individual and global characteristics that may affect strategy
ominance in evolutionary games.
ms 99 (2010) 109–125

3.1. Dynamical Interactions

Coevolutionary rules frequently affect how players link with one
another and this section reviews examples thereof. As we have
mentioned above, the result of a game with a partner may influ-
ence the durability of such a connection. In particular, an unsatisfied
player can easily break a link to look for a more beneficial interac-
tion with another partner. Notably, the network itself does thereby
not shrink or grow in size (for the latter see Section 3.2). Instead,
our aim in this subsection is to explore possible rearrangements of
an existing network that is driven by the success of players partici-
pating in the governing evolutionary game. Since coevolutionary
rules affecting the interactions between players were proposed
first (Zimmermann et al., 2001; Ebel and Bornholdt, 2002b), the
pertaining literature that has accumulated thus far is rather exten-
sive. Works can be partitioned into those that employed strategy
independent rules for link adaptations (Szolnoki et al., 2008a; Perc
et al., 2008; Kun and Scheuring, 2009; Tanimoto, 2009a; Szolnoki
and Perc, 2009c) and those that considered strategies or their per-
formances as factors potentially affecting the rewiring (Ebel and
Bornholdt, 2002b; Zimmermann et al., 2004; Zimmermann and
Eguíluz, 2005; Equíluz et al., 2005; Pacheco et al., 2006a,b, 2008;
Santos et al., 2006a; Li et al., 2007; Fu et al., 2007a, 2008, 2009b;
Tanimoto, 2007a, 2009b; Biely et al., 2007; Van Segbroeck et al.,
2008, 2009; Pestelacci et al., 2008; Chen et al., 2008b; Qin et al.,
2009). Notably, the latter distinction is rather crude and some-
times not completely accurate since the rewiring can be performed
based on a secondary player property, like reputation (Fu et al.,
2008), attractiveness (Chen et al., 2008b) or satisfaction (Pestelacci
et al., 2008), which are typically related with strategy performance
over time. It is indeed possible to further distinguish the proposed
coevolutionary rules introducing dynamical interactions to those
by which the change of the interaction network is driven by the
urge to increase the payoff of the focal player directly (Ebel and
Bornholdt, 2002b; Santos et al., 2006a; Biely et al., 2007; Li et al.,
2007; Chen et al., 2008b; Pestelacci et al., 2008; Van Segbroeck et al.,
2008; Tanimoto, 2009b; Gräser et al., 2009), and those by which the
rewiring serves also the increase of the payoff but on a global scale,
i.e. independently of the payoff of the focal player that is affected
by the link adaptation (Pacheco et al., 2006a,b, 2008; Tanimoto,
2007a; Fu et al., 2007a, 2008, 2009b; Van Segbroeck et al., 2009).
In the latter case it is thus not necessary to calculate the players
payoff prior to rewiring because solely its strategy determines the
‘life’ of a link.

Summarizing the above, a simplified but useful classification of
interaction-updating rules is presented in Fig. 2. As suggested in the
works mentioned last in the preceding paragraph, the lifetime of a
link may depend primarily on the strategies of the players that are
connected with it (type A). From this point of view it is straight-
forward to establish that defector–defector links are short-lived
if compared to cooperator–cooperator links since the former are
not beneficial for neither of the two involved players, while the
later yield mutual gains for both. The second set of coevolution-
ary rules evaluates the payoffs originating from the investigated
link prior to its potential deletion, while the actual removal takes
place only if a new neighbor may yield higher benefits (type B) (Van
Segbroeck et al., 2009). And finally, the third set of coevolutionary
rules considers the strategy adoption process as pivotal for decid-
ing which links to delete and which to keep (type C). An example
thereof is that the invaded player looses all its links except the one
with the donor of the new strategy (Szolnoki and Perc, 2009a,c),

as depicted in Fig. 2(c). There are several real-life situations that
can be modeled by the latter rule. From a biological viewpoint, the
coevolutionary rule can be linked with an invasion of the subordi-
nate species and the subsequent replacement by a newborn of the
victor. A similar phenomenon can be observed in human societies
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Fig. 2. Comparative plots of representative coevolutionary rules affecting the interactions between players. In all panels cooperators (defectors) are denoted by green (black)
circles. Type A [panel (a)]: By ‘active linking’ the probability to create or to delete a link depends only on its type (C–C links are marked by solid, C–D links by dashed, and
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–D links by dotted lines). Links to be deleted (created) are marked by red (blue) c
he players having opposite interests. Subsequently, the new link is connected to
doption, denoted by a full arrow, evokes the deletion of links of the invaded play
eferences to color in this figure legend, the reader is referred to the web version of

hen one changes a job. Typically then the links to former cowork-
rs fade and eventually break, and new ties are formed primarily
ith the coworkers from the new working place. Notably, it falls
ithin the same logical set of rules if the player that has successfully
assed its strategy is allowed to increase the number of neighbors
hat are directly connected to it, as was proposed by Szolnoki et
l. (2008a). It should not be overlooked, however, that the strategy
doption process, triggering the deletion and/or addition of links,
s itself inherently routed in the payoff difference of the considered
layers.

An important feature of coevolutionary rules molding the inter-
ctions among players is also the time scale separation between
ink and strategy adaptations, as reported in (Santos et al., 2006a;
acheco et al., 2006a,b, 2008; Szolnoki et al., 2008a; Van Segbroeck
t al., 2008, 2009; Fu et al., 2008; Szolnoki and Perc, 2009a,c). As
he cited works suggest, the time scale separation can drastically
nfluence the final output of coevolutionary games. This effect will
lso be discussed in the present review. In what follows, we will
eview the coevolutionary rules presented in some of these works
ore accurately.
In agreement with the actual time-line we start with the work

f Ebel and Bornholdt (2002b), who proposed a coevolutionary
ule in which a randomly chosen player x is connected to a new
eighbor at random. If the new link increases the average payoff
f the focal player the latter accepts it and disconnects from the
eighbor it scores worst against. Note that this coevolutionary rule

ndirectly favors the establishment of cooperator–cooperator links
this pair-up yields the highest average payoff) and at the same time
acilitates the deletion of defector–defector links. The coevolution-
ry rule was paired up with strategy mutation (Ebel and Bornholdt,
002a), by which a mutation is accepted if it yields a higher payoff
or player x than the initial strategy [type B; see Fig. 2(b)]. Starting
rom a random network with Poissonian degree distribution, it was
hown that this coevolutionary rule leads to cooperative Nash equi-
ibria in an iterative prisoner’s dilemma game with the additional

roperty that no agent can improve its payoff by changing its neigh-
orhood. According to the authors, the later may be interpreted as
sort of ‘network Nash equilibrium’ (Ebel and Bornholdt, 2002b).
otably, this coevolutionary rule also affects the initial network

tructure in that the later evolves to a statistically stationary state
Type B [panel (b)]: Adverse ties are deleted depending on the payoffs collected by
the neighbors of the defeated player. Type C [panel (c)]: Each successful strategy

cept from the one with the ‘donor’ of the new strategy. (For interpretation of the
rticle.)

with a broad degree distribution, suggesting scale-free behavior
and giving rise to small-world properties, among others.

Following their preceding seminal contribution [see
Zimmermann et al. (2001)], Zimmermann et al. (2004) pro-
posed a coevolutionary rule affecting only defector–defector pairs
with the motivation that in this pair-up both players might be bet-
ter off if searching for a new partner in the context of the prisoner’s
dilemma game [type A; see Fig. 2(a)]. It was shown that, starting
from a random network with a given average degree and the
richest-following strategy adoption rule, even a small probability
p of searching for a new partner from a defector–defector config-
uration may substantially promote cooperation. Indeed, as low as
p = 0.01 were shown to uphold practically complete cooperator
dominance across the whole span of the weak prisoner’s dilemma
game (see Fig. 1). With respect to the network topology, it was
reported that the coevolutionary rule facilitates the formation of a
hierarchical interaction structure and may also introduce small-
world properties if the search for new partners is constrained to
the neighbors of the neighbors. However, unlike as shown by Ebel
and Bornholdt (2002b), the occasional (depending on p) break-up
of defector–defector pairs has not been found leading to broad or
even scale-free degree distributions. These findings were subse-
quently extended (Zimmermann and Eguíluz, 2005; Equíluz et al.,
2005), where it was elaborated on the spontaneous emergence of
cooperators with extremely high payoffs and the important role
of this so-called ‘leaders’ for the global sustenance of cooperation.
As such, these works can be considered as an important prelude
to the realization of the fact that scale-free networks constitute an
extremely favorable environment for the evolution of cooperation
irrespective of the governing social dilemma (Santos and Pacheco,
2005; Santos et al., 2006b).

A simple but still plausible coevolutionary rule affecting links
between players has been proposed by Pacheco et al. (2006a,b).
Exemplifying type A class of interaction updating [see Fig. 2(a)],
players adopting either the strategy C (cooperate) or D (defect) were

designated a propensity to form new links denoted by ˛C and ˛D,
such that xy links were formed at rates ˛x˛y, where x, y ∈ [C, D].
Moreover, each link was assigned a specific lifetime depending
on the strategy of the two connected players given by �xy = �−1

xy ,
where �xy is the corresponding link death rate. With these def-
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nitions the authors were able to specify mean field equations
overning the so-called active linking dynamics of the network.
his coevolutionary rule has been tested on the prisoner’s dilemma
nd the snowdrift game subject to the Fermi function (see Eq.
1)) governing the strategy adoption [for additional set-ups see
acheco et al. (2006a)]. It was shown that if the time scale asso-
iated with active linking is much smaller than the one associated
ith strategy updating the proposed coevolutionary rule leads to

n effective rescaling of the governing payoff matrix, and thus a
hift in the played evolutionary game. For example, the prisoner’s
ilemma game transforms to the coordination game, while the
nowdrift game transforms to the harmony game [for details on
he coordination game see e.g. Szabó and Fáth (2007)]. In both
ases the cooperation is promoted, in turn designating the pro-
osed coevolutionary rule as a simple and analytically tractable
eans of understanding how selfish and unrelated individuals may

e led to adopting the cooperative strategy. On the other hand, if
he ratio between the time scales associated with active linking
nd strategy updating is not small, the interplay between these
wo dynamical processes leads to a progressive crossover between
he analytic results obtained for very fast active linking and the
volutionary dynamics of strategies taking place on static graphs.
he latter were found to exhibit different degrees of heterogene-
ty depending on the parameters determining active linking, yet
n general complying well with real social networks having fast
ecaying tails in their degree distributions. Notably, compared to
he earlier works reviewed above, an important observation made
n the two papers by Pacheco et al. (2006a,b) was that the impact of
oevolutionary rules may depend significantly on the time scales
ssociated with the strategy and structure (link) evolution. For
xample, Zimmermann et al. (2004) too commented on the time
cale separation in their model, yet the promotion of coopera-
ion was thereby not notably affected [both slow (p � 1) and fast
p → 1) rewiring of D–D links was found to be highly effective].
ctive linking dynamics has also been investigated in repeated
ames incorporating direct reciprocity (Pacheco et al., 2008), where
dditionally the productivity of every link connecting two play-
rs was evaluated prior to potential rewiring. Moreover, the active
inking model proposed by Pacheco et al. (2006b) was recently
xtended by Van Segbroeck et al. (2009) to account for the impact
f different reactions to adverse ties. In particular, Van Segbroeck
t al. (2009) additionally introduced individual behavioral types of
layers through different values of � , separating those that tend to
reak their links frequently (� close to 1) from those that tend to
reak them rarely (� close to 0). In this way both topology and
trategy dynamics become interrelated. It was shown that pop-
lations in which individuals are allowed to handle their social
ontacts diversely are more prone to cooperative behavior than
hose in which such diversity is absent. Similarly as in Pacheco et al.
2006b), it was shown that by an appropriate time scale separation
etween strategy and network dynamics the diverse behavioral
references can also introduce a transformation of the governing
ocial dilemma, yet so that each individual perceives the same game
ifferently.

Also building on the time scale separation between rewiring and
trategy updating is another paper by Santos et al. (2006a), where
layers are able to decide which links they want to maintain and
hich they want to change based on local information about their
eighbors [type B; see Fig. 2(b)]. A link change is initiated if player
is dissatisfied with its connection to player y, which is the case if

he strategy of player y is to defect. However, player y also assesses

he quality of its link to x in the same fashion. If both x and y are sat-
sfied (which practically means that both are cooperators) the link
etween them remains intact. If x wants to remove the link and y not
sx = C and sy = D), the probability W given by the Fermi function
see Eq. (1)) is invoked. If realized, player x is allowed to redirect
ms 99 (2010) 109–125

to a random neighbor of y. If not, x stays linked with y. If both x
and y are defectors, and thus both want to remove the link, then
rewiring takes place such that the new link keeps attached to x with
probability W or to y with probability 1 − W . Finally, the authors
introduce a ratio defined as the time scale associated with the evo-
lution of strategies �e (for simplicity equal to one) divided by the
time scale associated with the rewiring of the network �a, showing
that there exists a critical value for this ratio above which coopera-
tors wipe out defectors. Moreover, the emerging networks exhibit
an overall heterogeneity that is maximal at the critical value and
can be compared well with diversity associated with realistic social
networks. The coevolutionary rule proposed by Santos et al. (2006a)
was extended by allowing individuals to adjust their social ties (Van
Segbroeck et al., 2008), with the extension that each player was
assigned an individual willingness 0 ≤ � ≤ 1 to rewire unwanted
social interactions. Accordingly, players with small � can be con-
sidered as loyal to their partners and resilient to change, while
those with � → 1 are swift in altering their links. It was shown that
the highest cooperation levels can be achieved when the propen-
sity to change links is highly strategy-dependent. More precisely, it
was found very beneficial for the evolution of cooperation if defec-
tors changed their partners frequently while cooperators behaved
oppositely, i.e. kept their partners for as long as possible. This is
indeed expect since defectors are unable to establish social ties
under mutual agreement with their partners. On the other hand,
cooperators are typically much more prone to establishing long-
term relations and loyalty. Ultimately, these two facts lead to the
evolution of heterogeneous interactions networks where coopera-
tors are known to prevail over defectors [see e.g. Santos and Pacheco
(2005)].

Related to the work of Santos et al. (2006a) is the recent paper
by Fu et al. (2009b), the difference being that in the latter only
cooperators are allowed to switch their partners if they act as
defectors, and moreover, the new partner is sought randomly from
the whole population. It is found that under such a coevolution-
ary rule there exists an optimal, rather than critical [compare with
Santos et al. (2006a)], time scale separation between rewiring and
strategy updating for which cooperation thrives best. Also, the
resulting interaction topology is different in that the network typ-
ically becomes divided into isolated communities of cooperators
and defectors due to the selective coevolutionary rule targeting
only mixed strategy pairs. Notably, a preceding study by Fu et al.
(2008) considered partner switching also with the aid of reputa-
tion, which was defined similar to image scoring proposed a decade
earlier by Nowak and Sigmund (1998b). It was found that coevolu-
tionary switching of partners based on the reputation of nearest and
next-nearest neighbors, i.e. preferentially targeting players with
a higher reputation, is significantly more effective in promoting
cooperation than seeking a new partner randomly from the whole
population. Thus, these results underline the importance of indirect
reciprocity (Nowak and Sigmund, 1998a,b) also when individuals
can adjust their social ties.

In addition to the studies reviewed above, similar coevolution-
ary rules were used to study how scale-free networks emerge
in social systems (Li et al., 2007), how cooperation in the pris-
oner’s dilemma game can be established via the interplay between
dynamical interactions and game dynamics (Fu et al., 2007a) or
interaction stochasticity (Chen et al., 2008b), how social dilem-
mas in general can thereby be resolved (Tanimoto, 2007a, 2009b;
Pestelacci et al., 2008), as well as other sophisticated models
(Hanaki et al., 2007; Biely et al., 2007) were considered. We refer

the interested reader to the original works for further details, while
here we proceed with the review of some of the studies that
employed strategy independent rules for link adaptations (Szolnoki
et al., 2008a; Perc et al., 2008; Kun and Scheuring, 2009; Tanimoto,
2009a; Szolnoki and Perc, 2009c).
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Fig. 3. Multilevel selection at work. In all panels cooperators (defectors) are denoted
by green (black) circles. A cooperator, strengthened by neighboring cooperators
(note that C–C links are beneficial for all involved), can pass its strategy to a defec-
tor that is weakened by neighboring defectors (panel a). Subsequently, the invaded
player looses its links to other players, except the one with the donor of the new
strategy (panel b). Due to random link additions, the successful invasion of cooper-
ators will repeat itself sooner or later depending on � (panel c), ultimately resulting
in the disintegration of the defector cluster (panel d). Note that this process cannot
work in the opposite direction, i.e. defectors cannot invade a cluster of cooperators.
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Fig. 4. Typical distributions of players on a 100 × 100 grid, obtained at an optimal
(kmax = 50; top panel) and a too large (kmax = 200, bottom panel) connectivity orig-
inating from the coevolutionary rule proposed by Szolnoki et al. (2008a). Full black
(open green) boxes depict the positions of influential defectors (cooperators) while
yellow (white) pixels depict the players who are within (out of) their range of influ-
ence. If the influential players are separated by large disjunct territories of influence
he necessary condition for this mechanism to work is the emergence of quasi-
omogeneous groups, which occur if strategy adoptions happen frequently between
ew link additions, i.e. if � is large enough. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of the article.)

Belonging to the third type of interaction-updating coevolution-
ry rules [type C; see Fig. 2(c)] is the model proposed by Szolnoki
nd Perc (2009c), where whenever player x adopts a new strat-
gy all its links, except from the one with the donor of the new
trategy, are deleted (see Fig. 3), and moreover, all individuals are
llowed to form a new link with a randomly chosen player with
hich they are not yet connected after every � full Monte Carlo

teps. Note that the random additions of links counteract the dele-
ions following each strategy adoption, in turn largely preserving
he initially random topology and the heterogeneity of the inter-
ction network (Szolnoki and Perc, 2009a). It was shown that at a
ufficiently large time scale separation between link deletions and
dditions, constituted by �, this coevolutionary rules evokes the
pontaneous emergence of a powerful multilevel selection mecha-
ism, which despite the persistent random topology of the evolving
etwork, maintains cooperation across a substantial portion of the
–S parameter plane. Importantly, the promotion of cooperation
s thereby not realized by some final outcome of a coevolutionary
ule, as is for example the case in (Szolnoki et al., 2008a), but is the
onsequence of a dynamical processes that affects the adoption of
trategies on the macroscopic level of evolutionary game dynam-
cs. As Fig. 3 illustrates, the latter manifests as multilevel selection
Wilson and Sober, 1998; Traulsen and Nowak, 2006) that strongly
romotes cooperation in all major types of social dilemmas.

Conceptually fitting to the third type of interaction-updating
oevolutionary rules [type C; see Fig. 2(c)] is also the model
ntroduced by Szolnoki et al. (2008a), where each player x that suc-
essfully passes its strategy (i.e. reproduces in a biological scenario)

s allowed to form a new link with one randomly selected neighbor
rom its current neighborhood, thereby increasing its degree kx by
ne. Thus, successful players are allowed to grow compact large
eighborhoods that are centered around their initial four nearest
(bottom panel) the network reciprocity is not functioning well. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of the article.)

neighbors. As it is generally assumed, the payoff of any given player
is accumulated from all the links with its neighbors. Hence, without
the normalization by degree, the more links a player has the higher
its payoff is expected to be. For the sake of an easier depiction of
player distributions, we start from an interaction graph that can
be represented by a square lattice. Evidently, the additions of new
links will drive the initial topology away from two dimensions, yet
still allowing us to capture relevant details of strategy distributions
via a square lattice representation, as shown in Fig. 4. Notably, the
coevolutionary rule is independent on whether sx = C or D, and can

hence be considered as strategy independent. However, since the
performance of the strategies is clearly definitive for who gets to
make new links, the rule has at least conceptual similarities with
some of the above-reviewed works that considered strategies as
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ore directly decisive for the outcome of dynamical interactions.
ince the coevolutionary rule would eventually result in a fully con-
ected graph (the latter constitutes well-mixed conditions), the
arameter kmax was introduced as the maximal degree a player

s allowed to obtain. Accordingly, the process of making new con-
ections is stopped as soon as the degree k of a single player within
he whole population reaches kmax, whereby this limit prevents the
ormation of a homogeneous system and indeed constitutes the

ain parameter affecting the impact of the coevolutionary rule.
tarting from a square lattice, it was shown that intermediate val-
es of kmax ≈ 50 substantially promote cooperation in the weak
risoner’s dilemma game (see Fig. 1) governed by Eq. (2), which
as attributed to the formation of highly heterogeneous interac-

ions networks ensuring optimal transfer of information between
nfluential players, i.e. those that have the highest degree among
ny other players that can adopt the strategy from the influen-
ial player via an elementary process. The coevolutionary rule was
lso tested against robustness to time scale separation between
eighborhood growth and strategy adoption via the introduction
f a parameter q, defining the probability of degree extension after
successful strategy pass. Evidently, q = 1 recovers the originally
roposed model while decreasing values of q result in increasingly
eparated time scales. Although the impact of q was found depend-
ng somewhat on the temptation to defect b, in general values of
> 0.2 yielded insignificantly different results if compared to the
= 1 case. Note that q = 0 corresponds to the spatial model without

oevolution, and hence it is natural that as q → 0 the promotion of
ooperation was found fading. The success of intermediate values
f kmax in promoting cooperation can be explained based on the
mergence of heterogeneous interaction networks and the disas-
ortative mixing of high-degree nodes (Rong et al., 2007; Tanimoto,
009a). In particular, while intermediate values of kmax result in
highly degree-diverse mixture of players, which generally pro-
otes cooperation [see also Santos and Pacheco (2005)], too large

alues of kmax yield just a few influential players with disjunct
louds of homogeneous regions surrounding them, as shown in the
ottom panel of Fig. 4. In the later case, the lack of information
xchange between hubs (influential players having large degree)
efectors can easily survive, thus resulting only in moderate coop-
ration levels. The top panel of Fig. 4, on the other hand, features
n optimal distribution of influential players (i.e. those having large
egree), where high-degree cooperators can make cooperation pre-
ail practically across the whole system.

It is worth mentioning that the optimal level of cooperation
bserved for an intermediate value of kmax in Szolnoki et al. (2008a)
s conceptually similar to the case when an intermediate strength
f information exchange between influential players yields the
ptimal environment for cooperation (Perc et al., 2008), as is illus-
rated in Fig. 5. In the later case a fraction � of players that
re characterized with a larger teaching capability are allowed to
emporarily link with distant opponents of the same kind with
robability p, thus introducing shortcut connections among the
istinguished. These additional temporary connections are able to
ustain cooperation throughout the whole range of the temptation
o defect b (see Fig. 1). As Fig. 5 demonstrates, only minute val-
es of p, constituting a moderate intensity of information exchange
etween influential players, warrant the best promotion of coop-
ration.

Strategy-independent coevolutionary rules affecting the inter-
ctions between players have also been considered in the context
f distinguished players populating a square lattice (Perc et al.,

008), in the context of dynamically changing random and scale-
ree networks (Kun and Scheuring, 2009), as well as in the context of
andom networks with different assortative mixing emerging due
o links adaptations (Tanimoto, 2009a). Again, the interested reader
s referred to the original works for further details, while here we
Fig. 5. Fraction of cooperators �C as a function of p in the ‘connected influential
players’ model (Perc et al., 2008). Parameter p determines the intensity of the infor-
mation exchange between influential players. The fraction of influential players is
� = 0.12 and the temptation to defect is b = 2. The line is just to guide the eye.

proceed with a new section devoted to the review of coevolutionary
rules introducing network growth.

3.2. Population Growth

First, it is worth noting that coevolutionary rules giving rise to
population growth have been considered much less frequently than
the above-reviewed rules affecting solely how players link with one
another. Indeed, only three works fit into this subsection, the latter
being the arXiv contribution by Ren et al. (2006) and two recent
papers by Poncela et al. (2008, 2009). Closely related to the rather
general and broad interest in network growth (Gross and Blasius,
2008; Castellano et al., 2009), the networks formed by the players
participating in evolutionary games can be subject to growth as
well, with motivations equivalent to those of the broader research
field.

Although never officially published, the work by Ren et al. (2006)
should be acknowledged as being pioneering in raising the question
how the dynamics of an evolutionary game might affect network
growth, and how in turn the latter affects back the prevalence of
the competing strategies. For this purpose, the authors proposed
a so-called payoff-based preferential attachment rule under the
guidance of the r-parameterized snowdrift game (see Fig. 1) and
the Fermi strategy adoption rule given by Eq. (1). Indeed, the pref-
erential attachment rule by Ren et al. (2006) is practically identical
to the seminal growth and preferential attachment model proposed
by Barabási and Albert (1999), only that in the former the probabil-
ity of linking a new player to an existing player x is not determined
by its degree kx but rather by its accumulated payoff until that
time. Not surprisingly then (note that in the absence of normal-
ization, similarly as the degree of a player, its payoff will typically
also increase by one during an update), the coevolutionary rule
was found leading to the emergence of scale-free interaction net-
works that are characterized by the degree distribution P(k) ∝ k−� ;
the coefficient � thereby depending on the scaling of the proba-
bility of linking a new player to an existing player. In accordance
with an earlier study by Santos and Pacheco (2005), the emerging
scale-free topology due to the coevolutionary rule was found highly
beneficial for the evolution of cooperation in the snowdrift game.

Notably, the authors also investigated the average path length and
the assortative mixing of the emerging networks, as well as the
wealth distribution of players. The former two were found to be in
agreement with observations from realistic social networks, while
the latter was found consistent with the Pareto law.
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The work by Poncela et al. (2008) also introduces an evolution-
ry preferential attachment rule that is based on the payoffs of
xisting players, albeit the weak prisoner’s dilemma is employed as
he governing game and the strategy adoption probability is quanti-
ed according to Eq. (2). More precisely, the network growth starts
ith m0 = 3 fully connected players and proceeds by adding a new
layer with m = 2 links to the existing ones at equally spaced time

ntervals �T . The probability that any player x (having payoff �x) in
he network receives one of the m new links was defined as

x(t) = 1 − 	 + 	�x(t)∑

y

[1 − 	 + 	�y(t)]
(3)

here the sum runs over all the players forming the network at
ime t. Moreover, the parameter 	 ∈ [0, 1) controls the weight of
he payoffs during the network growth. For 	 = 0 all nodes are
quiprobable, corresponding to the weak selection limit [see e.g.
raulsen et al. (2007b); Wild and Traulsen (2007); Fu et al. (2009a)
or recent works related to the latter], while for 	 → 1 the players
ith the highest payoffs are much more likely to attract the new-

omers. The authors also specified the time interval �D for payoff
valuations and potential strategy adoptions, focusing explicitly
n �D/�T > 1 (typically ≈ 10, although smaller and larger values
ere also commented on), so that accordingly the network growth
as considered to be faster than the evolutionary dynamics. It was

hown that the weak selection limit results in networks having
egree distributions with exponentially decaying tails, while the
trong selection limit (	 → 1) yields highly heterogeneous scale-
ree interaction networks. In agreement with the earlier findings
btained on static graphs (Szabó and Fáth, 2007), it was confirmed
hat higher levels of cooperation are attainable on heterogeneous
ather than homogeneous topologies, albeit that the distribution of
trategies with respect to the degree of nodes forming the network
s different. More precisely, cooperators were not found occupying
he main hubs as on static graphs, but rather the nodes with an
ntermediate degree, thus indicating that the interplay between
he local structure of the network and the hierarchical organi-
ation of cooperation is guided by the competition between the
etwork growth and the evolutionary dynamics. Notably, simi-

ar differences in the microscopic organization of the steady state
omposition of strategies were found on static scale-free networks
hen the payoffs were subjected to normalization (Szolnoki et

l., 2008b), although the discrepancies reported by Poncela et al.
2008) were solely the consequence of the coevolutionary growth
rocess. Indeed, in a recent study Poncela et al. (2009) this coevolu-
ionary rule has been studied further to confirm that the reported
romotion of cooperation hinges not only on the final heterogene-

ty of the resulting network but also vitally on the particularities
f the growth process itself. In addition, it was shown that under
trongly payoff dominated growth conditions so-called super-hubs
an emerge, which attract most of the links from the other nodes.
lthough under such conditions cooperation was found thriving
ven for high temptations to defect, it was also noted that the
obustness of these findings may be compromised, or at least not
o strong as on static scale-free networks (Poncela et al., 2007), due
o the extreme heterogeneity of the star-like structures that can be
rought about by the coevolutionary network growth.

With the above we conclude the review of coevolutionary rules
ffecting the interaction network, either in terms of links players
orm with one another (see Section 3.1) or the actual number of

layers participating in the game and the related network size. We
roceed with the review of coevolutionary rules affecting individ-
al properties of players, such as their teaching activity (see Section
.3), mobility (see Section 3.4) or age (see Section 3.5). Note, how-
ver, that some of the above-reviewed coevolutionary rules already
ms 99 (2010) 109–125 117

incorporated and/or affected personal features of players, such as
for example the loyalty to their partners (Van Segbroeck et al.,
2008, 2009) or influence (Perc et al., 2008), albeit always in con-
junction with the coevolution of the interaction network. In what
follows, the links and the size of the network are not affected by
the coevolutionary rules unless explicitly noted otherwise.

3.3. Evolving Teaching Activity

Heterogeneity of players has been explored as a beneficial con-
dition for cooperation in several forms (Wu et al., 2006b; Perc
and Szolnoki, 2008; Fort, 2008b; Masuda, 2008). It can be easily
accepted that players are not perfectly identical within a popu-
lation. Some have higher reputation or stronger influence than
others. These differences can be detected via a biased direction of
strategy adoptions. More precisely, players with higher reputation
can spread their strategy more easily than if having an average or
low reputation. In other words, their activity to teach a neighbor a
new strategy is higher. It turned out that one of the individual quan-
tities that influences the evolution of cooperation most effectively
is the teaching activity (Szolnoki and Szabó, 2007). Notably, teach-
ing activity can also be referred to as the influence or reproduction
rate (Szolnoki et al., 2008c), with the logical assumption that influ-
ential individuals are much more likely to reproduce, i.e. have a
higher teaching activity, than players with low influence. Teaching
activity (or the synonyms we pointed out) can be introduced into
the framework of evolutionary game theory via a modified Fermi
strategy adoption rule

W(sx → sy) = wx
1

1 + exp[(�y − �x)/K]
(4)

where wx characterizes the strength of influence (or teaching activ-
ity) of player x. Obviously, wx = 1 for all x returns Eq. (1), whereby
it is important to acknowledge that even if wx < 1 but the same for
all x the evolutionary outcome of strategy abundance remains the
same, only the relaxation times lengthen. Quenched (non-evolving)
distributions of wx may promote cooperation even on homoge-
nous lattice-type interaction topologies (Szolnoki and Szabó, 2007),
while their application on complex networks reveals further that
players with large teaching activity play a similar role as hubs in
highly degree heterogenous graphs, such as scale-free networks
(Szolnoki et al., 2008c). We refer the reader to the original works for
further details on models using quenched distributions of wx, while
here we proceed with the review of the two papers by Szolnoki and
Perc (2008, 2009b) that thus far considered the teaching activity as
an evolving property of individual players.

In a social context the strategy adoption can be considered as
learning from the more successful player. Accepting this point of
view, it is straightforward to consider a player who has success-
fully passed a strategy as the one having a higher reputation, and
thus a higher teaching activity than other players. Implementing
this idea into a coevolutionary rule, we proposed that whenever
player x successfully passes its strategy the influence wx increases
by a constant positive value �w � 1 according to wx → wx + �w
(Szolnoki and Perc, 2008). This coevolutionary rule is illustrated in
Fig. 6. It should be noted that in this model the term ‘reputation’
does not necessarily have a positive meaning, and thus may be in
contradiction with the same term used elsewhere (Fu et al., 2008),
where players who cooperated were awarded a higher reputation,
which expectedly yielded higher levels of cooperation.

Moreover, for the sake of simplicity it was assumed that the evo-

lution of w stops as soon as the highest wx reaches 1 (Szolnoki and
Perc, 2008). Starting from a nonpreferential setup, initially assign-
ing wx = 0.01 to every player irrespective of its strategy, it was
found that there exists an optimal intermediate value of �w ≈ 0.07
for which cooperation in the weak prisoner’s dilemma as well as
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Fig. 6. Coevolution of teaching activity during a strategy adoption, as proposed by
Szolnoki and Perc (2008). The teaching activity of the left player, which is propor-
tional with the size of circle, increases due to the successful strategy pass. Note
that the right player adopts the strategy from the left player, hence the change of
color from green to black. This strategy-independent (note that the teaching activ-
ity of the left player increases irrespective of which strategy was passed to the right
player) coevolutionary rule can result in highly heterogenous distributions of teach-
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ng activity (see Fig. 7), which were found beneficial for the evolution of cooperation
rrespective of the underlying interaction network. (For interpretation of the refer-
nces to color in this figure legend, the reader is referred to the web version of the
rticle.)

he r-parameterized snowdrift game (see Fig. 1) is enhanced best.
t is in fact understandable that only an intermediate value of the
ncrement �w was found warranting the optimal heterogeneity of
he distribution of wx. Namely, if �w is small then the values of wx

imply increase homogeneously for all the players, while large val-
es of �w result in a very quick halt of the coevolutionary process,
ither way resulting in a rather homogeneous distribution of the
eaching activity. Indeed, for both considered evolutionary games
t was found that using moderate �w the final distribution of w
s exponential, in turn attributing the promotion of cooperation to
he spontaneously emerging highly heterogenous plethora of dif-
erently influential players, as shown in Fig. 7. It was also shown
hat the effectiveness of the coevolutionary rule increases with
he increasing uncertainty by strategy adoptions K, and that the
ule is robust to variations of the updating scheme. For example, it
as verified that an alternative coevolutionary rule, by which wx

as allowed to grow also past 1 only that then wx was normalized
ccording to wx → wx/wmax (wmax > 1 being the maximal out of all
x at any given time) to ensure that the teaching activity remained
ounded to the unit interval, yielded similar results as the halted
ersion.

A two-fold extension of the above work was made in Szolnoki
nd Perc (2009b). First, the coevolutionary rule was no longer con-
idered to be strategy independent. Note that in the preceding work

x → wx + �w was executed irrespective of the strategy of player

. Conversely, in Szolnoki and Perc (2009b) this rule was applied
eparately either only for sx = C (cooperators) or only for sx = D
defectors). Second, the evolution of cooperation was examined in

ig. 7. Spontaneously emerging heterogeneous distribution of the teaching activity
(wx) as a result of the coevolutionary rule introduced by Szolnoki and Perc (2008).
esults were obtained for the weak prisoner’s dilemma game staged on a square

attice. Parameter values were: b = 1.05, K = 0.1 and �w = 0.07.
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all three major social dilemma types defined on the T–S parameter
plane (see Fig. 1). It was shown that both versions of the coevo-
lutionary rule promote cooperation irrespective of the underlying
game. Opposite to intuitive reasoning, however, it was revealed
that the exclusive coevolutionary promotion of players spreading
defection is more beneficial for cooperation than the likewise direct
promotion of cooperators. This was attributed to the fact that the
coevolutionary promotion of defectors results in a larger fraction
of players that are at least once affected by the coevolution, ulti-
mately leading to a stronger segregation of the population into
active (those having wx > 0.01; note that the latter is the initial
teaching activity assigned to all) and virtually (or comparably) inac-
tive (those having wx = 0.01) players than the coevolutionary rule
affecting cooperators. According to previous findings on the impact
of static distributions of heterogeneity (Perc and Szolnoki, 2008),
the stronger expressed segregation was found directly responsible
for the better promotion of cooperation when defectors rather than
cooperators were subjected to coevolution.

As we have already mentioned (see e.g. Section 3.1), the time
scale separation of coevolutionary processes may decisively affect
the final output of such models. This was observed for the coevo-
lution of teaching activity as well. More precisely, the time scale
separation between the coevolution of teaching activity and strat-
egy adoption can be tuned via the introduction of a parameter q,
defining the probability of increasing wx after a successful strategy
pass. Evidently, q = 1 recovers the two originally proposed mod-
els while decreasing values of q result in increasingly separated
time scales. Although the impact of q was found depending some-
what on the type of the considered coevolutionary rule, in general,
values of q > 0.3 yielded insignificantly different results if com-
pared to the q = 1 case, thus indicating that the findings are robust
to this type of alterations [note that, as in Szolnoki et al. (2008a),
q = 0 corresponds to the model without coevolution, and hence it is
natural that as q → 0 the promotion of cooperation was found fad-
ing]. More precisely, however, since the fraction of cooperators was
found increasing rather steadily with increasing values of q, espe-
cially for the coevolutionary rule affecting defectors, it is optimal
to keep the coevolutionary process affecting the teaching activity
of players paced similarly fast as the main evolution of strategies,
i.e. q → 1.

We thus emphasize, that the above-reviewed coevolutionary
models affecting the teaching activity have revealed that a sim-
ple ‘successful become more successful’ principle can result in a
heterogenous hierarchy of individual properties of players, such
that optimal conditions for the evolution of cooperation are war-
ranted. A similarly positive impact of heterogeneity on the spread of
the cooperative strategy was also detected on heterogenous inter-
action networks (Santos and Pacheco, 2005), hence conceptually
linking these two seemingly disjoint promoters of cooperation.

3.4. Mobility of Players

It was acknowledged already by Majeski et al. (1999) that play-
ers finding themselves in an unprofitable or undesirable situation
frequently choose moving in order to free themselves from the
negative consequences of that situation. Accordingly, mobility can
be considered as being a coevolutionary process in the sense of
strategy and/or position alterations that ultimately determine the
environment of players. Although we were unable to locate coevo-
lutionary terminology associated with mobility, we review here
advances on this topic made during the last decade, and indeed

consider movements of players during the evolution of strategies
as being guided by rules of coevolution.

The impact of diffusion on the outcome of a spatial prisoner’s
dilemma game via empty sites was questioned first by Vainstein
and Arenzon (2001). Therein, weak quenched disorder introduced
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n the form of empty sites on a square lattice was found bene-
cial for cooperation in the prisoner’s dilemma game subject to
he richest-following strategy update rule. In a follow-up paper
Vainstein et al., 2007) the approach was extended to allow dif-
usion of players to nearest-neighbor empty sites with a certain
robability. In particular, two ways of implementing the mobil-

ty were considered. First, each player was allowed to make an
ttempt at moving only after payoff accumulation and potential
trategy adaptations were executed in parallel, or second, the mov-
ng was attempted prior to the evolution of strategies. Importantly,
he moving of players was considered to be Brownian random walk
ike, i.e. diffusive, not relying on any type of explicit, genotypic or
henotypic assortment, and also being strategy-independent. Due
o this minimalist set-up the study provided rather general insights
nto possible effects of mobility. It was shown that mobility may
ndeed promote cooperation since it increases the ability of coop-
rator clusters to invade and overtake isolated defectors. On the
ther hand, mobility may also allow defectors to escape retaliation
rom a former partner and lead to stronger mixing in a population
ue to increasing interaction ranges of players, both of which are
nown to damp the evolutionary success of cooperators. Thus, the
mpact of mobility in the form introduced by Vainstein et al. (2007)
s not clear cut. As noted by the authors, further work on this is in
rogress. Importantly, it was also emphasized that mobility may be
ubject to more deliberate coevolutionary rules, taking into account
ersonal preferences of players, their strategies, as well as aims.

An example of the latter was studied by Helbing and Yu (2009),
ho introduced success-driven migration as a possible media-

or leading towards cooperation in populations of selfish and
nrelated individuals even under noisy conditions. In particular,
uccess-driven migration [see also Helbing and Yu (2008)] was
mplemented so that, before the strategy adoption, player x was
llowed to explore potential payoffs that it would receive if occupy-
ng one of the empty sites in the migration neighborhood. The latter

as typically restrained to nearest and next-nearest neighbors of
layer x. If the potential payoff was found to be higher than in the
urrent location, player x moved to the site offering the highest pay-
ff and, in case of several sites with the same payoff, to the closest
ne. On the other hand, if the current location offered the highest
ayoff among all the empty sites within the migration neighbor-
ood, player x did not move. It was found that this fairly simple
nd very plausible migration rule promotes cooperation in the pris-
ner’s dilemma game on a square lattice (with a fraction of empty
ites to accommodate moving) irrespective of the noise introduced
o the system. In fact, three types of noise were considered to attest
o the robustness of cooperation facilitation due to the introduced

obility of players. First was the introduction of mutation with
robability q, second was the introduction of random movements
ot considering the expected success (payoff) with probability r,
hile third was the combination of the two. Additionally, different
pdate rules, adding birth and death processes, as well as introduc-

ng a small fraction of individuals defecting unconditionally were
onsidered as well. Irrespective of all these factors cooperation was
ound prevailing in a large region of the parameter space defining
he prisoner’s dilemma game if only the players were allowed to
xecute success-driven migration.

Recently, mobility is getting increasing attention as a means
o promote cooperation in social dilemmas (Droz et al., 2009;

eloni et al., 2009). In the model of Droz et al. (2009) two types
f players are introduced, and a random walk of the influential
ndividuals is possible irrespective of their strategies. The mobil-

ty of influential cooperators can have two positive impacts on the
volution of cooperation. First, they can spread the cooperative
trategy among the non-influential players having a lower teaching
ctivity, and second, when two influential players with opposite
trategies meet, the cooperator can prevail and thus ensure an
ms 99 (2010) 109–125 119

effective information exchange between cooperating hubs. Note
that the importance of the latter has as already been emphasized
in Section 3.1 (see e.g. Fig. 5 and the pertaining text). As expected
based on preceding works considering mobility as a coevolution-
ary process, the final outcome of the competition between mobile,
and thus influential, cooperators and defectors is highly sensitive
to changes in the speed of moving. When the latter is too high
the influential cooperators cannot benefit from their cooperative
neighborhoods because they abandon them too soon. Similarly,
influential defectors eschew the negative feedback effect originat-
ing from defecting neighbors (note that D–D links are nonprofitable
for both players) because they leave them too fast as well. Indeed,
high moving speeds generate conditions mimicking the well-mixed
regime which is damning for cooperators. Thus, only moderate
mobility of influential players has been found effectively support-
ing the evolution of cooperation. We refer the reader to the original
works for further details, noting that mobility seems a promising
avenue of research for future explorations of coevolutionary rules.

3.5. Aging of Players

As the last coevolutionary process we consider aging. Indeed,
aging is always present, tailoring our interactions with others and
postulating a finite lifespan during which we are able to exercise
them. It thus seems natural to consider aging as an integral part of
every evolutionary development, and certainly evolutionary games
constitute a prime example thereof. Nonetheless, studies taking
aging explicitly into account within this realm of research are few.
McNamara et al. (2008) recently noted that lifespan might play an
important role in the evolution of cooperation, albeit their study
focused on the coevolution of choosiness (see also Section 3.6)
rather than age. Moreover, concepts similar to aging were recently
introduced in the voter model (Stark et al., 2008a,b), showing that
age and memory-dependent transition rates can have a positive
effect on consensus formation. A recent work focusing on aging
within evolutionary games is due to Szolnoki et al. (2009), and in the
following we present a summary of the proposed coevolutionary
rules for aging as well as their main implications.

Since age is often associated with knowledge and wisdom an
individual is able to accumulate over the years, it was introduced
through a simple tunable function that maps age to teaching activ-
ity (see Section 3.3) of the corresponding player. More precisely,
wx in Eq. (4) was related to the integer age ex = 0, 1, . . . , emax in
accordance with the function wx = (ex/emax)˛, where emax = 99,
denoting the maximal possible age of a player, serves the bounding
of wx to the unit interval, and ˛ determines the level of heterogene-
ity in the ex → wx mapping. Evidently, ˛ = 0 corresponds to the
classical (homogeneous) spatial model with wx = 1 characterizing
all players, ˛ = 1 ensures that wx and ex have the same distribution,
whereas values of ˛ ≥ 2 impose a power law distribution of strategy
transfer capability. Although different age distributions of players
were considered also as quenched system states, the focus was
on the study of aging as a coevolutionary process, entailing death
and newborns. Two rules were considered separately, both starting
with ex being assigned randomly from a uniform distribution within
the interval [0, emax] to all players, and subsequently increasing all
ex by 1 after each full Monte Carlo step. Also inherent to both was
that ex was set to zero for all players whose age exceeded emax

(effectively this means that a newborn follows the dead player).
The difference was in the way age of players that have just adopted
a new strategy from one of their neighbors was handled. In the

coevolutionary model A their age was left unchanged, while in the
coevolutionary model B they were considered as newborns, i.e. as
soon as player x adopted a new strategy its age was set to ex = 0.
Notably, rules A and B can be interpreted rather differently. From
a purely biological viewpoint the more successful player replaces
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Fig. 8. Dynamical explanation of cooperation promotion emerging due to aging,
as proposed by Szolnoki et al. (2009). When an old defector, with a high strat-
egy transfer capability, is imitated by one of the neighbors, further spreading of
defection is blocked because the newborn defector has no chance to pass strategy D
further. The newborn is not supported by its ancestor (the D–D link is detrimental
for both), and hence a neighboring cooperator with high age can conquer the site
of the newborn defector. This procedure occurs repeatedly, ultimately resulting in
a practically blocked (more precisely an oscillating) front between C and D regions
(left panel). Importantly, a similar blocking is not present around old (and thus
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Fig. 9. Snapshot of a typical distribution of players on a 100 × 100 square lattice,
obtained by considering players who have adopted a new strategy as newborns
[coevolutionary rule B in Szolnoki et al. (2009)]. Full black (open green) boxes
depict influential defectors (cooperators) while yellow and white are all other
nfluential) cooperators because their cooperator–cooperator links help newborn
ooperators to achieve higher age, in turn supporting the overall maintenance of
ooperative behavior (right panel). In both panels the size of players is proportional
o their age (i.e. their teaching activity). Dashed (solid) arrows denote attempted
successful) strategy adoption processes.

he neighbor with its own offspring, who therefore initially has
limited strategy transfer capability, which corresponds to rule

. On the other hand, especially in social systems, strategy adop-
ions may not necessarily involve death and newborns, but may
ndicate solely a change of heart, preference, or way of thinking,

hereby this situation corresponds to rule A. Nevertheless, new-
orns in a social context can be considered those that changed
heir strategy recently, and therefore have a low reputation ini-
ially. Interestingly, it was found that the small difference between
oevolutionary rules A and B may have significant consequences
or the evolution of cooperation. Foremost, it was found that rule

promotes cooperation remarkably better than rule A. However,
he difference could not be explained by the resulting heterogene-
ty of the distributions of wx, for example via a similar reasoning
s introduced by Perc and Szolnoki (2008), since both rules return
ower law distributed values with rather similar slopes (−0.5 for A
nd −0.7 for B). In fact, it was shown that the coevolutionary rule
introduces a new powerful mechanism for promotion of cooper-

tion acting solely on a microscopic player-to-player basis, and as
uch is thus virtually not detectable by statistical methods assessing
he heterogeneity of the system. The mechanism was found rely-
ng on a highly selective promotion of cooperator–cooperator and
efector–defector pairs, which hinders influential defectors (those
aving ex close to emax) to spread their strategy effectively across
he spatial grid. In particular, rule B always leads to influential play-
rs being surrounded by newborns. Thereby it is important to note
hat whenever an old defector, with a high strategy transfer capa-
ility wx, is imitated by one of the neighbors, further spreading of
efection is blocked because the newborn defector has no chance
o pass strategy D further. At that time a neighboring cooperator
ith high age can strike back and conquer the site of the new-

orn defector. As a result the whole procedure starts again, which
ltimately results in a practically blocked (more precisely an oscil-

ating) front between C and D regions. Crucially, a similar blocking
echanism is not present around old (and thus influential) coop-

rators because their cooperator–cooperator links help newborn
ooperators to achieve higher age, in turn supporting the overall
aintenance of cooperative behavior. The main differences in the

ropagation of different strategy pair-ups are summarized in Fig. 8,

hile an example of the resulting spatial distribution of players is
resented in Fig. 9. In the latter a player is considered as influential if

ts age exceeds that of any of its neighbors by at least emax/2 (qual-
tatively similar snapshots can be obtained by choosing different
hresholds as well).
non-influential defectors and cooperators, respectively. The snapshot demonstrates
clearly that the propagation of defectors is blocked in space as a consequence of age-
related teaching activity. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)

In model A the situation is significantly different since cooper-
ative domains, created around old players with high wx, cannot
prevail long. Namely, the central cooperator who built up the
cooperative domain eventually dies, and the arriving newborn
with an accordingly low strategy transfer capability simply cannot
maintain this domain further, thus giving defectors an opportu-
nity to win it over. As a consequence of the dynamical origin of
the observed cooperation-promoting mechanism brought about by
rule B, it is expected that it will work in other cases too, for example
when the interaction graph is characterized by a different topology,
by other evolutionary games, or by separated time scales between
aging and strategy adaptations, as was shown already by Szolnoki
et al. (2009).

Finally, it is important to note that the observed cooperation-
promoting mechanism relying on a dynamical process is robust
even if non-monotonous mappings between ex and wx are con-
sidered (the oldest individuals may not necessarily be the most
influential). Indeed, the promotion of cooperation remains intact
as long as the plausible assumption that very young players should
have none or very little influence is adhered to.

Similarly as mobility reviewed in Section 3.4, we note that aging
as a coevolutionary process seems very liable to further studies as
well, and we hope this brief summary succeeded in wetting the
appetite for them.

3.6. Related Approaches

Aside from thus far reviewed coevolutionary rules, there exist
examples (Kirchkamp, 1999; Gintis, 2003; Axelrod et al., 2004;

Hamilton and Taborsky, 2005; Fort, 2008a; Hatzopoulos and Jensen,
2008; Ding et al., 2009; Moyano and Sánchez, 2009; Scheuring,
2009; Rankin and Taborsky, 2009; Szabó et al., 2009) we were
unable to classify into the above subsections. Without going into
much details as it exceeds the scope of this mini review, we briefly
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Fig. 10. Time dependencies of the fraction of initial Ki values (�Ki
) demonstrate

the selection of the most appropriate strategy adoption uncertainty K
 (promot-
ing cooperation best), as indicated by the red solid line. This directly implies the
spontaneous selection of an optimal strategy adoption rule within the scope of the
Fermi function (see Eq. (1)), as reported by Szabó et al. (2009). Dashed blue lines
M. Perc, A. Szolnoki / Bi

escribe some of these related approaches, but refer the reader to
he original works for further details.

Kirchkamp (1999), for example, studied the simultaneous evo-
ution of learning rules and strategies, whereby the former were
etermined endogenously based on the success of strategies
bserved in the neighborhood of any given player. It was shown
hat endogenous learning rules put more weight on the proper
nderstanding of each player’s own experience rather than on the
xperience of an observed neighbor. Coevolving learning rules were
ecently considered also by Moyano and Sánchez (2009), showing
hat imitation is frequently displaced by replication, in turn leading
o a rapid decrease of cooperation in the spatial prisoner’s dilemma
ame. On the other hand, imitation was found to be superior to
lobal but stochastic imitation, thereby facilitating cooperative
ehavior. The coevolutionary selection of strategy adoption rules
as consider by Szabó et al. (2009) as well, where the uncertainty

n the Fermi function (see Eq. (1)) was subject to evolution as a
layer-specific property. In particular, instead of a single K value
uthors introduced different Ki values where i ∈ (1, 2, . . . , n), which
ere then assigned randomly to the players. As we have already
oted in Section 2, the uncertainty by strategy adoptions can origi-
ate from different sources, ranging from unpredictable variations

n payoffs to errors in the decision making (Vukov et al., 2006; Perc,
006b; Du et al., 2009a,b; Wu and Holme, 2009). The parameter K,
owever, can also be considered as characterizing the willingness
f a player to risk a payoff quantity during a strategy change. There-
ore, by using different values of K, not only the better strategy but
lso the way of strategy adoption can be the subject of an imitation
rocess.

Accordingly, aside from the fact that player y could adopt the
trategy of player x according to Eq. (1) (sx → sy), an additional
ndependent trail with the same probability was made also for
he adoption of the imitation rule (Kx → Ky). It was shown that,
f the system is seeded by random initial conditions, the proposed
oevolutionary rule drives the system towards a state where a sin-
le K
 value (only one of the initial Ki values) prevails. This final
trategy adoption uncertainty is closely related with the parame-
er value warranting the highest cooperation level if a given value
f K is used for all players at a certain value of the temptation to
efect b (see Fig. 1). Naturally, the prevailing K
 value thus depends
lso on the topology of the interaction network. The selection pro-
ess is illustrated in Fig. 10, where n = 20 different Ki values were
nitially assigned to the players x ∈ (1, 2, . . . , N). Summarizing the

ain observation, it was shown that a Darwinian selection rule
ffecting a model parameter can spontaneously lead to the preva-
ence of the value that ensures an optimal level of cooperation in
he system. For further details we refer the reader to the original
ork of Szabó et al. (2009).

The evolution of altruistic behavior under coevolutionary rules
as studied also in what can be considered more explicitly biolog-

cally or even humanly motivated settings (Gintis, 2003; Axelrod et
l., 2004; McNamara et al., 2008; Scheuring, 2009; Ding et al., 2009).
or example, internal norms, being a pattern of behavior enforced
n part by internal sanctions, such as shame, guilt and loss of self-
steem, were found to provide support for the evolution of altruistic
orms, and moreover, via a gene-culture coevolution argument an
xplanation was provided as to why individually fitness-reducing
nternal norms are likely to be prosocial rather than socially harm-
ul (Gintis, 2003). Although mentioned already in Section 3.5, the
tudy of McNamara et al. (2008) in fact focuses on the coevolution of
hoosiness, the later relying on cooperativeness being used by other

ndividuals as a choice criterion. In such a setting competition to be

ore generous than others can emerge, and in this case the evo-
ution of cooperation between unrelated individuals can be driven
y a positive feedback between increasing levels of cooperativeness
nd choosiness. It was shown that, in situations where individuals
depicted the extinction of the other Ki values. Initially, n = 20 different Ki values
were distributed on the square lattice of size N = 10002. The temptation to defect
was b = 1.05. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of the article.)

have the opportunity to engage in repeated pairwise interactions,
the evolution of cooperation depends critically on the amount of
behavioral variation that is being maintained in the population by
processes such as mutation.

Finally, we note that Hatzopoulos and Jensen (2008) inves-
tigated the evolution of cooperation in a so-called nongrowth
dynamic network model with a death–birth dynamics based on
tournament selection, Hamilton and Taborsky (2005) as well as
Rankin and Taborsky (2009) studied the coevolution of group struc-
ture rather than graph structure in the context of generalized
reciprocity, while Fort (2008a) considered evolving heterogeneous
games as means to sustain cooperation. Interestingly, in the later
study the players had individual payoff elements assigned to them
for calculating their final payoffs. Accordingly, within the realm of
the proposed coevolutionary rule a player could adopt not only the
strategy of the neighbor but also its individual payoff matrix ele-
ments. It was found that if starting with a random heterogeneous
distribution of payoffs, eventually only a small number of definite
payoff matrices remained while the others went ‘extinct’. On the
other hand, if the initial rank of individual payoff elements agreed
with those constituting social dilemma games, the prevailing one
was found to be the stag-hunt game. Considering the latter result
in the light of findings reported within the evolving adoption rules
model by Szabó et al. (2009), it is possible to raise the question if
coevolutionary rules as a selection mechanism can spontaneously
drive the system into a state where mutual cooperation ensures
the maximal average payoff. Indeed, further studies are necessary
to clarify this issue. In sum, there are few boundaries to imagina-
tion when considering what coevolutionary rules might affect, and
certainly, it seems like all facets of existence can be brought into
consideration.

4. Conclusions and Outlook

As we hope the above mini review on coevolutionary games
clearly shows, coevolution is certainly a promising concept to fol-

low, as it constitutes the most natural upgrade of evolutionary
games in the sense that not only do the strategies evolve in time,
but so does the environment, and indeed many other factors that
in turn affect back the outcome of the evolution of strategies. Some
of these coevolutionary processes are of a finite duration, and thus
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n their own do not necessarily affect the outcome of evolution-
ry games but do this only indirectly due to the environment that
hey produce, while others are lasting, introducing dynamical alter-
tions that affect the evolution of cooperation on a continuous basis.
n the future, it should be of interest to further elaborate on the
uestion whether coevolution itself may promote cooperation by

ntroducing dynamical mechanisms, or if mainly the final outcome
f a coevolutionary process, if it exists, is the one vital for the suste-
ance of cooperation. Often, however, it is the interplay of both that

acilitates the promotion of cooperation, as it was already shown
n some of the works. It should also be considered which coevolu-
ionary processes end sooner or later, and which are those that at
east in principle should last forever. For example, the growth of
city can be considered something that has a finite duration due

o environmental constrains, while aging, on the other hand, is a
atural ingredient of every living organism, and as such it should
nly make sense to consider it evolving permanently.

Although social dilemmas may emerge at different levels of
uman and animal interactions, their occurrence is by no means

imited to these examples. The applicability of the concept of evo-
utionary games extends across the whole of social and natural
ciences, with examples ranging from the RNA virus (Turner and
hao, 1999), ATP-Producing Pathways (Pfeiffer et al., 2001) and bio-
hemical systems (Frick and Schuster, 2003; Pfeiffer and Schuster,
005; Chettaoui et al., 2007; Schuster et al., 2008), to traffic conges-
ion (Helbing et al., 2005; Perc, 2007a) and climate change (Milinski
t al., 2006, 2008; Pfeiffer and Nowak, 2006), to name but a few.
n this sense coevolutionary rules should be applied to evolution-
ry games in the broadest possible sense, with specially adapted
otivation fitting to the research avenue of the main evolution-

ry process. Moreover, while focusing predominantly on resolving
ocial dilemmas, coevolutionary rules have thus far not been con-
idered for many other game types, as for example the public goods
ame, the ultimatum game or the rock-scissors-paper game. These
aps should be interesting to fill as well, in particular when striving
owards universal concepts underlying cooperation in the broadest
ossible sense.

cknowledgments

The authors acknowledge support from the Slovenian Research
gency (grant Z1-2032), the Hungarian National Research Fund

grant K-73449), the Bolyai Research Grant, and the Slovene-
ungarian bilateral incentive (grant BI-HU/09-10-001).

eferences

bramson, G., Kuperman, M., 2001. Social games in a social network. Phys. Rev. E
63, 030901(R).

lbert, R., Barabási, A.-L., 2002. Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97.

lonso-Sanz, R., 2009. Memory versus spatial disorder in support of cooperation.
BioSystems 97, 90–102.

ltrock, P.M., Traulsen, A., 2009. Fixation times in evolutionary games under weak
selection. New J. Phys. 11, 013012.
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