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Abstract

Sensitivity and flexibility are important properties of biological systems. These properties are here investigated for
intracellular calcium oscillations. For a particular model, we comparatively investigate sensitivity and flexibility of
regular and chaotic Ga  oscillations. For this model, we obtain two main results. First, sensitivity of the model
system to parameter shifting does not depend on the complexity?df Ca  oscillations. We observe, however, that both
regular and chaotic G4  oscillations are highly sensitive in regions close to bifurcation points. Second, also flexibility
of Ca&* oscillations does not significantly depend on the type ¢f"Ca  oscillations. Our results show that regular as
well as chaotic C& oscillations in the studied model are highly flexible in regimes with weak dissipation. Both
results are discussed in the sense of possible biological importance.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction investigated both from experimental and theoreti-
cal point of view(for review se€[2,3]).
The importance of cytosolic calcium is well Calcium has to play a multiplicity of roles in

established in a large variety of cell types. In order to trigger different cellular functiongl].
excitable as well as in non-excitable cells, a Therefore, flexible, yet precisely regulated, infor-
significant part of signal transduction from recep- mation encoding of Ca  oscillations in their
tors at the cell membrane to enzymes, controlling frequency [4-1Q as well as in their amplitude
the complex behaviour of the biological systems, [11,17 is required. Thus for reliable functioning,
is performed by the oscillatory changing in free 3 pjglogical system has to be stable, highly sensi-

cytosolic C&"  concentration, the so-called’Ca  tjye and flexible. Suguna et al13] showed that a
oscillations. They regulate many cellular processes inimal condition for a model system to be stable,

fro_m €99 fferr:lllsatlon tlcl) c_eII dehat[ﬁ].l;l'he rr_1ech— | highly sensitive and flexible is a combination of a

anisms of these oscillations have been intensely ,qic ‘of coupled negative and positive feedback
*Corresponding author. Tel+ 386-2-220-3643; fax+ 3g6-  Processes. However, the question remains under

2.251-8180. what conditions, determined by the model para-
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Some authors have already dealt with similar
guestions. Kummer et al14], Laer et al.[15] and
Zhong et al.[16] have investigated the impact of
noise on the sensitivity of Ga  oscillations. It has

M. Perc, M. Marhl / Biophysical Chemistry 104 (2003) 509-522

Ca" oscillations over the power of non-modulated
Ca" oscillations. This gives information about
the energy change of the signal related mainly to
its amplitude, however, not so much to its frequen-

been shown that adding Gaussian noise to acy. Therefore, we additionally examine the sensi-

subthreshold extracellular stimulus causes noise-

induced C&" oscillations. This means that noise

tivity of the system regarding changes in the
oscillation frequency, by shifting the parameter

increases the sensitivity in the dose-response rela-values and calculating the ratio of the dominant

tion of calcium, which may have important phys-

oscillation frequency of modulated €a  oscilla-

iological consequences in enhancing the detectiontions over the dominant oscillation frequency of

of weak input signals. Galvanovskis and Sandblom
[17,19 also studied the sensitivity of €&  oscil-
lations in response to weak external forcing and
noise. Their experimental results showed influenc-
es of low frequency electromagnetic fields on the
behaviour of living systems. They also studied this
phenomenon theoretically on two mathematical
models of intracellular Gd&  oscillations: the two-
variable model of Goldbeter et a]19] and the

non-modulated Ca  oscillations. Flexibility of the
model system is studied by applying external
periodic forcing to the model and analysing the
changes in frequency of €a  oscillations. The
span of the frequency range in whicha oscil-
lations are synchronised with the forcing signal
represents the system ability to adapt the basic
Ca" oscillations to the external forcing signal.
Thus, the span of the frequency range is taken as

three-variable model proposed by Shen and Larter a measure for the flexibility of the system.

[20]. In the latter, the sensitivity of regular and

chaotic regimes was compared. Results indicated 2. Mathematical model

higher sensitivity of chaotic G4  oscillations to

variation of parameter values, suggesting a possi-

ble role of chaotic processes in detection of weak
signals within cells.

The aim of the present study is to analyse the
interrelation between sensitivity and flexibility of

We analyse sensitivity and flexibility of the
mathematical model proposed by Shen and Larter
[20]. The functioning of the model system is based
on the mechanisms of calcium-induced calcium
release(CICR) [24] and the inositol trisphosphate

the same model system as studied by Sandblomcrosscoupling(ICC) [25,26. The ICC and CICR

and Galvanovskis(i.e. the model proposed by
Shen and Lartef20]) and to determine the con-
ditions under which the model is extremely sensi-
tive and flexible. In particular, sensitivity and
flexibility of regular and chaotic regimes are com-
pared. Sensitivity is quantified by changes in the

mechanisms provide two positive feedbadisr
details se€20]). There are three variables in the
model: free C&" concentration in the cytosol
(Caey), free C&* concentration in the E€a.,),
and the inositol trisphosphate concentration in the
cytosol (IP;). The evolution of the model system

model variables caused by shifting the parameter is governed by the following differential equations
values. We take use of the so-called response (for parameter values see Tablg 1

coefficients, which were defined in the theoretical
framework of the metabolic control analydisee
e.g. [21]) and afterwards successfully applied to
the control analysis of different periodic phenom-
ena in biological systemésee e.g.[22,23). For
better comparison of our results to that obtained
earlier by Galvanovskis and Sandbldav] for the
same model system, we use a slightly modified
definition of the response coefficients. We shift

the parameter values of the model system and dt

calculate the ratio of the power of modulated

dCa
Tm:Jch+Jleak_J pump+-] i out (1)
eI'=qump_-]ch_‘] leak (2)

/P
—3—J,.—J_, (3)
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Table 1

Model parameters for which all results are calculated unless otherwise stated

Parameter Meaning Value

ken Maximal rate constant of Ga channels in the ER membrane 3000.0pM s~

Kieak Rate constant of G4 leak flux through the ER membrane 1.0s?

kpump Rate constant of ATP-ases in the ER membrane pO/Os~*

kin1 Rate constant for the agonist-depended influx into the cell uADs ™t

kinz Constant C&" influx into the cell 1.0uMs?

kout Rate constant for Ga  efflux from the cell 10.0s?

K; Half-saturation constant for the JP binding to the?Ca  channel 0.2puM

K, Threshold constant for & pumping into the ER 0.2 M

K3 Dissociation constant of the €a  dependent component of PLC 1.0uM

K, Activation constant of CICR 0.6a.M

Ks Inhibition constant of CICR 0.69.M

k., Maximal rate constant of P production 40uMs™?

k_ Rate constant for IP degradation by 5-phosphomonoesterase 20st?
Degree of cell stimulation by agonist 0-1.0
Amplitude of periodic forcing 0.08-0.2pM s~ 1

where, f(t)y=a sin2m) (11

1P} wherea is the amplitude and, is the frequency
Ten=ke IPA+K? of the external forcing. The periodic forcing is

3 considered as a variable €a flux across the cell

{ KiCacy ] (4) membrane. In the model this is realised by inclu-
(Cacyi+K4)(Cacy+K o) er sion of thef(¢) as additional term in Eq(1).

All results are calculated for the parameter

Jieak= K 1ealCa o (5) values given in Table 1 if not otherwise stated.
Cady 3. Results
qump_kpumpcagyt+K§a (6)
The basic model system without periodic forcing
Jin=kin1*r +kin> 7 expresses regular and chaotic2Ca  oscillations.
For better insight into the system behaviour, we
Jour=koula cpn (8 calculate the largest Lyapunov exponent..
which determines if the oscillatory regime is reg-
To=k,r Cacy 9) ular or chaot_ic. The Iarggst Lyapunov exponent is
Cacut+Ks' calculated with the algorithm proposed by Wolf et

al. [27]. In Fig. 1 the results are plotted vs.
J_=k_-IPg (10 parameter, which corresponds to the level of cell
stimulation. The positive values of the largest
The model exhibits both simple and complex Lyapunov exponent in Fig. 1 indicate that the
Ca" oscillations and hence it is suitable to be model system behaves chaotically in two narrow
used for a comparative study of how regular and parametric intervals 0.61%r<0.6205 and
chaotic C&* oscillations are sensitive to parameter 0.6245< r<0.6275. For other parameter values in
changes and how they are flexible in response to the oscillatory regime between the two subcritical
external periodic forcing. Hopf bifurcations atr=0.2345 (HB1 in Fig. 1
For the external periodic forcing a simple sinu- and r=0.6859 (HB2 in Fig. 1), the system
soidal functionf(¢) is taken: expresses regular periodic oscillations. Both bifur-
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Fig. 1. The largest Lyapunov exponeky,, is plotted vs. parametet

cation points were calculated by the program konst, and the system sensitivitySy) can be

XPPAUT [28]. simply estimated by the ratitsee alsd17]):
To examine the sensitivity of €&  oscillations
in the mathematical model, we shift the parameter ,  Xmod (13)

values given in Table 1 by-10% each at a time, X
and calculate the corresponding changes in model
variables. To quantify changes resulting from the whereX,,.q and X ,on.moq@re values of a particular
particular parameter shift, we take use of the system variable afteimodulated and before(non-
response coefficient&R)), defined by the follow-  modulated the parameter shift, respectively. High

Xnonmod

ing equation(e.g. [21-23): sensitivity corresponds to ratidg << 1 andSy > 1.
First, the system sensitivity regarding changes
v 0X/X p X (12) in the power of C&" oscillations is analysgd=
" op/p X op’ P in Eq. (13)]. We shift the parameter values

given in Table 1 by+10% each at a time, and
wherep is a system parameter aids a dependent  calculate the corresponding ratios of the power of
variable, like for example ionic concentrations or modulated oscillations over the power of non-
any of the elements of the Fourier spectrum. For modulated oscillation€S,). The results are pre-
better comparison of our results with that obtained sented in Table 2a. It should be noted that the
previously by Galvanovskis and Sandbldh7], power of C&" oscillations is calculated for the
we take a simplified definition for the sensitivity. oscillating signal of Ca.,; with the subtracted
Since in all cases the parameters are changed foraverage value of the signal. Therefore, if the ratio
the same percenfi.e. +10%), it holds dp/p= of the power of modulated oscillations over the
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Table 2
Effects of shifting the parameter values By10% for three different levels of cell stimulation=0.50,r=0.62 andr=0.68
Modulated parameter Regular regime at Chaotic regime at Regular regime at

r=0.50 r=0.62 r=0.68

—10% +10% —10% +10% —10% +10%
(@
ken 0.99 1.02 1.29 0.42 1.22 0
kieak 1.07 0.94 1.36 0.65 1.09 0.89
kopump 0.93 1.08 0.32 1.49 0 143
kina 0.93 1.08 1.25 0.45 1.39 0
Kinz 0.96 1.05 1.25 0.51 1.17 0
kout 1.16 0.87 0 1.19 0 1.26
K, 0.93 1.05 0.36 1.52 0 1.23
K> 1.17 0.83 1.73 0.02 2.44 0
K3 0.95 1.05 0.47 1.44 0.72 1.16
K, 0.91 1.08 0.61 1.34 0 1.35
Ks 0.95 1.03 0 1.45 0 1.93
r 0.97 0.93 1.49 0.27 4.96 0
(b)
ken 0.97 1.02 1.21 5.10 0.93 0
kieak 0.94 1.05 1.19 0.78 0.97 1.02
kopump 1.09 0.93 5.75 111 0 0.90
kina 0.93 1.07 1.13 5.80 0.86 0
kinz 0.97 1.03 1.21 5.03 0.97 0
Kout 1.02 0.97 0 1.21 0 0.98
K 1.12 0.89 6.11 1.08 0 0.86
K, 0.90 1.10 1.02 10.1 0.67 0
K3 1.12 0.91 5.70 1.10 1.11 0.90
K, 0.97 1.02 452 1.32 0 1.04
Ks 1.05 0.95 0 11 0 0.78
r 0.81 1.19 0.95 6.66 0.18 0

Results are expresséd) as ratios of the power of modulated®a  oscillations over the power of non-modulatéd Ca  oscillations
(S5), (b) as ratios of the dominant oscillation frequency of modulatetiCa  oscillations over the dominant oscillation frequency of
non-modulated G4  oscillatior(s,).

power of non-modulated oscillations equals zero, odic regime atr=0.24. We found that this regular
this means that the system has ceased oscillatingperiodic regime is also more sensitive than the
altogether. In Table 2a the results are presented forchaotic regime at=0.62 (data not showh Thus,
parameter valueg=0.50, r=0.62 andr=0.68. our results indicate that the system sensitivity does
For parameter values=0.50 andr=0.62 the not necessarily depend on the complexity of
results are fully in agreement with those obtained Ca* oscillations.

by Galvanovskis and Sandblofh7], showing that To confirm these results even further we also
the chaotic regime atr=0.62 is more sensitive analyse the sensitivity of €&  oscillations regard-
than the regular one at=0.50. On the other hand, ing changes in the oscillation frequengy=v in
however, the very high sensitivity of regular peri- Eq. (13)]. We shift the parameter values given in
odic state ar=0.68 shows that in general chaotic Table 1 by +10% each at a time again, and
states are not more sensitive than regular states.calculate the corresponding ratios of the frequency
We further tested the sensitivity for another peri- of modulated oscillations over the frequency of



514 M. Perc, M. Marhl / Biophysical Chemistry 104 (2003) 509-522
non-modulated oscillations(S,). The results, flexibility (F) can be simply calculated by Eq.
showing the sensitivity of Cd  oscillations regard- (14). This procedure is carried out for estimating
ing changes in the oscillation frequency, are pre- the flexibility of different chaotic and regular
sented in Table 2b and are fully in agreement with oscillatory regimes. High flexibility corresponds to
the results presented in Table 2a. High sensitivity valuesF> 0 whereas”=0 means that the system
corresponds to value$, <1 andS,>1 whereas is completely inflexible.
§,=0 means that the system has ceased oscillating First, the flexibility of the chaotic regime at=
altogether. By comparing the results in Table 2a,b 0.62 is studied. The chaotic behaviour is proved
with Fig. 1 we see that regimes of high sensitivity by calculating the largest Lyapunov exponent,
coincide with the proximity of Hopf bifurcations, which is positive in this case(see Fig. ).
regardless of the complexity of €a oscillations. Although the regime is chaotic, a predominant
Since our results show that chaos doesn’t nec- frequency is well expressed as shown in Fig. 2a.
essarily imply higher sensitivity of the system, it The external forcing is applied to the basicCa
remains of interest to investigate the flexibility of ogcillations. By changing the frequency of the
chaotic and regular periodic regimes. Intuitively, forcing signal, we determine the range of syn-
chaos should be more flexible in response t0 chronisation in which the predominant oscillation
external forcing since it is characterised by a frequency of chaotic oscillations is synchronised
variety of different amplitudes and non-harmonic it the forcing frequency. With high frequency

frequencies. In order to examine the flexibility of forcing, we are able to enlarge the predominant
C&* oscillations in the mathematical model pro- frequer'u:y of the basic Ga oscillations up to

posed by Shen and Lart¢20] we add periodic v =1.37 v, (Fig. 2b). On the other hand, low

:len?nmo%nglb;n de ;;E%Tngxtma?éﬁtér}?] rlarl]rt10e in forcing frequencies can reduce the basic oscillation
q Y Y frequency down towv,,,=0.72 v, (Fig. 20.

which C&* oscillations follow the external peri- . Co -
. : . According to Eq.(14), this yields the flexibility
odic forcing. The span of the frequency range in of the model systemF—0.65. Below 72% and

which C&* oscillations are synchronised with the . —_—
forcing signal represents the system ability to adapt above 13_7%.0f t.he basic oscillation frequency, the
synchronisation is lost and the frequency off€a

the basic C&" oscillations to the forcing signal. o )
Therefore, the flexibility of the model syste#) oscillations tends to the value of the basic model
; system without forcing(see Fig. 3. Since the

is quantified by the maximal span of the frequency
range in which the frequency of €a  oscillations
(v) equals the frequency of the external forcing

examined C&" oscillations are of the bursting
type, the synchronisation of the forcing signal with

the main Ca* spike in Fig. 2b,c can also be seen
as a quasi-phase-locking.
In the same way, we examine the flexibility of

(vp:

Vmax™ V min
F= vo (14 a regular periodic regime at=0.50. We apply the
external forcing to the basic signal and determine
where the range of synchronisation. In contrast to the

previous chaotic regime at=0.62, in this case

Vmax=Max(v, v=u,}, (15) we are only able to reduce the frequency of basic
C&* oscillations down tow,,,=0.97 v, and
Vmin=Min{v, v=1,}, (16) enlarge it up tov,.=1.04 v, (see Fig. 3, which

yields F=0.07 By comparing the results obtained
for the regular periodic regime at=0.50 and for
the chaotic regime at=0.62, one could conclude
that chaotic C&" oscillations are more flexible
than regular ones. However, the question arises if
this could be generalised.

and v, is the basic oscillation frequency of the
model system without periodic forcing. By varying
the forcing frequency, , firsty,. and v, are
determined by considering the condition= v, in
Eg. (15 and Eg. (16), respectively. Then the
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v/v(J

Fig. 3. Oscillation frequency ranges in which*Ca
Ca&™* oscillations,v

1.1

Vf/v0

1.2 1.3 1.4 15

oscillations are synchronised with the forcing signal. Frequencies of forced
, as well as frequencies of forcing signajs,

, are normalised with respect to the frequency of ¥asic Ca

oscillations,v, . Calculations are carried out for three different values of paramei#) r=0.50,a=0.25uM s~ %, (O) r=0.62,

a=0.1pM st and(0) r=0.624,a=0.1 pM s~ 2.

We investigate the flexibility of another regular
Ca&™* oscillations atr=0.624. The span of the
frequency range in which Ga oscillations are
synchronised with the forcing signal expands from
Umin=0.64 14 t0 v,o,=1.33 vo(see Fig. 3, which
yields F=0.69. The result shows that this regular
periodic regime is more flexible than the chaotic
one atr=0.62 (F=0.65). In fact, the span of the
frequency range in which Ga oscillations are
synchronised with the external forcing is larger for
r=0.624 than for all other parameter values tested.
It should be noted that since the amplitude of
C&* oscillations slightly decreases with increasing
values of parameterr, we have accordingly
reduced the amplitude of forcing from=0.25
uM s (for r=0.50) to a=0.1 uM s~ (for r=
0.62 andr=0.624). Herewith we avoid an ampli-
tude effect of a fixed forcing signal.

Trying to explain the reasons for high flexibility

sum of Lyapunov exponents corresponds to the
contraction of the phase space volume and, hence
to dissipation. In Fig. 4 the dissipation of the
model system is plotted vs. parameteBy com-
paring Fig. 4 with the results obtained in the
flexibility analysis(Fig. 3), we see that regions of
weak dissipation coincide with regions of high
flexibility, regardless of the complexity of Ca
oscillations. Therefore, we argue that?Ca  oscil-
lations are more flexible at weak dissipation than
at high dissipation.

We tested the above-suggested criterion for flex-
ibility of Ca2* oscillations on several other model
systems(not shown here We obtained qualita-
tively the same results, showing that the dissipation
is a useful measure for the flexibility of a dynam-
ical system. It should be noted, however, that the
sum of Lyapunov exponents gives the time-aver-
aged dissipation of the whole attractor. Therefore,

of the model system, we analyse the attractive for better understanding of how the system is able
properties of the trajectories in phase space. Theto deviate from the basic attractor in phase space
strength of the attraction is measured by the sum and herewith to adapt its oscillation frequency to
of Lyapunov exponents, which we calculate with the oscillation frequency of the external forcing,
the algorithm proposed by Wolf et al27]. The in addition to the time-averaged dissipation of the
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Fig. 4. Dissipation of the model system, represented as the sum of the Lyapunov exganens+ A3), is plotted vs. parameter

r. Studied examples at=0.50,r=0.62 andr=0.624 are marked

whole attractor also the time course of local
dissipation along the trajectory should be consid-
ered. We demonstrate this by examples.

Fig. 5a shows the local dissipation for periodic
Ca" oscillations atr=0.68. It can be well
observed that the very low time-averaged dissipa-
tion (shown in Fig. 4 results from the sinus-like
time course of the local dissipatioiFig. 53. In
accordance to our previous statement, the low
time-averaged dissipation implies a high flexibility
of the system, which is here expressed in a high
ability of the system to respond very vividly to
the external periodic forcingsee Fig. 5b. The
C&™* oscillations are synchronised in a large fre-
quency range of the forcing signal, however, the
amplitude of C&" oscillations changes consider-
ably. For biological systems, this is not fully the
desired flexibility. Biological systems must not
respond just vividly but also controlled and immu-
tably, i.e. their response has to be well defined in
its frequency as well as in its amplitude. To have
a flexible system with well-defined responses to
the external forcing, in addition to the low time-
averaged dissipation, the local dissipation has to

with vertical dashed lines.

attractor, the local dissipation has to be either
positive, close to zero or should oscillate around
zero. This contributes to the low time-averaged
dissipation and represents the flexible part of the
attractor. However, in addition to this flexible part,

there must also be at least one well-expressed
negative dell of dissipation. This assures the sys-
tem to have a strong attractive region in phase
space, to which the system returns with higher
probability. Herewith, the forcing signal cannot

change these rigid parts of the trajectory but only
alters the system behaviour in regions of low
dissipation.

To demonstrate the importance of the asymmetry
of local dissipation, we analyse the time course of
dissipation for the highly flexible regular oscilla-
tions atr=0.624. Fig. 6a shows that in addition
to the amplitude symmetric oscillations of the local
dissipation around zero, two well-expressed nega-
tive dells of dissipation are presetrmnarked with
arrows in Fig. 6a They act as stabilisers, which
prevent uncontrolled vivid behaviour in response
to the external forcing. The role of the attractive
dells on one hand and the flexible, low attractive

express some asymmetry. On the larger part of theregions on the other hand can be demonstrated in
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space with predominantly expressed low attractive,

100 r r r 1.0 . . . . . L.
(@) flexible regions, and localised high attractive, rigid
regions, represents a highly flexible and well-
~ controllable system.
2 Our study of sensitivity and flexibility of regular
C . .
g o and complex C& oscillations shows one common
e result, i.e. both sensitivity and flexibility do not
a 50, depend on the complexity of €a  oscillations.
However, one might argue that the periodic forcing
applied in studying flexibility might lead to chang-
A o ing from regular periodic to chaotic behaviour of
t(s)
(b)
0.8 100 T T T T 2
~ 961 50
T L
=] )
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Fig. 5. Local dissipation analysis for the oscillatory regime at
r=0.68.(a) Time course of the dissipatiofsolid line, lefty- 60
axis) and time course o€a,,, (dashed line, righy-axis) for
one oscillation period(b) Periodic forcing of regular Ca
oscillations atr=0.68. The forced Cd  oscillationésolid
line) are synchronised with the forcing signédashed line,
v,=1.35,,a=0.08 pM s~1); however, the amplitude of the
Ca* oscillations is not well defined.

4.5

Ca,, (\M)

the phase space. The largest deviations of the

forced trajectory from the basic attractor appear in 00 05 10 1s 20
regions of the phase space, which correspond to Ca,, (1M)

the most positive dissipation areas of the attractor

(marked with thick lines in Fig. 6a)b Herewith, Fig. 6. Local dissipation analysis for the oscillatory regime at

the system is able to adjust its own frequency to r=0.624.(a) Time course of the dissipatidisolid line, lefty-

: : axis) and time course ofa,,, (dashed line, righy-axis) for
the frequency of the forcing signal. However, the one oscillation period. Thick line segments indicate regions of

two We_l"defined negative delldmarked with high flexibility. Arrows indicate two well-defined negative
arrows in Fig. 6a,b force the system to return dells of local dissipation(b) Limit cycles in 2D-phase space
periodically to the strong attractive reference of Cacy andCae,for r=0.624. The dashed line represents the

regions in phase space. This can be well observed!imit cycle without periodic forcingbasic attractor. The thick
line segments indicate regions of high flexibility whereas

in Fig. 6b Wh_ere In the_se _hlgh attrac,:tlve reglon_s arrows mark the high attractive regions with low dissipation.
the forced trajectory coincidences with the basic The solid line represents the limit cycle with external periodic
attractor. Taken together, we argue that a phaseforcing (v,=1.25,,a=0.1pM s79).
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vora - forcing to these oscillation§see Fig. 2b throws

() the primarily chaotic C&  oscillations into a
regular oscillatory regime. This is confirmed by
the power spectrum in Fig. 7b. Similar phenome-
non was also observed by Li et d29]. They
reported about a suppression of chaotic oscillations
of cyclic AMP in a suspension of Dictyostelium
discoideum amoebae due to a small-amplitude
periodic input of cyclic AMP.

0.008

0.004

Power spectrum density (uM’Hz™)

0.000 ,mL . ,Jﬂl o\ . s 4. Discussion

0.0 0.2 0.4 0.6 0.8 1.0
v (Hz)

In the paper the sensitivity and flexibility of
Ca* oscillations is analysed. The study was
. (b) inspired by the work of Galvanovskis and Sand-
blom [17] arguing that chaotic Ga  oscillations
seem to be more sensitive than the periodic ones.
To verify this prediction we focused our study to
the same mathematical modg20] and used the
same basic method for analysing the sensitivity of
C&* oscillations as proposed by Galvanovskis
0.03- and Sandblonj17]. However, we examined addi-
tional examples of different periodic and chaotic
regimes in order to be able to make conclusions

0.00 : : S S that are more general. Furthermore, we carried out
00 02 04 08 08 0 an additional sensitivity test concerning changes
v(Hz) in frequencies of C&  oscillations. This enabled

) . .. . us to give further generalisations about the sensi-
Fig. 7. Changes in power spectra caused_ by_perlodlc forcing. tivity of regular periodic and chaotic éa  oscil-
(a) Power spectrum for chaotic €a  oscillationsrat0.62. . - e
The spectrum corresponds to the time courséaj, presented lations. To estimate the flexibility of Ca&
in Fig. 2a.(b) Power spectrum for periodic forced€a oscil- o0scillations, we proposed a new measure. We
Iaftions. For parameter values see Table 1 and the caption of gpplied the external periodic forcing to the model
Fig. 2b. and measured the synchronisation range in which

Ca™" oscillations follow the forcing signal. By this
the system. This would imply that chaos is nev- method, we analysed the flexibility of the model
ertheless a necessary condition for high flexibility system comparatively for regular and irregular
of the system. Therefore, in order to check regu- chaotic CA&* oscillations. The main result of our
larity /irregularity of C&* oscillations we have study is that the complexity of €&  oscillations
calculated power spectrums before and after apply- does not directly imply higher sensitivity and
ing the periodic forcing to the model system. The flexibility of Ca®* oscillations in the examined
results show that in response to external periodic mathematical model. By several examples, we
forcing the periodic regimes mostly remain regular showed that regular periodic regimes could be
whereas chaotic regimes most likely fall into a even more sensitive and flexible than chaotic ones.
regular periodic regime. We demonstrate this by  The detailed analysis shows that the sensitivity
an example in Fig. 7. First, the power spectrum of of the system strongly depends on the proximity
unforced chaotic oscillations at=0.62 is present-  of Hopf bifurcations, regardless of the complexity
ed in Fig. 7a. This power spectrum corresponds to of C&* oscillations(see Table 2a) However, in
the time course in Fig. 2a. Applying the periodic some cases, like in the model under consideration

0.06+

Power spectrum density (uM*Hz ')
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[20] or in the model proposed by Borghans et al.
[30], for example, complex oscillations appear in
the close proximity of the Hopf bifurcations.
Therefore, windows of chaotic behaviour coincide
with regions of high sensitivity of the system and
the results obtained earlier by Galvanovskis and
Sandblom[17,1§ were misleading and suggested
that the higher sensitivity of the system is a
consequence of the chaotical behaviour.
Intuitively, the result that the proximity of a
bifurcation point determines the sensitivity of the
system can be well explained. By definition, bifur-

M. Perc, M. Marhl / Biophysical Chemistry 104 (2003) 509-522

For better understanding of the system flexibil-
ity, i.e. how much the system is able to deviate
from the basic attractor in phase space and here-
with to adapt its frequency to the forcing frequen-
¢y, in addition to the time-averaged dissipation
also the time course of local dissipation along the
trajectory should be considered. We showed that a
flexible system with well-defined responses to the
external forcing has to express some asymmetry
in the local dissipation. On larger part of the
attractor, the local dissipation has to be either
positive, close to zero or should oscillate around

cations represent large qualitative changes in the zero. This contributes to the low time-averaged
system dynamics. Therefore, if the system is near dissipation and represents the flexible part of the
a bifurcation point, small changes in parameter attractor. In addition to this flexible part, there

values can dramatically change or even stop the must be localised but well-expressed negative dells
oscillatory behaviour. In this case, a drastic of dissipation. They act as stabilisers and enable
decrease in the power as well as in the oscillation well-controlled responses of €a  oscillations to
frequency appeardsee Table 2a) From the the external forcing.

biological point of view, this is of special impor- Attractors that are characteristic for relaxation

tance. High sensitivity of the biological system at oscillations usually express a predominantly close
the threshold between a stationary state and anto zero or sinus-like time courses of dissipation
oscillatory regime, which is linked to a consider- with one or more well expressed negative dells of

able change in the amplitude gfad in the fre-
guency of Ca" oscillations, plays a crucial role
assuring reliable and convincing signal transduc-
tion. The considerable changes in the amplitude
and/or in the frequency of Cd4  oscillations
depend on the type of local or global bifurcations
[31,33. Therefore, in further more detailed sensi-
tivity analysis the type of bifurcations should also
be taken into account.

In the study of how C& oscillations are flex-
ible in response to external periodic forcing, we
found that the flexibility of C&" oscillations
doesn’t depend on their complexity. The flexibility
of C&* oscillations in the examined model system
is predominantly determined by the dissipation.
Our results show that Ga  oscillations are highly
flexible in regimes with weak dissipation and
inflexible in regimes with high dissipation. We
argue that the time-averaged dissipation for the
whole attractor is a suitable index in characterizing
the flexibility of the system. This result can also
be well interpreted intuitively. If an attractor in
form of a limit cycle is weakly attractive, it seems

dissipation(see e.g. Fig. 6a Intracellular calcium
oscillations with their spike-like form are in gen-
eral prominent examples of relaxation oscillations
[20,30,33—-3%k Therefore, in most cases the flexi-
bility of Ca?* oscillations can be well determined
by the time-averaged dissipation only. Our results
show that the analysis of the time course of
dissipation is necessary for sinus-like non-relaxa-
tion type of C&" oscillations. Although this type
of Ca&* oscillations is of moderate physiological
importance, it appears in the majority of mathe-
matical models. However, in the models the sinus-
like Ca&* oscillations are mainly a consequence
of soft excitation [32,3d. Therefore, they are
restricted to small parameter ranges close to special
types of bifurcations and herewith have only very
limited biological importance.

Our results indicate that dissipation should be
considered in analysing the sensitivity and flexi-
bility of Ca?* oscillations. Also from the biologi-
cal point of view, the relation between low
dissipation and high flexibility of C& oscillations
seems to be reasonable, since in view of low free

much easier to alter its shape, thus changing the energy consumption, dissipation of biological sys-

oscillation frequency of the system.

tems should be minimise@7]. However, it should
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be noted that our study was made for a rather
simple mathematical model20]. Although we
have additionally tested the sensitivity and flexi-
bility criteria on some more complex mathematical
models for C&" oscillations[30,34,3% and
obtained qualitatively the same result®t shown

in the papey, further studies will be necessary in
order to give more general conclusions. It would
be interesting to find mathematical models in
which the sensitivity and flexibility criteria consid-
erably deviate from that suggested in this paper.
This would give new insights into the system
properties that determine high sensitivity and flex-
ibility of dynamical systems. In further studies, it
seems promising to analyse not only the attractive
properties of a given limit cycle but also the
attractive properties of the whole surrounding
phase space. In this way, we would get a topolog-
ical picture of the landscape in which the limit
cycle lies, which would drastically improve our
understanding of the sensitivity, flexibility and
robustness of Cd  oscillations.
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