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Abstract

Sensitivity and flexibility are important properties of biological systems. These properties are here investigated for
intracellular calcium oscillations. For a particular model, we comparatively investigate sensitivity and flexibility of
regular and chaotic Ca oscillations. For this model, we obtain two main results. First, sensitivity of the model2q

system to parameter shifting does not depend on the complexity of Ca oscillations. We observe, however, that both2q

regular and chaotic Ca oscillations are highly sensitive in regions close to bifurcation points. Second, also flexibility2q

of Ca oscillations does not significantly depend on the type of Ca oscillations. Our results show that regular as2q 2q

well as chaotic Ca oscillations in the studied model are highly flexible in regimes with weak dissipation. Both2q

results are discussed in the sense of possible biological importance.
� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The importance of cytosolic calcium is well
established in a large variety of cell types. In
excitable as well as in non-excitable cells, a
significant part of signal transduction from recep-
tors at the cell membrane to enzymes, controlling
the complex behaviour of the biological systems,
is performed by the oscillatory changing in free
cytosolic Ca concentration, the so-called Ca2q 2q

oscillations. They regulate many cellular processes
from egg fertilisation to cell deathw1x. The mech-
anisms of these oscillations have been intensely
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investigated both from experimental and theoreti-
cal point of view(for review seew2,3x).
Calcium has to play a multiplicity of roles in

order to trigger different cellular functionsw1x.
Therefore, flexible, yet precisely regulated, infor-
mation encoding of Ca oscillations in their2q

frequency w4–10x as well as in their amplitude
w11,12x is required. Thus for reliable functioning,
a biological system has to be stable, highly sensi-
tive and flexible. Suguna et al.w13x showed that a
minimal condition for a model system to be stable,
highly sensitive and flexible is a combination of a
pair of coupled negative and positive feedback
processes. However, the question remains under
what conditions, determined by the model para-
meters, the system is most sensitive and flexible.
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Some authors have already dealt with similar
questions. Kummer et al.w14x, Laer et al.w15x and¨
Zhong et al.w16x have investigated the impact of
noise on the sensitivity of Ca oscillations. It has2q

been shown that adding Gaussian noise to a
subthreshold extracellular stimulus causes noise-
induced Ca oscillations. This means that noise2q

increases the sensitivity in the dose-response rela-
tion of calcium, which may have important phys-
iological consequences in enhancing the detection
of weak input signals. Galvanovskis and Sandblom
w17,18x also studied the sensitivity of Ca oscil-2q

lations in response to weak external forcing and
noise. Their experimental results showed influenc-
es of low frequency electromagnetic fields on the
behaviour of living systems. They also studied this
phenomenon theoretically on two mathematical
models of intracellular Ca oscillations: the two-2q

variable model of Goldbeter et al.w19x and the
three-variable model proposed by Shen and Larter
w20x. In the latter, the sensitivity of regular and
chaotic regimes was compared. Results indicated
higher sensitivity of chaotic Ca oscillations to2q

variation of parameter values, suggesting a possi-
ble role of chaotic processes in detection of weak
signals within cells.
The aim of the present study is to analyse the

interrelation between sensitivity and flexibility of
the same model system as studied by Sandblom
and Galvanovskis(i.e. the model proposed by
Shen and Larterw20x) and to determine the con-
ditions under which the model is extremely sensi-
tive and flexible. In particular, sensitivity and
flexibility of regular and chaotic regimes are com-
pared. Sensitivity is quantified by changes in the
model variables caused by shifting the parameter
values. We take use of the so-called response
coefficients, which were defined in the theoretical
framework of the metabolic control analysis(see
e.g. w21x) and afterwards successfully applied to
the control analysis of different periodic phenom-
ena in biological systems(see e.g.w22,23x). For
better comparison of our results to that obtained
earlier by Galvanovskis and Sandblomw17x for the
same model system, we use a slightly modified
definition of the response coefficients. We shift
the parameter values of the model system and
calculate the ratio of the power of modulated

Ca oscillations over the power of non-modulated2q

Ca oscillations. This gives information about2q

the energy change of the signal related mainly to
its amplitude, however, not so much to its frequen-
cy. Therefore, we additionally examine the sensi-
tivity of the system regarding changes in the
oscillation frequency, by shifting the parameter
values and calculating the ratio of the dominant
oscillation frequency of modulated Ca oscilla-2q

tions over the dominant oscillation frequency of
non-modulated Ca oscillations. Flexibility of the2q

model system is studied by applying external
periodic forcing to the model and analysing the
changes in frequency of Ca oscillations. The2q

span of the frequency range in which Ca oscil-2q

lations are synchronised with the forcing signal
represents the system ability to adapt the basic
Ca oscillations to the external forcing signal.2q

Thus, the span of the frequency range is taken as
a measure for the flexibility of the system.

2. Mathematical model

We analyse sensitivity and flexibility of the
mathematical model proposed by Shen and Larter
w20x. The functioning of the model system is based
on the mechanisms of calcium-induced calcium
release(CICR) w24x and the inositol trisphosphate
crosscoupling(ICC) w25,26x. The ICC and CICR
mechanisms provide two positive feedbacks(for
details seew20x). There are three variables in the
model: free Ca concentration in the cytosol2q

(Ca ), free Ca concentration in the ER(Ca ),2q
cyt er

and the inositol trisphosphate concentration in the
cytosol (IP ). The evolution of the model system3

is governed by the following differential equations
(for parameter values see Table 1):

dCacytsJ qJ yJ qJ yJ , (1)ch leak pump in outdt

dCaersJ yJ yJ , (2)pump ch leakdt

dIP3sJ yJ , (3)q ydt
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Table 1
Model parameters for which all results are calculated unless otherwise stated

Parameter Meaning Value

kch Maximal rate constant of Ca channels in the ER membrane2q 3000.0mM sy1

kleak Rate constant of Ca leak flux through the ER membrane2q 1.0 sy1

kpump Rate constant of ATP-ases in the ER membrane 50.0mM sy1

kin1 Rate constant for the agonist-depended influx into the cell 4.0mM sy1

kin2 Constant Ca influx into the cell2q 1.0mM sy1

kout Rate constant for Ca efflux from the cell2q 10.0 sy1

K1 Half-saturation constant for the IP binding to the Ca channel2q
3 0.2mM

K2 Threshold constant for Ca pumping into the ER2q 0.2mM
K3 Dissociation constant of the Ca dependent component of PLC2q 1.0mM
K4 Activation constant of CICR 0.69mM
K5 Inhibition constant of CICR 0.69mM
kq Maximal rate constant of IP production3 4.0mM sy1

ky Rate constant for IP degradation by 5-phosphomonoesterase3 2.0 sy1

r Degree of cell stimulation by agonist 0–1.0
a Amplitude of periodic forcing 0.08–0.25mM sy1

where,

4B EIP3C FJ skch ch 4 4
D GIP qK3 1

3B EK Ca4 cytC F= Ca , (4)erCa qK Ca qKŽ .Ž .D Gcyt 4 cyt 5

J sk Ca , (5)leak leak er

2CacytJ sk , (6)pump pump 2 2Ca qKcyt 2

J sk Ørqk (7)in in1 in2

J sk Ca , (8)out out cyt

CacytJ sk Ør , (9)q q Ca qKcyt 3

J sk ØIP (10)y y 3

The model exhibits both simple and complex
Ca oscillations and hence it is suitable to be2q

used for a comparative study of how regular and
chaotic Ca oscillations are sensitive to parameter2q

changes and how they are flexible in response to
external periodic forcing.
For the external periodic forcing a simple sinu-

soidal functionf(t) is taken:

f t sa sin 2pn t (11)Ž . Ž .f

wherea is the amplitude andn is the frequencyf

of the external forcing. The periodic forcing is
considered as a variable Ca flux across the cell2q

membrane. In the model this is realised by inclu-
sion of the f(t) as additional term in Eq.(1).
All results are calculated for the parameter

values given in Table 1 if not otherwise stated.

3. Results

The basic model system without periodic forcing
expresses regular and chaotic Ca oscillations.2q

For better insight into the system behaviour, we
calculate the largest Lyapunov exponentl ,max

which determines if the oscillatory regime is reg-
ular or chaotic. The largest Lyapunov exponent is
calculated with the algorithm proposed by Wolf et
al. w27x. In Fig. 1 the results are plotted vs.
parameterr, which corresponds to the level of cell
stimulation. The positive values of the largest
Lyapunov exponent in Fig. 1 indicate that the
model system behaves chaotically in two narrow
parametric intervals 0.6175-r-0.6205 and
0.6245-r-0.6275. For other parameter values in
the oscillatory regime between the two subcritical
Hopf bifurcations atrs0.2345 (HB1 in Fig. 1)
and rs0.6859 (HB2 in Fig. 1), the system
expresses regular periodic oscillations. Both bifur-



512 M. Perc, M. Marhl / Biophysical Chemistry 104 (2003) 509–522

Fig. 1. The largest Lyapunov exponentl is plotted vs. parameterr.max

cation points were calculated by the program
XPPAUT w28x.
To examine the sensitivity of Ca oscillations2q

in the mathematical model, we shift the parameter
values given in Table 1 by"10% each at a time,
and calculate the corresponding changes in model
variables. To quantify changes resulting from the
particular parameter shift, we take use of the
response coefficients(R ), defined by the follow-X

p

ing equation(e.g. w21–23x):

≠XyX p ≠XXR s s Ø , (12)p
≠pyp X ≠p

wherep is a system parameter andX is a dependent
variable, like for example ionic concentrations or
any of the elements of the Fourier spectrum. For
better comparison of our results with that obtained
previously by Galvanovskis and Sandblomw17x,
we take a simplified definition for the sensitivity.
Since in all cases the parameters are changed for
the same percent(i.e. "10%), it holds ≠pyps

., and the system sensitivity(S ) can bekonst X

simply estimated by the ratio(see alsow17x):

XmodS s , (13)X Xnon-mod

whereX andX are values of a particularmod non-mod

system variable after(modulated) and before(non-
modulated) the parameter shift, respectively. High
sensitivity corresponds to ratiosS <1 andS 41.X X

First, the system sensitivity regarding changes
in the power of Ca oscillations is analysedwXs2q

P in Eq. (13)x. We shift the parameter values
given in Table 1 by"10% each at a time, and
calculate the corresponding ratios of the power of
modulated oscillations over the power of non-
modulated oscillations(S ). The results are pre-P

sented in Table 2a. It should be noted that the
power of Ca oscillations is calculated for the2q

oscillating signal of Ca with the subtractedcyt

average value of the signal. Therefore, if the ratio
of the power of modulated oscillations over the
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Table 2
Effects of shifting the parameter values by"10% for three different levels of cell stimulation:rs0.50, rs0.62 andrs0.68

Modulated parameter Regular regime at Chaotic regime at Regular regime at
rs0.50 rs0.62 rs0.68

y10% q10% y10% q10% y10% q10%

(a)
kch 0.99 1.02 1.29 0.42 1.22 0
kleak 1.07 0.94 1.36 0.65 1.09 0.89
kpump 0.93 1.08 0.32 1.49 0 1.43
kin1 0.93 1.08 1.25 0.45 1.39 0
kin2 0.96 1.05 1.25 0.51 1.17 0
kout 1.16 0.87 0 1.19 0 1.26
K1 0.93 1.05 0.36 1.52 0 1.23
K2 1.17 0.83 1.73 0.02 2.44 0
K3 0.95 1.05 0.47 1.44 0.72 1.16
K4 0.91 1.08 0.61 1.34 0 1.35
K5 0.95 1.03 0 1.45 0 1.93
r 0.97 0.93 1.49 0.27 4.96 0

(b)
kch 0.97 1.02 1.21 5.10 0.93 0
kleak 0.94 1.05 1.19 0.78 0.97 1.02
kpump 1.09 0.93 5.75 1.11 0 0.90
kin1 0.93 1.07 1.13 5.80 0.86 0
kin2 0.97 1.03 1.21 5.03 0.97 0
kout 1.02 0.97 0 1.21 0 0.98
K1 1.12 0.89 6.11 1.08 0 0.86
K2 0.90 1.10 1.02 10.1 0.67 0
K3 1.12 0.91 5.70 1.10 1.11 0.90
K4 0.97 1.02 4.52 1.32 0 1.04
K5 1.05 0.95 0 1.1 0 0.78
r 0.81 1.19 0.95 6.66 0.18 0

Results are expressed(a) as ratios of the power of modulated Ca oscillations over the power of non-modulated Ca oscillations2q 2q

(S ), (b) as ratios of the dominant oscillation frequency of modulated Ca oscillations over the dominant oscillation frequency of2q
P

non-modulated Ca oscillations(S ).2q
n

power of non-modulated oscillations equals zero,
this means that the system has ceased oscillating
altogether. In Table 2a the results are presented for
parameter valuesrs0.50, rs0.62 and rs0.68.
For parameter valuesrs0.50 and rs0.62 the
results are fully in agreement with those obtained
by Galvanovskis and Sandblomw17x, showing that
the chaotic regime atrs0.62 is more sensitive
than the regular one atrs0.50. On the other hand,
however, the very high sensitivity of regular peri-
odic state atrs0.68 shows that in general chaotic
states are not more sensitive than regular states.
We further tested the sensitivity for another peri-

odic regime atrs0.24. We found that this regular
periodic regime is also more sensitive than the
chaotic regime atrs0.62 (data not shown). Thus,
our results indicate that the system sensitivity does
not necessarily depend on the complexity of
Ca oscillations.2q

To confirm these results even further we also
analyse the sensitivity of Ca oscillations regard-2q

ing changes in the oscillation frequencywXsn in
Eq. (13)x. We shift the parameter values given in
Table 1 by"10% each at a time again, and
calculate the corresponding ratios of the frequency
of modulated oscillations over the frequency of
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non-modulated oscillations(S ). The results,n

showing the sensitivity of Ca oscillations regard-2q

ing changes in the oscillation frequency, are pre-
sented in Table 2b and are fully in agreement with
the results presented in Table 2a. High sensitivity
corresponds to valuesS <1 andS 41 whereasn n

S s0 means that the system has ceased oscillatingn

altogether. By comparing the results in Table 2a,b
with Fig. 1 we see that regimes of high sensitivity
coincide with the proximity of Hopf bifurcations,
regardless of the complexity of Ca oscillations.2q

Since our results show that chaos doesn’t nec-
essarily imply higher sensitivity of the system, it
remains of interest to investigate the flexibility of
chaotic and regular periodic regimes. Intuitively,
chaos should be more flexible in response to
external forcing since it is characterised by a
variety of different amplitudes and non-harmonic
frequencies. In order to examine the flexibility of
Ca oscillations in the mathematical model pro-2q

posed by Shen and Larterw20x we add periodic
transmembrane calcium exchangewEq. (11)x into
the model and determine the frequency range in
which Ca oscillations follow the external peri-2q

odic forcing. The span of the frequency range in
which Ca oscillations are synchronised with the2q

forcing signal represents the system ability to adapt
the basic Ca oscillations to the forcing signal.2q

Therefore, the flexibility of the model system(F)
is quantified by the maximal span of the frequency
range in which the frequency of Ca oscillations2q

(n) equals the frequency of the external forcing
(n ):f

n ynmax minFs , (14)
n0

where

µ ∂n smax n, nsn , (15)max f

µ ∂n smin n, nsn , (16)min f

and n is the basic oscillation frequency of the0

model system without periodic forcing. By varying
the forcing frequency , firstn and n arenf max min

determined by considering the conditionnsn inf

Eq. (15) and Eq. (16), respectively. Then the

flexibility (F) can be simply calculated by Eq.
(14). This procedure is carried out for estimating
the flexibility of different chaotic and regular
oscillatory regimes. High flexibility corresponds to
valuesF40 whereasFs0 means that the system
is completely inflexible.
First, the flexibility of the chaotic regime atrs

0.62 is studied. The chaotic behaviour is proved
by calculating the largest Lyapunov exponent,
which is positive in this case(see Fig. 1).
Although the regime is chaotic, a predominant
frequency is well expressed as shown in Fig. 2a.
The external forcing is applied to the basic Ca2q

oscillations. By changing the frequency of the
forcing signal, we determine the range of syn-
chronisation in which the predominant oscillation
frequency of chaotic oscillations is synchronised
with the forcing frequency. With high frequency
forcing, we are able to enlarge the predominant
frequency of the basic Ca oscillations up to2q

n s1.37 n (Fig. 2b). On the other hand, lowmax 0

forcing frequencies can reduce the basic oscillation
frequency down to n s0.72 n (Fig. 2c).min 0

According to Eq.(14), this yields the flexibility
of the model systemFs0.65. Below 72% and
above 137% of the basic oscillation frequency, the
synchronisation is lost and the frequency of Ca2q

oscillations tends to the value of the basic model
system without forcing(see Fig. 3). Since the
examined Ca oscillations are of the bursting2q

type, the synchronisation of the forcing signal with
the main Ca spike in Fig. 2b,c can also be seen2q

as a quasi-phase-locking.
In the same way, we examine the flexibility of

a regular periodic regime atrs0.50. We apply the
external forcing to the basic signal and determine
the range of synchronisation. In contrast to the
previous chaotic regime atrs0.62, in this case
we are only able to reduce the frequency of basic
Ca oscillations down ton s0.97 n and2q

min 0

enlarge it up ton s1.04n (see Fig. 3), whichmax 0

yields Fs0.07 By comparing the results obtained
for the regular periodic regime atrs0.50 and for
the chaotic regime atrs0.62, one could conclude
that chaotic Ca oscillations are more flexible2q

than regular ones. However, the question arises if
this could be generalised.
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Fig. 3. Oscillation frequency ranges in which Ca oscillations are synchronised with the forcing signal. Frequencies of forced2q

Ca oscillations, , as well as frequencies of forcing signals, , are normalised with respect to the frequency of basic Ca2q 2qn n f

oscillations, . Calculations are carried out for three different values of parameterr: (D) rs0.50,as0.25mM s , (s) rs0.62,y1n0
as0.1mM s and(h) rs0.624,as0.1mM s .y1 y1

We investigate the flexibility of another regular
Ca oscillations atrs0.624. The span of the2q

frequency range in which Ca oscillations are2q

synchronised with the forcing signal expands from
v s0.64n to n s1.33n (see Fig. 3), whichmin 0 max 0

yields Fs0.69. The result shows that this regular
periodic regime is more flexible than the chaotic
one atrs0.62 (Fs0.65). In fact, the span of the
frequency range in which Ca oscillations are2q

synchronised with the external forcing is larger for
rs0.624 than for all other parameter values tested.
It should be noted that since the amplitude of
Ca oscillations slightly decreases with increasing2q

values of parameterr, we have accordingly
reduced the amplitude of forcing fromas0.25
mM s (for rs0.50) to as0.1 mM s (for rsy1 y1

0.62 andrs0.624). Herewith we avoid an ampli-
tude effect of a fixed forcing signal.
Trying to explain the reasons for high flexibility

of the model system, we analyse the attractive
properties of the trajectories in phase space. The
strength of the attraction is measured by the sum
of Lyapunov exponents, which we calculate with
the algorithm proposed by Wolf et al.w27x. The

sum of Lyapunov exponents corresponds to the
contraction of the phase space volume and, hence
to dissipation. In Fig. 4 the dissipation of the
model system is plotted vs. parameterr. By com-
paring Fig. 4 with the results obtained in the
flexibility analysis(Fig. 3), we see that regions of
weak dissipation coincide with regions of high
flexibility, regardless of the complexity of Ca2q

oscillations. Therefore, we argue that Ca oscil-2q

lations are more flexible at weak dissipation than
at high dissipation.
We tested the above-suggested criterion for flex-

ibility of Ca oscillations on several other model2q

systems(not shown here). We obtained qualita-
tively the same results, showing that the dissipation
is a useful measure for the flexibility of a dynam-
ical system. It should be noted, however, that the
sum of Lyapunov exponents gives the time-aver-
aged dissipation of the whole attractor. Therefore,
for better understanding of how the system is able
to deviate from the basic attractor in phase space
and herewith to adapt its oscillation frequency to
the oscillation frequency of the external forcing,
in addition to the time-averaged dissipation of the
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Fig. 4. Dissipation of the model system, represented as the sum of the Lyapunov exponents(l ql ql ), is plotted vs. parameter1 2 3

r. Studied examples atrs0.50,rs0.62 andrs0.624 are marked with vertical dashed lines.

whole attractor also the time course of local
dissipation along the trajectory should be consid-
ered. We demonstrate this by examples.
Fig. 5a shows the local dissipation for periodic

Ca oscillations at rs0.68. It can be well2q

observed that the very low time-averaged dissipa-
tion (shown in Fig. 4) results from the sinus-like
time course of the local dissipation(Fig. 5a). In
accordance to our previous statement, the low
time-averaged dissipation implies a high flexibility
of the system, which is here expressed in a high
ability of the system to respond very vividly to
the external periodic forcing(see Fig. 5b). The
Ca oscillations are synchronised in a large fre-2q

quency range of the forcing signal, however, the
amplitude of Ca oscillations changes consider-2q

ably. For biological systems, this is not fully the
desired flexibility. Biological systems must not
respond just vividly but also controlled and immu-
tably, i.e. their response has to be well defined in
its frequency as well as in its amplitude. To have
a flexible system with well-defined responses to
the external forcing, in addition to the low time-
averaged dissipation, the local dissipation has to
express some asymmetry. On the larger part of the

attractor, the local dissipation has to be either
positive, close to zero or should oscillate around
zero. This contributes to the low time-averaged
dissipation and represents the flexible part of the
attractor. However, in addition to this flexible part,
there must also be at least one well-expressed
negative dell of dissipation. This assures the sys-
tem to have a strong attractive region in phase
space, to which the system returns with higher
probability. Herewith, the forcing signal cannot
change these rigid parts of the trajectory but only
alters the system behaviour in regions of low
dissipation.
To demonstrate the importance of the asymmetry

of local dissipation, we analyse the time course of
dissipation for the highly flexible regular oscilla-
tions at rs0.624. Fig. 6a shows that in addition
to the amplitude symmetric oscillations of the local
dissipation around zero, two well-expressed nega-
tive dells of dissipation are present(marked with
arrows in Fig. 6a). They act as stabilisers, which
prevent uncontrolled vivid behaviour in response
to the external forcing. The role of the attractive
dells on one hand and the flexible, low attractive
regions on the other hand can be demonstrated in
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Fig. 5. Local dissipation analysis for the oscillatory regime at
rs0.68.(a) Time course of the dissipation(solid line, left y-
axis) and time course ofCa (dashed line, righty-axis) forcyt

one oscillation period.(b) Periodic forcing of regular Ca2q

oscillations atrs0.68. The forced Ca oscillations(solid2q

line) are synchronised with the forcing signal(dashed line,
s1.35 ,as0.08mM s ); however, the amplitude of they1n nf 0

Ca oscillations is not well defined.2q

Fig. 6. Local dissipation analysis for the oscillatory regime at
rs0.624.(a) Time course of the dissipation(solid line, lefty-
axis) and time course ofCa (dashed line, righty-axis) forcyt

one oscillation period. Thick line segments indicate regions of
high flexibility. Arrows indicate two well-defined negative
dells of local dissipation.(b) Limit cycles in 2D-phase space
of Ca andCa for rs0.624. The dashed line represents thecyt er

limit cycle without periodic forcing(basic attractor). The thick
line segments indicate regions of high flexibility whereas
arrows mark the high attractive regions with low dissipation.
The solid line represents the limit cycle with external periodic
forcing ( s1.25 ,as0.1mM s ).y1n nf 0

the phase space. The largest deviations of the
forced trajectory from the basic attractor appear in
regions of the phase space, which correspond to
the most positive dissipation areas of the attractor
(marked with thick lines in Fig. 6a,b). Herewith,
the system is able to adjust its own frequency to
the frequency of the forcing signal. However, the
two well-defined negative dells(marked with
arrows in Fig. 6a,b) force the system to return
periodically to the strong attractive reference
regions in phase space. This can be well observed
in Fig. 6b where in these high attractive regions
the forced trajectory coincidences with the basic
attractor. Taken together, we argue that a phase

space with predominantly expressed low attractive,
flexible regions, and localised high attractive, rigid
regions, represents a highly flexible and well-
controllable system.
Our study of sensitivity and flexibility of regular

and complex Ca oscillations shows one common2q

result, i.e. both sensitivity and flexibility do not
depend on the complexity of Ca oscillations.2q

However, one might argue that the periodic forcing
applied in studying flexibility might lead to chang-
ing from regular periodic to chaotic behaviour of
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Fig. 7. Changes in power spectra caused by periodic forcing.
(a) Power spectrum for chaotic Ca oscillations atrs0.62.2q

The spectrum corresponds to the time course ofCa presentedcyt

in Fig. 2a.(b) Power spectrum for periodic forced Ca oscil-2q

lations. For parameter values see Table 1 and the caption of
Fig. 2b.

the system. This would imply that chaos is nev-
ertheless a necessary condition for high flexibility
of the system. Therefore, in order to check regu-
larityyirregularity of Ca oscillations we have2q

calculated power spectrums before and after apply-
ing the periodic forcing to the model system. The
results show that in response to external periodic
forcing the periodic regimes mostly remain regular
whereas chaotic regimes most likely fall into a
regular periodic regime. We demonstrate this by
an example in Fig. 7. First, the power spectrum of
unforced chaotic oscillations atrs0.62 is present-
ed in Fig. 7a. This power spectrum corresponds to
the time course in Fig. 2a. Applying the periodic

forcing to these oscillations(see Fig. 2b) throws
the primarily chaotic Ca oscillations into a2q

regular oscillatory regime. This is confirmed by
the power spectrum in Fig. 7b. Similar phenome-
non was also observed by Li et al.w29x. They
reported about a suppression of chaotic oscillations
of cyclic AMP in a suspension of Dictyostelium
discoideum amoebae due to a small-amplitude
periodic input of cyclic AMP.

4. Discussion

In the paper the sensitivity and flexibility of
Ca oscillations is analysed. The study was2q

inspired by the work of Galvanovskis and Sand-
blom w17x arguing that chaotic Ca oscillations2q

seem to be more sensitive than the periodic ones.
To verify this prediction we focused our study to
the same mathematical modelw20x and used the
same basic method for analysing the sensitivity of
Ca oscillations as proposed by Galvanovskis2q

and Sandblomw17x. However, we examined addi-
tional examples of different periodic and chaotic
regimes in order to be able to make conclusions
that are more general. Furthermore, we carried out
an additional sensitivity test concerning changes
in frequencies of Ca oscillations. This enabled2q

us to give further generalisations about the sensi-
tivity of regular periodic and chaotic Ca oscil-2q

lations. To estimate the flexibility of Ca2q

oscillations, we proposed a new measure. We
applied the external periodic forcing to the model
and measured the synchronisation range in which
Ca oscillations follow the forcing signal. By this2q

method, we analysed the flexibility of the model
system comparatively for regular and irregular
chaotic Ca oscillations. The main result of our2q

study is that the complexity of Ca oscillations2q

does not directly imply higher sensitivity and
flexibility of Ca oscillations in the examined2q

mathematical model. By several examples, we
showed that regular periodic regimes could be
even more sensitive and flexible than chaotic ones.
The detailed analysis shows that the sensitivity

of the system strongly depends on the proximity
of Hopf bifurcations, regardless of the complexity
of Ca oscillations(see Table 2a,b). However, in2q

some cases, like in the model under consideration
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w20x or in the model proposed by Borghans et al.
w30x, for example, complex oscillations appear in
the close proximity of the Hopf bifurcations.
Therefore, windows of chaotic behaviour coincide
with regions of high sensitivity of the system and
the results obtained earlier by Galvanovskis and
Sandblomw17,18x were misleading and suggested
that the higher sensitivity of the system is a
consequence of the chaotical behaviour.
Intuitively, the result that the proximity of a

bifurcation point determines the sensitivity of the
system can be well explained. By definition, bifur-
cations represent large qualitative changes in the
system dynamics. Therefore, if the system is near
a bifurcation point, small changes in parameter
values can dramatically change or even stop the
oscillatory behaviour. In this case, a drastic
decrease in the power as well as in the oscillation
frequency appears(see Table 2a,b). From the
biological point of view, this is of special impor-
tance. High sensitivity of the biological system at
the threshold between a stationary state and an
oscillatory regime, which is linked to a consider-
able change in the amplitude andyor in the fre-
quency of Ca oscillations, plays a crucial role2q

assuring reliable and convincing signal transduc-
tion. The considerable changes in the amplitude
andyor in the frequency of Ca oscillations2q

depend on the type of local or global bifurcations
w31,32x. Therefore, in further more detailed sensi-
tivity analysis the type of bifurcations should also
be taken into account.
In the study of how Ca oscillations are flex-2q

ible in response to external periodic forcing, we
found that the flexibility of Ca oscillations2q

doesn’t depend on their complexity. The flexibility
of Ca oscillations in the examined model system2q

is predominantly determined by the dissipation.
Our results show that Ca oscillations are highly2q

flexible in regimes with weak dissipation and
inflexible in regimes with high dissipation. We
argue that the time-averaged dissipation for the
whole attractor is a suitable index in characterizing
the flexibility of the system. This result can also
be well interpreted intuitively. If an attractor in
form of a limit cycle is weakly attractive, it seems
much easier to alter its shape, thus changing the
oscillation frequency of the system.

For better understanding of the system flexibil-
ity, i.e. how much the system is able to deviate
from the basic attractor in phase space and here-
with to adapt its frequency to the forcing frequen-
cy, in addition to the time-averaged dissipation
also the time course of local dissipation along the
trajectory should be considered. We showed that a
flexible system with well-defined responses to the
external forcing has to express some asymmetry
in the local dissipation. On larger part of the
attractor, the local dissipation has to be either
positive, close to zero or should oscillate around
zero. This contributes to the low time-averaged
dissipation and represents the flexible part of the
attractor. In addition to this flexible part, there
must be localised but well-expressed negative dells
of dissipation. They act as stabilisers and enable
well-controlled responses of Ca oscillations to2q

the external forcing.
Attractors that are characteristic for relaxation

oscillations usually express a predominantly close
to zero or sinus-like time courses of dissipation
with one or more well expressed negative dells of
dissipation(see e.g. Fig. 6a). Intracellular calcium
oscillations with their spike-like form are in gen-
eral prominent examples of relaxation oscillations
w20,30,33–35x. Therefore, in most cases the flexi-
bility of Ca oscillations can be well determined2q

by the time-averaged dissipation only. Our results
show that the analysis of the time course of
dissipation is necessary for sinus-like non-relaxa-
tion type of Ca oscillations. Although this type2q

of Ca oscillations is of moderate physiological2q

importance, it appears in the majority of mathe-
matical models. However, in the models the sinus-
like Ca oscillations are mainly a consequence2q

of soft excitation w32,36x. Therefore, they are
restricted to small parameter ranges close to special
types of bifurcations and herewith have only very
limited biological importance.
Our results indicate that dissipation should be

considered in analysing the sensitivity and flexi-
bility of Ca oscillations. Also from the biologi-2q

cal point of view, the relation between low
dissipation and high flexibility of Ca oscillations2q

seems to be reasonable, since in view of low free
energy consumption, dissipation of biological sys-
tems should be minimisedw37x. However, it should
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be noted that our study was made for a rather
simple mathematical modelw20x. Although we
have additionally tested the sensitivity and flexi-
bility criteria on some more complex mathematical
models for Ca oscillationsw30,34,35x and2q

obtained qualitatively the same results(not shown
in the paper), further studies will be necessary in
order to give more general conclusions. It would
be interesting to find mathematical models in
which the sensitivity and flexibility criteria consid-
erably deviate from that suggested in this paper.
This would give new insights into the system
properties that determine high sensitivity and flex-
ibility of dynamical systems. In further studies, it
seems promising to analyse not only the attractive
properties of a given limit cycle but also the
attractive properties of the whole surrounding
phase space. In this way, we would get a topolog-
ical picture of the landscape in which the limit
cycle lies, which would drastically improve our
understanding of the sensitivity, flexibility and
robustness of Ca oscillations.2q
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