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1. Introduction

Synchronization is key in numerous situations that constitute
everyday life, and it is only natural that it has become an important
paradigm throughout natural as well as social sciences. Whether it is
the synchrony among group dancers or excitations of neurons, the
joint execution of a seemingly simple task adds value to the final
output that is often beyond expectations. Especially by nonlinear
dynamical systems [1] synchronization is recurrently in the focus of
attention, and most recently, insightful findings regarding the
synchronization on complex networks have been presented [2–7]
and reviewed [8]. More specifically, universalities in the synchroniza-
tion of weighted random networks were reported in [6] and paths to
synchronization on complex networks have been investigated in [7].
Moreover, it was shown that synchronization could reveal topological
scales of complex networks [9]. Since neurons are known to be linked
through complex networks [10–14], extending these findings to
specific models of neuronal dynamics [15–19] seems justified and
currently of substantial interest [20–22].

Another important ingredient of neuronal dynamics is noise, in
particular since neurons are known to be noisy analog units, which if
coupled can carry out highly complex and advanced computations
with cognition and reliability [23]. After the realization of the fact that
noise can play a constructive role in nonlinear dynamical systems
[24]; a phenomenon that is most frequently celebrated as stochastic
[25,26] or coherence resonance [27,28], noisy ingredients quickly
became an inseparable part of studies examining excitable neuronal
ll rights reserved.
dynamics [29,30], as comprehensively reviewed in [31]. Furthermore,
effects of noise in general were studied for spatially extended systems
[32,33], whereby relevant for the present work are studies examining
array enhanced stochastic [34] and coherence resonance [35], as well
as phase synchronization of excitable units [36,37].

Here we focus on the spatial synchronization of excitable Morris–
Lecar neurons [17], whereby we use the scale-free network [38] as the
underlying interaction topology. Moreover, we specifically examine the
role of nonlinear coupling via chemical synapses and the standard linear
diffusive coupling via gap junctions [39]. Thereby we conceptually
follow an interesting study by Balenzuela and García-Ojalvo [40],
reporting that indeed chemical synapses may be beneficial for the
temporal coherence of a coupled neuronal system. As the main
parameters we consider the intensity of additive noise and the coupling
strength, and determine which conditions constitute an optimal
environment for spatial synchronization of noise-induced excitations
on the scale-free network. We show that the coupling via chemical
synapses requires fine-tuning of the noise intensity as well as the
coupling strength for optimal spatial synchrony, whereas by gap
junctional interactions increasing coupling strengths do not evoke a
resonance-like dependence. We thus reveal conditions under which
optimal spatial synchronization of noise-induced excitations on scale-
free networks can be achieved, thereby particularly focusing on the type
of interactions among coupled neurons. Presented results could prove
useful in further clarifying the specific importance of chemical and
electrical coupling between neurons on complex interaction networks.

The remainder of this paper is organized as follows. In the next
section we describe the Morris–Lecar model [17] with the two
considered coupling schemes, as well as the scale-free network and
othermathematical methods presently in use. Results are presented in
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Table 1
Parameter values of the Morris–Lecar model used throughout this work.

Parameter Value

Cm 5.0 μF/cm2

ϕ 1/15 s−1

gCa 4.0 μS/cm2

gK 8.0 μS/cm2

gL 2.0 μS/cm2

VCa 120 mV
VK −80.0 mV
VL −60.0 mV
VM1 −1.2 mV
VM2 18.0 mV
VW1 2.0 mV
VW1 17.4 mV
Es 0.0 mV
α 2.0 ms−1 mM−1

β 1.0 ms−1

Tmax 1.0 mM
τsyn 1.5 ms
D 0.32–8.0 mV/ms (to be varied)
gsyn 0.1–10.0 nS (to be varied)

Fig. 1. Color map of spatial synchronization S in dependence on the noise intensity D
and the coupling strength gsyn for the nonlinear coupling via chemical synapses.

176 M. Perc / Biophysical Chemistry 141 (2009) 175–179
Section 3, whereas in the last Section we summarize and discuss our
findings.

2. Mathematical model and setup

The networked model to be used presently consists of noisy
Morris–Lecar neurons [17] that are governed by the differential
equations of the form

dVi

dt
=

1
Cm

Iappi − Iioni − Isyni

� �
+ Dni tð Þ; ð1Þ

dWi

dt
= /Λ Við Þ W∞ Við Þ− Wi½ �; ð2Þ

where Vi and Wi are the membrane potential and the fraction of
open potassium channels of neurons i=1,…,N respectively. Additive
Gaussian noise with zero mean, intensity D, and autocorrelation
bξi(t)ξj(t′)N=δijδ(t= t′) accounts for the stochastic components of
neuronal dynamics, especially the synaptic current Iisyn, whereas the
externally applied current Ii

app is the main bifurcation parameter
determining the deterministic dynamics of each neuron. Throughout
this work we set Ii

app=46 mA placing each neuron in an excitable
steady state prior to a subcritical Hopf bifurcation (note that this
depends also on the values of other parameters) [41]. Moreover, the
ionic current is given by

Iioni = gCaM∞ Við Þ Vi − V0
Ca

� �
− gKWi Vi − V0

K

� �
− gL Vi − V0

L

� �
; ð3Þ

whereas the membrane potentials are described by the functions

M∞ Við Þ = 1
2

1 + tanh
Vi − VM1

VM2

� �� �
ð4Þ

W∞ Við Þ = 1
2

1 + tanh
Vi − VW1

VW2

� �� �
; ð5Þ

Λ Við Þ = cosh
Vi−VW1

2VW2

� �
: ð6Þ

The mathematical form of the synaptic current Iisyn depends on the
considered coupling scheme. In case of linear diffusive coupling via
gap junctions Iisyn takes the form

Isyni =
X

janeigh ið Þ
gsynij Vi − Vj

� �
; ð7Þ
whereas by nonlinear coupling via chemical synapses, based on [42],
the form is

Isyni =
X

janeigh ið Þ
gsynij rj Vi − Esð Þ; ð8Þ

where rj is the fraction of bond receptors given by

drj
dt

= α T½ �j 1− rj
� �

− βrj: ð9Þ

Eqs. (7) and (8) both feature gij
syn, which is the conductance of the

synapse linking neuron i with neuron j, as well as the sum running
over all the neighbors of neuron i on the scale-free network. In
addition, Eq. (8) introduces an additional parameter Es determining
the synapse type, as well as the variable rj, which is further
determined by the concentration of neurotransmitters released into
the synaptic cleft [T]j=TmaxΘ(T0j −τsyn−t)Θ(t−T0

j). Here T0j is the time
at which neuron j fires and τsyn is the time during which the synaptic
connections are active. Parameter values used throughout this work
are given in Table 1. For their meaning the reader is referred to the
original works [17,42] as well as to Ref. [40].

As the underlying interaction network we use the scale-free
network generated via growth and preferential attachment as
proposed by Barabási and Albert [38], comprising N=200 vertices. If
neurons i and j on the network are connected then gij

syn=gji
syn=gsyn, but

otherwise gijsyn=gji
syn=0 and gii

syn=0. Using the notation of [38], we start
with m0=2 connected vertices, and subsequently every new vertex is
attached to m=2 old vertices already present in the network, whereby
the probability П that a new vertex will be connected to vertex i
depends on its degree ki in accordancewithП=ki/N−1Σjkj. This growth
and preferential attachment scheme yields a network with an average
degree kavg=N−1Σiki equaling 4, and a power-law degree distribution
with the slope of the line equaling−2.9 on a double logarithmic graph.
In order to warrant statistical accuracy, all below presented results
were obtained as averages over 100 different realizations of the scale-
free network for each pair of D and gsyn.

Finally, as a compact measure for the degree of spatial synchro-
nization of noise-induced excitatory fronts we use

S =
1
T

ZT

t=0

bV2
i tð ÞN − bVi tð Þ=2

h i
dt; ð10Þ

where b…N denotes averages over all i=1,…,N coupled neurons. Low
values of S characterize highly synchronous excitatory fronts (S=0 if



Fig. 2. Space–time plots of neuronal activity for the nonlinear coupling via chemical synapses, obtained for D=5.0 mV/ms and gsyn=0.6 nS (left panel), gsyn=3.0 nS (middle panel),
gsyn=10.0 nS (right panel). The color profile is linear, white depicting Vi=−80.0 mV and black Vi=60.0 mV.

Fig. 3. Spatial synchronization S in dependence on the noise intensity D (bottom panel)
and the coupling strength gsyn (top panel) for the nonlinear coupling via chemical
synapses.
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the synchronizationwould be perfect), whereas large S arisewhen the
spatial synchronization deteriorates.

3. Results

We start by presenting a color map displaying S in dependence D
and gsyn in Fig. 1, which was obtained by using the nonlinear coupling
via chemical synapses. It can be observed that the spatial synchrony
depends crucially on the coupling strength. In particular, S exhibits
well-expressed minima throughout the whole span of D. On the other
hand, D evokes a resonant response as well, but the latter is only
weakly expressed for small values of gsyn while at larger coupling
strengths synchronization solely deteriorates as D increases. These
features will be presented more accurately in what follows.

The impact of gsyn on spatial synchronization via chemical synapses
can be visualized nicely by space–time plots, as presented in Fig. 2.
While for small (left panel) and large (right panel) coupling strengths
the excitatory fronts are very inconsistent and barely inferable, the
spatial synchronyof the fronts is substantially improvedby the optimal
value of gsyn (middle panel) for the considered value of D. Conversely,
the minima of S evoked by optimal values of D are not expressed
enough so that the difference in spatial synchronycould be appreciated
from visually inspecting the space–time plots (not shown).

These observations can be made quantitatively more precise by
plotting cross-sections of the color map presented in Fig. 1. The top
panel of Fig. 3 shows S in dependence on the coupling strength for
different values of D. Indeed, it can be observed that the minima are
well expressed for all noise intensities since the difference between S
obtained for the optimal gsyn and limiting values of the considered
interval (gsyn=0.4 nS and gsyn=10 nS) differ at least by 300 on both
ends. The noise intensity Dmay also affect the spatial synchronization
substantially, as shown in the bottom panel of Fig. 3, yet the minima
can be observed only by small gsyn, whereas larger coupling strengths
on scale-free networks don't support the phenomenon of noise-
enhanced spatial synchronization. Note that for gsyn≥6.4 nS the spatial
synchronization deteriorates fast as D increases. This can be linked to
the fact that scale-free networks introduce an inherent level of
diversity to the system, which if appropriately tuned, may evoke a
resonant response on its own [43–45]. By higher coupling strengths
the diversity, due to the scale-free interaction network, is sufficient to
evoke optimally synchronized excitatory fronts, and thus the addition
of dynamic Gaussian noise is unable to act constructively irrespective
of D. Another noteworthy phenomenon can be observed by small
values of gsyn=0.4 nS, namely the so-called locally optimal response
of the scale-free network that is responsible for the first minimum of S
occurring at D=0.72 mV/ms. By small coupling strengths neurons
that are directly linked to the main hub of the scale-free network can
form a quasi-isolated entity, which can be influenced by substantially
lower noise intensities than the whole network, as recently demon-
strated for the phenomenon of stochastic resonance in Ref. [46].

It remains of interest to compare above results with those obtained
with the linear coupling via gap junctions. The bottom panel of Fig. 4
shows a rather familiar dependence of S on D. In particular, there
exists an optimal noise intensity by which the spatial synchronization
of noise-induced excitations is best expressed. Similarly as by
nonlinear coupling, this feature becomes weaker expressed as gsyn

increases, until it eventually vanished completely for gsyn≥3.2 nS.
Moreover, compared to the bottom panel of Fig. 3, the minima are



Fig. 4. Spatial synchronization S in dependence on the noise intensity D (bottom panel)
and the coupling strength gsyn (top panel) for the linear diffusive coupling via gap
junctions. Note that combinations of D and gsynwhich failed to evoke excitations are not
depicted.
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somewhat better expressed. The top panel of Fig. 4, on the other hand,
shows significantly different results than arepresented in the toppanel
of Fig. 3 in that there is no resonant dependence of S on gsyn

irrespective of D. In particular, as the coupling strength increases the
synchronization becomes better pronounced (S decreases) during the
whole span of D or noise becomes unable to induce excitations (note
that for D=1.04 mV/ms and D=2.08 mV/ms curves don't extend to
gsyn=10.0 nS). However, since the linear coupling is active the whole
time, not just during the spiking phase as by the nonlinear coupling via
chemical synapses, the maximal level of spatial synchrony is higher in
this case. Note that phase slips may occur also during the quiescent
phase of neuronal dynamics, and the nonlinear coupling therefore has
a disadvantage in terms of warranting spatially synchronous noise-
induced excitatory fronts if compared to the linear diffusive coupling
via gap junctions. Aside from these quantitative differences, the most
significant qualitative difference is that by linear coupling the resonant
response of S on gsyn is absent, while by nonlinear coupling it
constitutes the most significant fine-tuning leading to the optimal
spatial synchrony of neuronal excitations on scale-free networks.

4. Summary

In sum, we reveal inherent differences in spatial synchronization of
noise-induced neuronal activity on scale-free networks that are
brought about by different coupling schemes. While nonlinear
coupling via chemical synapses requires a twofold optimization for
warranting maximal spatial synchrony, the traditional linear coupling
via gap junctions demands only the intensity of additive noise to be
fine-tuned. Furthermore, while the nonlinear coupling enables the
observation of the locally optimal response by small coupling
strengths, the linear coupling constitutes, by a given coupling strength
and noise intensity, a substantially better environment for spatially
synchronous excitatory fronts. Both coupling schemes, however, fail to
enable noise-induced enhancement of spatial synchronization by high
coupling strengths, which is arguably due to the inherent diversity of
the scale-free structure that on its own constitutes an optimal
environment by strong enough inter-neuronal interactions. The
study thus supplements nicely recent findings on synchronization
and noise-induced coherence [47–52], and also confirms that chemical
synapses deserve separate treatment, as recently argued in [40]. In
future studies, it remains of interest to investigatemore thoroughly the
impact of the average degree of scale-free networks on the phenom-
enon of synchronization via different types of coupling. Interestingly,
Acebrón et al. [53] have shown that the amplification of weak signals
on scale-free networks, which arguably plays a crucial role also in
warranting synchronization through neuron-to-neuron communica-
tion, depends significantly on the average degree and the coupling
strength, yet vanishes by all-to-all coupling. It is thus reasonable to
assume that quantitatively different behaviors may be observed as the
average degree of scale-free networks will increase, but significant
qualitative changes will set in only when the scale-free topology is
overruled byall-to-all coupling. Furthermore, itmayalso be instructive
to examine the impact of diversity of constitutive units of scale-free
networks, which for example has recently been found beneficial for
intercellular calciumwave propagation [54].We hope thisworkwill be
useful for further unveiling the importance of information transmis-
sion through chemical synapses on complex networks.
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