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Calcium signaling controls several essential physiological functions in different cell types. Hence, it is not
surprising that different aspects of Ca>" dynamics are in the focus of in-depth and extensive investigations.
Efforts concentrate on the development of proper theoretical models that would provide a unified description
of Ca®™ signaling. Remarkably, experimentally recorded Ca?* signals exhibit a rather large diversity, which can
be observed irrespective of the cell type, measuring techniques, or the nature of the signal. Our goal in the
present study therefore is to present a theoretical explanation for the variability observed in experiments,
whereby we focus on caffeine-induced Ca®* responses in isolated airway myocytes. By employing a stochastic
model, we first test whether the observed variability can be attributed to intrinsic fluctuations that are a
common feature of biochemical reactions that govern Ca?* signalization. We find that stochastic effects, within
ranges that correspond to actual conditions in the cell, are far too modest to explain the large diversity
observed in experimental data. Foremost, we reveal that only cell variability in theoretical modeling can
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appropriately describe the observed diversity in single-cell responses.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical modeling is a well-established method when
studying complex biological systems. The method is useful and the
predictive power of theoretical models is in many cases indispensable
for catalyzing further experimental studies [1,2]. Modeling of Ca?™
signaling, as other cellular processes, consists in the mathematical
description of the functional properties of the components of the
cellular system, and the analysis of the predictions of the model about
the behavior of the cell system. Validation of the model basically
consists in the comparison of the predicted output of the model
system with the experimental data. Though some scientific literature
has been devoted to cellular diversity in several cell types [3-7],
the experimental data that are typically considered are the mean
values calculated from several recordings, with no or little interest in
interindividual variability. Nevertheless, biological systems are under
permanent influences of several internal and external protuberances
and the variability in biological systems has to be taken into account.
Interindividual variability is actually, as well as the central tendency
usually estimated by the mean value, a physiological property,
which can be quantified by the standard deviation. As a consequence,
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a realistic model should account not only for the mean tendency but
also for the individual dispersion.

Additionally, one of the limitations of the theoretical modeling is
the lack of precise experimental data for the parameters that describe
the components of the system, so that they may be chosen in a given
range. Hence, the biological relevance of the values chosen for the
parameters should also be addressed. The problem is the fact that the
correspondence between the model predictions and the experimental
data may critically depend on the parameter values incorporated
in the model. In that sense, in some cases, mathematical models
are considered as “hypersensitive” to changes in model parameters.
The general idea is that the cell, as a biological system, exhibits a
relative robustness, i.e., its behavior is not deeply affected by
small changes in biological parameters. If not, the biological system,
which is always under permanent influences of several internal and
external perturbances, would be unable to maintain its functional
integrity. It is hence admitted that, to be realistic, the model should
reflect this biological robustness and hence exhibits itself a relative
robustness.

Usually, the robustness of the system is evaluated by the sensitivity
analysis, which is a means to acquire insight about the importance of
model parameters. Perhaps the most famous example is the metabolic
control analysis, which represents in general a systematic method for
analyzing the control of steady states. It quantifies the extent to which
any parameter, but more notably all molecular processes, controls
any steady-state variable within a metabolic pathway [8,9]. Methods,
developed in the framework of metabolic control analysis have
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afterward been successfully applied to the control analysis of various
phenomena in biological systems, including non-steady states and
oscillations [10-15]. However, in the modeling of signaling processes,
it is difficult to objectify a correspondence between the effect of
such arbitrary changes and experimental biological measurements.

The cellular dynamics results from a huge body of biochemical
reactions, which are all subjects to thermal noise, and belongs in
reality to non-deterministic processes, which require special treat-
ments [16-18]. In the last decade a lot of stochastic models have been
developed for describing and studying different cellular processes. In
the modeling of gene expression and circadian rhythms, for example,
where the number of reacting particles in the cell is very low (only
few hundred in some cases), the implementation of stochastic
algorithms has been emphasized and realized by several authors
[19-23]. Furthermore, recent experimental and theoretical investiga-
tions indicate that Ca®™ signaling is clearly subjected to stochastic
dynamics as well [24-29]. Consequently, stochastic modeling of
intracellular Ca®* signaling pathways is gaining increasingly more
attention [30-36]. Recent findings indicate that the stochastic nature
of Ca®™ signaling arises from the stochastic behavior of ion channels in
the membranes. Local random opening and closing of these channels
introduces stochasticity into global Ca?* responses [28,37,38].
Moreover, it has been observed that the Ca®>* release channels are
spatially organized in clusters [39,40]. Such an organization can on
one hand enhance the sensitivity of the Ca®>™ signaling pathway in
the presence of internal fluctuations by weak stimulation levels
(coherence resonance) [31,41], and on the other hand it can explain
the intrinsic irregularity of Ca®" oscillations by supra-threshold
agonist concentrations observed in experiments [27,42].

Nevertheless, it is difficult to surely identify and to characterize
perturbances to which biological systems are submitted. However, we
have an objective measurement of their impact, since it is reasonable
to consider that the observed cell-to-cell variability is the conse-
quence of these changes. Hence, the cell-to-cell variability is a critical
biological parameter that should be taken into account in the
modeling of the functional properties of the components of the
system and in the sensitivity analysis of the cellular system.

The aim of this study is to elucidate a rather large cell-to-cell
variability in calcium responses as observed experimentally. First,
we determine whether cell-to-cell variability can be explained by
non-deterministic molecular processes. For that purpose, we have
developed a stochastic version of a model of Ca®* signaling we have
already published [43], and we compare the individual cell response
pattern and interindividual cell response dispersion predicted by the
stochastic model with original Ca?" response traces and observed
cell-to-cell variability.

Second, we propose a “reverse” sensitivity analysis. In contrast to
the well-known sensitivity analysis, where the model's behavior is
studied in the context of variations in model parameters, we scrutinize
the inversed problem. In particular, since the scattering of the output
calcium signals is known from experiments, we determinate the range
within a given parameter should vary, so that the subsequent
variations in the predicted output correspond to the observed cell-
to-cell variability of experimental recordings. In addition, we propose
an extended version of such reverse sensitivity analysis, where all
parameters are varied simultaneously and thus the overall dispersion
of parameters is evaluated. In this way the actual variability of model
parameters is estimated, at which theoretical predictions concur with
experimental observations.

This study is based on the calcium response to caffeine stimulation
in airway myocytes, a biological cellular system for which we have
both a theoretical model that includes the major components
involved in Ca?* homeodynamics, and a large set of experimental
measurements. The conclusions are extended to the general question
of cellular Ca?* signaling, on the basis of bibliographical data on the
Ca®* response to various agonists in different cell types.

2. Materials and methods
2.1. Experimental

2.1.1. Cell preparation and fluorescence measurement of [Ca®™];

Measurements of the concentration of calcium ions ([Ca%™];) in
freshly isolated cells were performed as previously described [43].
Here summarizing briefly, rat tracheae were obtained from male
Wistar rats 10-15 weeks old, weighing 300-400 g. Animals were
sacrificed by CO, exposure, heart and lungs were removed en
bloc, and the trachea was rapidly dissected out. The muscular strip
located on the dorsal face of the trachea was further dissected,
the epithelium-free muscular strip was cut into several pieces and
the tissue was then incubated overnight (14 h) in low-Ca%?™
(200 uM) physiological saline solution (PSS; composition given
below) containing 0.5 mg ml~! collagenase, 0.35 mg ml™! pronase,
0.03 mg ml~! elastase and 3 mg ml~' bovine serum albumin at 4 °C.
After this time, the muscle pieces were triturated in a fresh enzyme-
free solution with a fire polished Pasteur pipette to release cells.
Cells were stored for 1 to 3 h to attach on glass coverslips at 4 °C in
PSS containing 0.8 mM Ca?™ and used on the same day. In control
experiments, immunocytochemistry was performed using mono-
clonal mouse anti-smooth muscle «-actin antibodies and FITC-
conjugated anti-mouse IgG antibodies to verify that the isolated
cells obtained by dissociation were smooth muscle cells (data
not shown). Cells were loaded with indo-1 by incubation in PSS
containing 1uM indo-1 acetoxymethylester for 25 min at room
temperature and then washed in PSS for 25 min. Coverslips were
then mounted in a perfusion chamber and continuously superfused
at room temperature. A single cell was illuminated at 360 + 10 nm.
Emitted light from that cell was counted simultaneously at 405 nm
and 480 nm by two photomultipliers (P100, Nikon). [Ca®™]; was
estimated from the 405/480 ratio using a calibration for indo-1
determined within the cells. Caffeine (5 mM) was applied to the
tested cell by a pressure ejection from a glass pipette located close to
the cell. No changes in [Ca®* ]; were observed during test ejections of
PSS (data not shown). Each record of [Ca®*]; response to caffeine
was obtained from a different cell. Cytosolic calcium concentrations
([Ca?*];) are expressed as mean = SD, for the number of cells indi-
cated in the text.

2.1.2. Solutions, chemicals and drugs

PSS contained (in mM): 130 NaCl, 5.6 KCl, 1 MgCl,, 2 CaCly, 11
glucose, 10 Hepes, pH 7.4 with NaOH. Collagenase (type CLS1) was
from Worthington Biochemical Corp. (Freehold, NJ, USA). Bovine
serum albumin, elastase, pronase and caffeine (CAF) were purchased
from Sigma (Saint Quentin Fallavier, France). Indo-1 AM was from
Calbiochem (France Biochem, Meudon, France). Indo-1 AM was
dissolved in dimethyl sulphoxide in which the maximal concentration
used in our experiments was <0.1% and had no effect on the resting
value of the [Ca®"]; nor on the variation of the [Ca®™]; induced by
caffeine (data not shown).

2.1.3. Bibliographical data

Data obtained from the literature were taken from publications
selected via Pubmed database. To be selected, the articles should
give original data on intracellular Ca®>™ concentration at rest and
upon stimulation that triggers [Ca®™]; increase. Data should be
presented as mean =+ standard deviation (SD) and/or standard error
of the mean (SE), with the number of measurements. Usually, SD is
not given in the publications. In this case, it has been recalculated
from SE and the sample size (n) using the formula SD = SE x /n. SD
was calculated as the absolute value, and as percent of the mean
value.
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3. Computational
3.1. Deterministic model

We employ the mathematical model for calcium dynamics upon
airway smooth muscle cell stimulation by caffeine that has been
proposed by Roux and Marhl [43]. The model considers Ca™
exchange between cytosol (Ca;) and intracellular calcium stores
(the sarcoplasmic reticulum (Casg), mitochondria (Cay,) and signaling
(SPr) and buffering (BPr) proteins). Here, the model equations are
presented only briefly. For a more detailed presentation see the
original paper [43]. The free Ca®>" concentrations in the cytoplasmic
space, in the SR, and in the mitochondria are calculated by the
following differential equations:

dCai _ 1

dt 1+ KepSPry; / (Kpr + Cay)?
X (.]RyR_JSERCA +.]leak +.]0ut_1in + koffcaBpr_koncainr)v

(1)
dCa.
TSR = % (.’SERCA_]RyR_]Ieak)v (2)
dCay, _ Bm,; _
= Un o) 3)
where the fluxes are defined as follows:
Caff2
Jrvk = Kjyg 55— CICRMg(Cagg —Cq;), (4)
RyR RyR Kgaff + Caffz SR 1
CICRMg = Cay ,
(Cai + Kaca {1 + Mgi/KA.MgD (1 +Ca /Ky + Mgi/KI,Mg)
(5)
ca?
Jserca = Ksgrea 57— (6)
K3erea + Ca?
Jieak = Kieax(Casg —Cay), (7)
cat
Jn = kinmv (8)
Jout = KoutCap,. 9)

The concentrations of free and occupied signaling (SPr and CaSPr)
and buffering (BPr and CaBPr) binding sites of proteins are calculated
by the following equations, whereby the conservation relations for the
total signaling (SPr) and buffering (BPr,) protein binding sites and
the total Ca?* concentration (Cac,) in the cell are considered:

— KSPrSPrtot
P = K + Car” (10)
CaSPr = SPr,—SPr, 11
CaBPr = Cay—Ca,— PSR Cagy— Pm ca_ —caspr, 12)
BSR Bm
BPr = BPr,,,—CaBPr. (13)

Cell stimulation with caffeine was simulated by raising the model
parameter Caff to 5 mM between t=10s and t =40 s. The parameter
values used in our calculations are: psg =0.01; p, = 0.01; Bsg = 0.0025;
Bm=0.0025; Cagot=50puM; SPriot =90 uM; BPri =120 uM;

Mg; =500 pM; kgyr=20005""; ksgrea=1HPM s kieaxr=0.0257;
kin=20 1M s~} kour=0.15""; kon=0.1pM s~ "; kor=0.015"";
Kear= 250 tM; Kaca=2.5 tM; Kamg =75 tM; Kica =400 pM; Kjpz=
300 llM, KSERCA: 0.1 ],IM, Km =1 ],IM, KSPI‘: 5 uM

3.2. Stochastic model

Traditionally, reaction systems can be stochastically described as a
birth-death process governed by the master equation. Because there
is no practical procedure to solve this equation, many simulation
algorithms have been developed and one of the widely used is the
Monte Carlo simulation proposed by Gillespie [44,45]. Originally, the
method has been intended for stochastic solving of chemical reaction
schemes. However, as proposed by Gracheva et al. [30], a stochastic
simulation can be performed on the basis of differential model
equations, so that the decomposition of a known deterministic
mechanism into detailed reaction steps is unnecessary. In this case,
reaction rates are ascribed to fluxes, which constitute the partial
differential equation.

All reaction rates are specified in Table 1, along with the
corresponding stochastic processes. At each iteration step one of the
events with a probability proportional to the transition rate g; is
randomly chosen. Accordingly, the j-th event is selected according to
the following criteria:

j—1

Ak ]
Z—<r1$ >

I
k=10g k=1 do

G (14)

where ap = >_M_ a, is the sum of the M=12 g; values and ry is a
uniformly distributed random number from the unit-interval. Along
with that, the stochastic time increment is calculated:

At= Lin (l> (15)

where 5 is a random number statistically equivalent to ry. So, after
each iteration a discrete change of concentration proportional toe< 1/V
is performed in accordance with the chosen event j, as described
in Table 1. The discrete change in the Ca®* concentration refers to the
change in the number of calcium ions. Importantly, V is the volume
of the cytosolic space, which directly determinates the intensity of
internal noise, since stochasticity is most noticeable for small system
sizes and vanishes in the thermodynamic limit (V— ).

In addition, we further evolve our stochastic model by taking into
account clustering of RyR receptors on the sarcoplasmic reticulum.

Table 1

Reaction rates and stochastic processes. Reaction rates a; and the corresponding
stochastic processes entailed in the stochastic model. The meaning of symbols is as
follows: N is the Avogadro's number, psg and py, are the volume ratios between the
SR and the cytosol and between the mitochondria and the cytosol, respectively, and
Beye (Cai)= (1 + Ksp:SPreor/ [Kspr + Cai]*) ~". Note that nc=1 if the clustering of the
ryanodine receptors is not considered.

Transition rate

ar = T Beye(Cai)ryr
a2 = NAVBcyt(Cai)ieak
az= NAVcht(Cai)]SERCA
as= NAVcht(Cai)jout
a5 = NAVBcyt(Cai)fin
(
(

Transition process

Caj— Caj+nc/NaV
Caj— Caj+1/NaV
Caj— Caj— 1/NpaV
Caj— Caj+ 1/NpaV

Caj— Caj—1/NaV

Caj— Caj+ 1/NpaV
Caj— Caj—1/NaV

Casg — Casg—1c/ pseNaV
Cagg— Casg—1/psrNaV

a = NaVPeyt(Caj)kofr CaBPT
a7 = NaVPBeyt(Caj)konCaiBPr
ag = %BSR Jryr
09 = NAVPBsr Jieak

@10 = NaVPBsr Jserca Casg— Casg +1/psrNaV
a11=NaVBm Jout Cap— Cam=-1/pmNaV
a12=NAVBm Jin Cap— Cam + 1/pmNaV
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Previous studies about functioning of InsP3 or RyR receptors in
different cell types have revealed, that those receptors are clustered
into functional Ca®™ release units [39,40,46]. Similar as performed by
Dupont et al. [27,42], a cluster with n¢ receptors is modeled as 1 large
channel with a nc times larger conductance as an isolated receptor,
whereby it is assumed that the dynamics of RyR receptors inside
one cluster is completely synchronized, since the Ca?™ concentration
around the cluster is supposed to be the same. For that reason,
all receptors in a cluster will open simultaneously. Accordingly, the
discrete change of the Ca®>™ concentration that goes along with this
event will be nc times larger, as it is specified in Table 1 and thus the
Ca®™" release through RyR channels is subjected to a greater extent
of intrinsic fluctuations as nc is increased.

3.3. Reverse sensitivity analysis and modeling of cell-to-cell variability

Sensitivity analysis is generally used to determinate the sensitivity
of a mathematical model to changes in model parameters. Informa-
tion gathered by studying how the model behavior responds to
variations of parameters is a useful tool in model building as well as
in model evaluation. Usually, the changes in the output variables
provoked by parameter shift are quantified via response coefficients
R, which are defined by the following equation (e.g. [8]):

b= s =B, (16
Oopi/pi  Adp;
where p; is a given parameter and A is a dependant variable, like for
example in our case peak or plateau value. Furthermore, in some
cases a simplified version of the sensitivity analysis is used for the
evaluation of the robustness of the system. Here, parameters are
varied from 10% of the value of each parameter and the corresponding
changes in the predicted output values are then quantified.
However, in our study, we consider an inverted situation. In
particular, on the basis of a known distribution of the output variables,
i.e. peak and plateau values, which are determined in experimental
recordings, we wish to find out, what are the required variations of
individual parameters that provoke the dispersion in the same extent.
For this purpose, we make use of a different procedure, which we
call a single reverse sensitivity analysis. In particular, we employ the
deterministic model for our calculations, whereby the parameter
being varied is considered to be randomly distributed according to
the Gaussian distribution, whereby a cut-off at two times its standard
deviation is employed to avoid using unreasonably small or large
values. As a consequence, the predicted values for the output variables,
peak and plateau Ca®™ concentrations, vary. For each parameter i, we
determine the SD; of the Gaussian distribution of this parameter that
induces the distribution of the predicted peak and plateau values
which SD is equal to the experimental SD. So, values of the individual
parameters p; are calculated as follows:

bi = pi(] + %SDi,peakgi>7 (17)

pi = Pi(1 + %D preat ). (18)

where §; is a random Gaussian number (cut-off at two times its
standard deviation as previously explained) with zero mean and unit
variance and %SD;peak and %SD;piateau represent the SD reverse
sensitivity coefficients, which signify the required SD of individual
parameters that provoke a distribution of the predicted peak and
plateau values with a SD that is equal to the SD obtained in experiment,
expressed as the percent of the mean value.

In the second procedure, which we call an overall reverse
sensitivity analysis, we vary all parameters simultaneously. In this

case the cell-to-cell variability is modeled by distributing the model
parameters according to the Gaussian distribution:

pi = pi(1 + X)), (19)

where X signifies the SD of the Gaussian distribution of all parameters
and § is a random Gaussian number with zero mean and unit
variance. Obviously, as X is increased, the dispersion of the predicted
values for the Ca®" output variables will increase too. In this manner
we are able to examine the average SD off all parameters, which
corresponds to the same dispersion of the output variables, as
observed in experiment.

4. Experimental results
4.1. Experiments

Fig. 1A shows the effect of caffeine stimulation (5 mM; 30 s) on the
free cytosolic calcium concentration. Calcium responses to caffeine are
non-oscillatory. The initial peak is followed by a plateau level.
Descriptive statistical analysis of the dispersion of the experimental
data reveals that the spike amplitudes as well as the plateau levels
largely differ between cells. Distribution of experimentally obtained
values for the peak and plateau are presented in Fig. 1B and C. Mean
values and standard deviation of the peak values for 30 cells was
0.69 uM and 0.28 pM, respectively, which corresponds to 41% of SD
normalized to mean value (%SDpeac = 41%). For the plateau, mean and
SD values were 0.047 pM and 0.20 M (%SDypjatean = 43%), respective-
ly. Tests of normality indicate that the distribution of both peak and
plateau values can be considered as Gaussian.

4.2. Bibliographical data

In order to make our conclusions more general, we compare the
dispersion of experimental data in this paper, being around 40%, with
other results selected from the literature. The aim of this selection was
not to be exhaustive, but to present values obtained by different
research groups, with different techniques of [Ca®™[; estimation, in
response to different agonists, in different cell types from different
taxons. Table with gathered data is available in the supplementary
material. In particular, Table S1 compiles the mean values, standard
error of the mean (SE) and the SD of different parameters of the Ca®™
homeodynamics at rest and upon stimulation measured on single
cells in a variety of cell types and organisms, both animal and vegetal:
baseline [Ca®"];, amplitude of [Ca®"]; rise upon stimulation (e. g. peak
and plateau), and oscillation frequency or duration. In the compiled
data, %SD ranges from 15% to 183%, the median being 48%. This
variability is observed whatever the agonist, in different cell types,
either muscle or non-muscle cells, obtained from distinct organs
and organisms, including cells from animals and plants. The variability
is observed with distinct fluorescent dyes, since several ones, e. g.,
indo-1, fura 2, have been used in the listed studies and, moreover,
it was also seen when the Ca?" signal was not analyzed by a
fluorescent dye, but via the electrophysiological measurement of
the Ca®*-induced CI~ current. It is observed both in isolated cells
and cells in situ (on lung slides).

5. Computational results
5.1. Role of stochastic effects

To investigate the influences of stochastic effects on the dynamics
of calcium responses to caffeine, we use a stochastic version of
the model originally proposed as a deterministic model [43]. The
stochastic simulation is implemented according to Gillespie [44,45]
(see Materials and methods).
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Fig. 1. Experimental measurements of Ca>* responses to caffeine. (A) Typical traces of caffeine-induced Ca?*-responses in isolated airway smooth muscle cells. (B) Histogram of
experimental measured peak values for 30 cells; mean peak value 0.69 uM, SD = 0.28 uM. (C) Histogram of experimental measured plateau values for 30 cells; mean plateau value

0.047 uM, SD = 0.020 M.

First, we have to evaluate the volume of the cytosolic space which
appears in the stochastic model and is directly related to the intensity
of the internal noise. As they were used in our experiments, isolated
myocytes exhibit an ellipsoid shape around 30-40 pm long and
8-10 um wide, which hence corresponds to an estimated cell volume
of around 1000-2000um>. Considering one third being the cytosolic
volume, hence in our calculations we take V=500 um?>. Fig. 2A
shows a typical predicted trace of the stochastic solution. Clearly, the
solution looks practically deterministic with only minute markers of
stochasticity. To determine if the non-deterministic effects due to
finite system sizes can explain the experimentally observed distri-
bution of the peak and plateau levels as presented in Fig. 1B and C,
we systematically scrutinize the influence of the system size
variation on the dispersion of the values predicted by the stochastic
model. Fig. 2B shows the standard deviation of peak values obtained
for different cellular volumes ranging from 0.1 to 10,000um>. The
model predictions would approach the experimentally observed
standard deviation of the peak value only for volumes less than
1um?® (see the dashed line in Fig. 2B), much smaller than the genuine
volume of the cytosolic space.

We proceed by analyzing the role of clustering of ryanodine
receptors. Chen-Izu et al. [46] have studied the distribution of
ryanodine receptor clusters in cardiac myocytes. They suggested
that the number of receptors in one cluster is ~100. We suppose that a
comparable distribution can be considered for airway myocytes, and
show in Fig. 2C a typical predicted trace of the stochastic solution for
V=500 um3 and nc=100. We can observe that in this case stochastic
effects are clearly more expressive. In order to determine the in-
fluence of channel clustering more quantitatively, we show in Fig. 2D
the standard deviation of the peak values obtained for different
numbers of receptors in one cluster. It can be inferred that for
physiologically relevant values of nc the distribution of peak values
can not exceed 10%.

At this point it should be emphasized, that Ca?>* signalization is in
general a spatio-temporal process. Several recent studies [27,28,32,38]
indicate that Ca®* liberation occurs at discrete functional release sites
in the ER membrane, where small localized Ca?" release events are
taking place. A coordination of these events via Ca>* diffusion can lead
to global Ca®" oscillations. In view of that, a global Ca®>™ signal can
indeed be triggered by biochemical reactions, in which very few
molecules are involved, much less than the number of molecules in
the system [28,38]. Accordingly, the extent of stochasticity in the
output signal can be quite substantial, which is especially perceivable
at lower, particularly subthreshold stimulation levels [27,28]. There-
fore, by neglecting the spatial dimension of the cell as well as the
diffusional interactions between individual channels, one can indeed
underestimate the level of fluctuations in the system. However, our
experimental conditions consist of overall cell stimulation via caffeine.
As shown in our previous paper (Ref. [43]) using the quenching
properties of caffeine, this non-physiological agonist reaches the
maximal intracellular concentration in less than 1 s so that the RyR
receptors are activated quickly after the application of caffeine.
Therefore, diffusional coupling between RyR channel clusters is by-
passed and thus does not give rise to the level of fluctuations in our
system.

Hence, it appears that the stochastic modeling cannot explain the
distribution of the peak and plateau values, and that the gist for
experimentally observed variations lies somewhere else. Therefore, in
the following, we use the deterministic model with variable model
parameters to simulate cell-to-cell variability.

5.2. Role of cell-to-cell variability
We examined the impact of cell-to-cell variability on calcium

dynamics in airway smooth muscle cells using two procedures,
(i) single reverse sensitivity analysis, in which we vary only a single
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(one-by-one) parameter at the same time, and (ii) overall reverse
sensitivity analysis, allowing simultaneous variations of all parameters
(see Materials and methods).

Add (i): to carry out the single reverse sensitivity analysis, a
Gaussian distribution of the tested parameter was considered, and
we determined the SD inverse sensitivity coefficients %SD; peak and
%SD; plateau, Which denote the SD of the parameter values required
to obtain an SD of predicted peak and plateau values similar to the
experimentally observed one [see Eqs. (17) and (18)], i.e. 41% and
43% for the peak and the plateau, respectively (see Experimental
results).

Results showing values of %SDjpeax (grey bars) and %SD;piateau
(black bars) are presented in Fig. 3. Apparently, only six model
parameters have a large enough impact, which enables them to
provoke a dispersion of peak and plateau values, in the same extent as
observed in the experiment. According to these results, the system
seems to be highly robust with very few parameters significantly
influencing the system and no hypersensitive parameters. The most
sensitive parameters have values around 45% and 25% for peak and
plateau, respectively. The plateau appears to be more sensitive than
the peak to parameter variation. The parameters to which the plateau
is especially sensitive are the total Ca®?™ concentration (Cay), the
total concentration of buffering proteins (BPry) (slow Ca®>*-binding
proteins), and the on and off rate constants of Ca>* binding to these
proteins (kon, kogr). The peak is less sensitive to parameter variations.
As for the plateau, it is remarkably sensitive to Caor and BPryq, but also
to the concentration of signaling protein (SPry) (fast Ca®>*-binding
protein) and its dissociation constant (Ksp,). Furthermore, in contrast
to the peak, the plateau value is not considerably sensitive to SPryo
and Ksp; (red arrows in Fig. 3 indicate, that even a 75% variation
of those parameters can not cause a 43% SD of the plateau values),

whereas the peak is not significantly sensitive to variations in k,, and
kogr (red arrows in Fig. 3).

Add (ii): the principle of the overall reverse sensitivity analysis
is to determine what should be the range of distribution of all
parameters that would induce a variation in the output variables
corresponding to the observed cell-to-cell variability. According to
Eq. (19), all model parameters are simultaneously varied in ranges
which are determined by X. Results are presented in Fig. 4A. The
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Fig. 3. The determination of the required variations of individual model parameters that
cause the same dispersion Ca®>" responses as observed in experimental recordings.
Values of %SD; peax (light grey columns) and %SD; piateau (grey columns). Red arrows
indicate that the required SD; of those parameters would exceed 75%.
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Fig. 4. Modeling of the cell-to-cell variability. (A) %SDpear (black line) and %SDpjateau
(grey line) in dependence on the degree of variation X of all parameters. (B) The same
relation, whereby only the crucial 6 parameters determined in Fig. 3 were varied. In
both panels, dotted lines denote experimentally observed standard deviations.

dotted lines indicate that for X~0.21 the theoretical predictions
best match the experimentally observed standard deviations of
peak values (%SDpeac =41%), whereas for X~ 0.13 the results are in
agreement with the SD of plateau values (%SDpjateau = 43%). Compared
with the single reverse sensitivity analysis, one can observe, although
somehow expected, that quite smaller simultaneous variations of
model parameters lead to as considerable variations in the output
variables as observed in experimental recordings.

In order to realize the relative importance of the crucial parameters,
which were identified in Fig. 3, we additionally perform the overall
sensitivity analysis, whereby only the crucial six parameters instead of
all the parameters are simultaneously varied, as given by Eq. (19).
Results, which are presented in Fig. 4B clearly indicate, that in this case
not much larger variations of those parameters are required to achieve
the same dispersion of the output variables. Especially for the plateau,
this difference is almost negligible (X~0.15), whereas for the peak
the difference is somewhat larger (X~0.27), but still not essential.
According to these results we can conclude, that only a smaller subset
of parameters is considerably involved into the formation of the
calcium signal patterns. Furthermore, all those crucial parameters
represent some intrinsic characteristics of the whole system and are
not restricted to properties of its components and they also do not
depend on the type of stimulation.

6. Discussion

Experimental study of caffeine-induced calcium responses in
isolated airway myocytes, which are characterized by a transient
peak followed by a progressive decay to a plateau phase, have shown
rather large disperses in peak and plateau values. This may be
surprising, if we consider the Ca>™ response as an encoding signal. The

meaning and consequence of the high variation of encoding signal on
decoding processes and final physiological response is beyond the
scope of this study. But it should be first noticed that such variability
is not specific to this study. SD values in the same range have been
observed in our previous studies on the same cell type, either with
caffeine [43,47], ACh [48,49], extracellular ATP [50] or high external
KCl[51]. Comparisons of dispersion of experimental data in this paper
with the compiled data selected from the literature makes this
observation more general. Though we cannot exclude in absolute that
it is an artifact due to experimental manipulations, this variability
is not created by the use of a specific fluorescent dye. It is neither due
to the process of cell isolation. Finally, this variability is observed
whatever the agonist, in different cell types, either muscle or non-
muscle cells, obtained from distinct organs and organisms, including
cells from animals and plants. Hence, the interindividual variability in
the single cell Ca?* signaling analyzed in our study is not specific to its
experimental conditions and reflects the interindividual variation
generally observed. It appears then that the variability observed
and analyzed in the present study is only one example of a general
property of cells.

In order to provide a theoretical explanation for these observa-
tions, we have examined a mathematical model for calcium dynamics
upon airway smooth muscle cell stimulation by caffeine. We have
taken into account the intrinsic fluctuations, which are an unavoid-
able feature of all chemically reacting systems with relatively small
number of reacting molecules, by simulating the system with a
stochastic algorithm. For a volume corresponding to the estimated
cytosolic volume, we conclude that the stochastic effects are not
significantly enough. For smaller volumes, however, the stochastic
effects make the output signal much closer, also visually closer, to
those observed in the experiments. The Monte Carlo procedure used
in our study is based on the principle that the volume considered is
homogenous, which is not actually the case for a real cell. However,
even though we do not take into account the spatial dimension of
the cell, and with that the non-homogenous distribution of its
compartments, which can indeed give rise to the extent of
stochasticity, we do not substantially underestimate the level of
intrinsic fluctuations. Namely, as indicated in recent studies [28,38],
the main contribution to the stochasticity arises from diffusional
coupling of a few channels, where small localized Ca®™ release events
are occurring, which can lead to a global Ca?* signal. Since in our
experimental conditions whole-cell stimulation with quenching
agonist concentrations is performed, diffusional coupling between
channel clusters is by-passed. Nevertheless, we partially address this
issue, by taking into account ryanodine channel clustering, similar as
performed by Dupont et al. [27,42], whereat the cell is considered as a
homogenous object. Although the level of stochasticity in this case is
indeed increased, the stochastic effects are not strong enough to cause
differences in peak and plateau value in such an extent as this is
observed in the experiments. Stochastic events produce dispersion in
values similar to the observed one only for very small, i.e., unrealistic
volumes or unrealistic clustering of receptors. However, in both cases
the predicted trace exhibits calcium variations upon time much
greater than the observed one on entire cells. This does not mean that
cell-to-cell variability is not due to random processes, but, if so, they
are not directly reducible to intrinsic noise within the system, and
they are not correctly modeled by a stochastic model. Our findings
thus suggest that even if the deterministic limit is more or less
reached in a particular biological system, cell variability still remains
and is therefore very important to consider.

Since stochastic modeling could not account for the dispersion
of the observed calcium signal, we used the deterministic model
and introduce variation in parameter values to analyze its impact on
cell-to-cell variability. The fact that the change in parameter value
alters the output value is the base of sensitivity analysis. Its classical
procedure, consisting in varying in a given range of each parameter
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value, is usually difficult to link to any experimental measurement.
The interest of the reverse sensitivity analysis proposed and applied
in this paper is that it is based on the fact that cell-to-cell variability,
experimentally quantified by SD, is used as an experimental and
quantitative indicator for sensitivity analysis.

The procedure for reverse sensitivity analysis is based on the
idea that the parameter value vary from cell-to-cell according to a
distribution law. We have hypothesized that the distribution was
Gaussian, but the principle remains the same if another distribution
law is applied. The distribution-based single reverse sensitivity
analysis allows to identify the core of sensitivity of the model and
to give a quantitative estimate of what should be considered as
realistically robust. Indeed, the model should be considered as
hypersensitive if, applying reverse sensitivity analysis, the required
dispersion of some critical parameter is smaller than what should be
considered as realistic. Additionally, if experimental values were
available for the parameters (which was not the case in our
study), their actual distribution can be used in the reverse sensitivity
analysis, and the predicted dispersion compared to the experimental
one.

Single reverse sensitivity analysis, is based on one-by-one change
in parameter value. This is a relevant approach if each parameter can
be actually modulated independently, as it is the case in metabolic
control analysis, but not so relevant in the modeling of signaling
processes, even if it still provides some information about the
importance of particular parameters. The more relevant approach
should therefore consider the overall parameter variation, which was
in our study realized by randomly distributing all of the parameters.
Compared to the single one, overall reverse sensitivity analysis shows
that the system is more sensitive to parameter variations if these
parameters can vary simultaneously. Furthermore, by performing a
parallel calculation, where only the crucial parameters were varied
instead of the entire set, we reveal that the key parameters contribute
mostly to the observed cell-to-cell variability. Thus, rather small,
but simultaneous variations of the crucial parameters can cause
considerable variations in the output variables, whereas the majority
of parameters is not so essential in this point of view. We are aware
that in our calculations only an estimation for the realistic parameter
dispersion is acquired. But even if detailed information about the
dispersion of individual parameters can in this manner not be
achieved, it surely provides useful insights into cell robustness.

According to our study, the calcium signaling system of a single cell
appears to be quite robust; the pattern of the calcium signal seems to
be controlled by few parameters, all of them involved in general Ca®*
homeostasis, and not stimulation-specific: the total Ca>™ amount,
concentration and binding properties of the Ca?*-buffering proteins,
to the concentration of signaling proteins and to its dissociation
constant. Incidentally, most of them, like concentrations, are intrinsic
characteristics of the system itself, not reducible to properties of its
components. This might be of important physiological relevance
providing a highly effective, reliable, and costly reasonable control of
cellular signaling by spending the energy for fine tuning only a
reasonable small amount of parameters while the system is robust to
changes in the other parameters. It can be hypothesized that this
highly effective control of the system by having a small subset of
model parameters with small variation is probably evolutionarily
developed by reaching an optimum in the number of such parameters.
It is obvious that a biological system controlling all the parameters at
the same time would be complicated, difficult and costly inefficient,
whereas on the other hand, tuning only one parameter would be
too risky and also difficult to carry out.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.bpc.2010.02.006.
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