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a b s t r a c t 

A database of ten type 1 diabetes patients wearing a continuous glucose monitoring device has enabled to 

record their blood glucose continuous variations every minute all day long during fourteen consecutive 

days. These recordings represent, for each patient, a time series consisting of 1 value of glycaemia per 

minute during 24 h and 14 days, i.e., 20,160 data points. Thus, while using numerical methods, these 

time series have been anonymously analyzed. Nevertheless, because of the stochastic inputs induced by 

daily activities of any human being, it has not been possible to discriminate chaos from noise. So, we have 

decided to keep only the 14 nights of these ten patients. Then, the determination of the time delay and 

embedding dimension according to the delay coordinate embedding method has allowed us to estimate 

for each patient the correlation dimension and the maximal Lyapunov exponent. This has led us to show 

that type 1 diabetes could indeed be a chaotic phenomenon. Once this result has been confirmed by the 

determinism test, we have computed the Lyapunov time and found that the limit of predictability of this 

phenomenon is nearly equal to half the 90 min sleep-dream cycle. We hope that our results will prove 

to be useful to characterize and predict blood glucose variations. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Diabetes is a chronic disease which affects more than two hun-

dred millions of people in the world [37] . There are two main

types of diabetes: type 1 and type 2. In the case of type 1 diabetes,

the lack of insulin due to the destruction of insulin-producing beta

cells in the pancreas leads to diabetes mellitus in which insulin

is required for survival to prevent the development of ketoacido-

sis, coma and death. Type 2 diabetes is characterized by disorders

of insulin action and insulin secretion, including insulin resistance

[2] . This work only concerns type 1 diabetes. 

Insulin-dependent diabetes or type 1 diabetes is character-

ized by dramatic and recurrent variations in blood glucose lev-

els. The effects of such variations are irregular (erratic) and un-
∗ Corresponding author. 

E-mail addresses: ginoux@univ-tln.fr (J.-M. Ginoux), ruskeepa@utu.fi

(H. Ruskeepää), matjaz.perc@uni-mb.si (M. Perc). 

i  

p  

o  

F  

https://doi.org/10.1016/j.chaos.2018.03.033 

0960-0779/© 2018 Elsevier Ltd. All rights reserved. 
redictable hyperglycemias, sometimes involving ketoacidosis, and

ometimes serious hypoglycemias. Nowadays, the development of

ontinuous Glucose Monitoring (CGM) devices makes it possible

o record blood glucose every minute during two weeks providing

ndocrinologists thousands of data in the form of time series. This

as also led to prediction of continuous blood glucose variations

ased on computational methods such as support vector machine

17] . 

In the middle of the eighties, Wolf et al. [38] proposed an al-

orithm allowing the estimation of non-negative Lyapunov expo-

ents from an experimental time series. Thus, determination of

yapunov exponents enabled, on the one hand, to decide whether

he time series is chaotic or not and, on the other hand, to as-

ess the Lyapunov time corresponding to the limit of predictabil-

ty of the observed phenomenon. Since this algorithm was first

ublished in Fortran code, many other versions have been devel-

ped in various languages such as C and C ++ [25] . Recently, this

ortran code has been implemented in MatLab by Wolf, as well

https://doi.org/10.1016/j.chaos.2018.03.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2018.03.033&domain=pdf
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s in Mathematica by Ruskeepää, see http://library.wolfram.com/

nfocenter/MathSource/8775/ . This Mathematica software is used

n the present work. The software is shortly explained in Rus-

eepää [33] and is also used in http://demonstrations.wolfram.

om/ChaoticDataMaximalLyapunovExponent/ (2017). 

Long after the famous French mathematician, physicist and en-

ineer, Henri Poincaré had discovered “deterministic chaos” in his

eminal works concerning the motion of celestial bodies [29] ,

any scientists searched for traces of chaotic behavior in various

henomena. The signature of chaos is the very well-known prop-

rty of Sensitive Dependence upon Initial Conditions which makes

he observed phenomenon unpredictable in long term. In the be-

inning of the sixties, Edward Norton Lorenz was the very first to

dentify such a feature in meteorology [27] . More than ten years

ater, Sir Robert May demonstrated the existence of “complex dy-

amics” (chaos) in ecological models [28] . 

During the following decades, scientists highlighted chaotic be-

avior in human body. Indeed, according to Ives [19] “innumer-

ble, entwined (nonlinear) feedback loops regulate our internal

rocesses, keeping us within the narrow bounds needed for sur-

ival. Despite this regulation, our systems are aperiodic and unpre-

ictable in the long term.” Thus, a prime example of chaos was

ound in the brain [3] and then, in the beating of the heart [10,35] .

lthough type 1 diabetes is widely and intuitively considered by

ndocrinologists and clinicians as a chaotic phenomenon [7,15,26] ,

his has not yet been established by numerical methods, to our

nowledge. 

In this work, starting from a database of glucose from ten type

 diabetes patients and while using well-known numerical algo-

ithms with Mathematica, we give support to the conclusion that

ype 1 diabetes is a chaotic phenomenon and we provide the Lya-

unov time corresponding to the limit of predictability of this phe-

omenon. These results will prove to be very useful to characterize

nd predict blood glucose variations. 

This paper is organized as follows. In Section 2.1 , we briefly

resent the three main continuous glucose monitoring devices

nd detail the main features of the one used in this study. In

ection 2.2 , we recall the method of time delay reconstruction, also

eferred to as delay reconstruction and phase space reconstruction

29,36] , and the definitions of time delay and embedding dimen-

ion. To determine their proper values we use, respectively, average

utual information [13] and the method of false nearest neighbors

roposed by Kennel et al. [23] . We recall the method of correla-

ion exponent [16] to estimate the correlation dimension and the

ethod of local divergence rates [20] to estimate the maximal Lya-

unov exponent. 

In Section 3.1 , we present, in some detail, all the results for the

lucose data of patient 1. Then, in Section 3.2 , we briefly summa-

ize the results of all the ten patients. We also apply a direct test

or determinism in a time series [22] and the programs by Perc

30] to state that type 1 diabetes is likely a chaotic phenomenon. 

ection 4 summarizes the results of the article, e.g. , an estimate of

he Lyapunov time which is nearly equal to half the 90 min sleep-

ream cycle. 

. Materials and methods 

.1. Continuous glucose monitoring systems 

Continuous glucose monitoring devices began to be developed

n the eighties. However, they became available for practical use

nly twenty years ago with the miniaturization and development

f electronic sensors combined to growing storage capacities. These

ystems, which have been proven to reliably reflect glucose lev-

ls [4] , replace henceforth the classical finger prick blood glucose

eadings by monitoring interstitial fluid (ISF) glucose levels contin-
ously. Interstitial fluid is a thin layer of fluid that surrounds the

ells of the tissues below the skin [5,8,11] . That’s the reason why

here is a 5 to 10 min delay in interstitial fluid glucose response to

hanges in blood glucose. This result of great importance will need

o be compared to the Lyapunov time obtained in this study (see

ection 4 ). 

Today, the three main manufacturers which propose devices

ith continuous glucose monitoring reading are Abbott (Freestyle

avigator II), Medtronic (MiniMed coupled with Veo-pump), and

ovalab which offers the reader Dexcom G4 coupled to the insulin

ump Animas Vibe. Whatever the system, it is composed of two

arts. The glucose sensor which has a small, flexible tip that, in-

erted just under the skin, continuously measures the glucose con-

entration in the interstitial fluid and stores data during several

ays. The blood glucose reader is used to scan the sensor and dis-

lays the current glucose reading based on the most recently up-

ated glucose value during the latest hours of continuous glucose

ata. Some readers are also coupled to an external insulin pump

Paradigm VEOTM Medtronic or Animas VibeTM of Novalab). 

In this work, we have chosen to use the Abbott (Freestyle Navi-

ator II) system because the blood glucose reader records the blood

lucose variations continuously every minute all day long during

ourteen consecutive days. This represents, for each patient, one

alue of glycaemia per minute during 24 h and 14 days, i.e., 20,160

ata. Thus, ten type 1 diabetes patients have accepted to provide

s the recordings of their blood glucose during fourteen consecu-

ive days so that they could be anonymously analyzed. 

.2. Methods 

Following the works of Takens [36] , Sauer et al. [34] and Abar-

anel [1] , summarized in Kodba et al. [25] , we consider the recon-

truction of the attractor in an m -dimensional phase space starting

rom the time series { x 1 , . . . , x i , . . . , x T } of blood glucose variations

or each patient. Here x i denotes the glycaemia in i th minute. Ac-

ording to Takens [36] , the reconstructed attractor of the original

ystem is given by the vector sequence 

p ( i ) = 

(
x i −(m −1) τ , . . . , x i −2 τ , x i −τ , x i 

)
(1) 

here τ and m are the time delay and the embedding dimen-

ion, respectively. Takens’ famous theorem states that for a large

nough m , this procedure provides a one-to-one image of the orig-

nal system. It follows that the attractor constructed according to

q. (1) will have the same dimension and Lyapunov exponents as

he original system. To reconstruct the attractor successfully, perti-

ent values of τ and m have to be accurately determined. 

.2.1. Time delay 

Two criteria are to be taken into account for the estimation of

he time delay τ : 

- τ has to be large enough because the information we get from

measuring the value of x at time i + τ should be significantly

different from x at time i . 

- τ must not be larger than the time in which the system loses

memory of its initial state. This is important for chaotic sys-

tems, which are unpredictable and lose memory of the ini-

tial state. 

Fraser and Swinney [13] defined the mutual information be-

ween x i and x i + τ as a suitable quantity for determining τ . The

utual information between x i and x i + τ measures the quantity of

nformation according to the following expression 

 ( τ ) = 

∑ 

h 

∑ 

k 

P h,k ( τ ) log 2 
P h,k ( τ ) 

P h P k 
. (2) 

http://library.wolfram.com/infocenter/MathSource/8775/
http://demonstrations.wolfram.com/ChaoticDataMaximalLyapunovExponent/
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Here P h and P k denote the estimated probabilities that an observa-

tion supposes a value inside the h th bin and the k th bin, respec-

tively, and P h, k ( τ ) is the estimated probability that x i is in h th bin

and x i + τ is in k th bin. The optimal choice for the time delay is

given by the first minimum of I ( τ ), because x i + τ , then adds the

largest quantity of information to the information at x i . 

2.2.2. Embedding dimension 

The method of false nearest neighbors proposed by Kennel

et al. [23] is used to determine the embedding dimension m . This

method is based on the fact that points which are close in the re-

constructed embedding space have to stay sufficiently close also

during forward iteration. So the distance between two points of

the reconstructed attractor cannot grow further as a threshold R tr .

Nevertheless, if an i th point has a close neighbor that does not ful-

fil this criterion, then this i th point is marked as having a false

nearest neighbor. In order to calculate the false nearest neighbors,

the following algorithm is used: 

- For a point p ( i ) in the embedding space, we have to find a

neighbor p ( j ) for which || p(i ) − p( j) || < ε, where || . . . || is

the square norm and ε is a small constant usually not larger

than the standard deviation of data. 

- The normalized distance R i between the points p ( i ) and p ( j ) is

computed: 

R i = 

| x i + τ − x j+ τ | 
|| p(i ) − p( j) || (3)

- If R i is larger than the threshold R tr , then p ( i ) has a false near-

est neighbor. According to Abarbanel et al. [1] , R tr = 15 has

proven to be a good choice for most data sets. 

After having computed (with the algorithms quoted above) the

optimal time delay τ and the embedding dimension m , the attrac-

tor can be successfully reconstructed. 

2.2.3. Correlation dimension 

The correlation dimension is a generalization of the

usual integer-valued dimension. The method used is called

the method of correlation exponent. Suppose that we have

data x 1 , x 2 , . . . . Prepare the m -dimensional delay coordinates

p(t) = (x t−(m −1) τ , . . . , x t−2 τ , x t−τ , x t ) . Let N be the number of these

delayed points p ( t ). Define n ( r ) as the number of pairs ( p ( i ), p ( j )),

i < j , whose distance is smaller than r . Define then C ( r ) to be the

corresponding relative frequency: 

(r) = 

n (r) (
N 
2 

) . (4)

Thus, C ( r ), also called the correlation sum, represents the prob-

ability that a randomly chosen pair of points in the reconstructed

phase space will be less than a distance r apart. When N ap-

proaches infinity, C ( r ) is called the correlation integral. It is a mea-

sure of the spatial correlation between data points. 

It can be shown that when N is large and r small, C ( r ) behaves

approximately like a power function: C ( r ) ≈αr ν , that is, C ( r ) is pro-

portional to r ν . Here, ν is called the correlation exponent. Because

log C(r) ≈ log a + ν log r, we see that log C ( r ) behaves linearly as a

function of log r . Furthermore, ν is the slope of log C ( r ) versus log r .

To estimate the correlation dimension, we estimate ν for in-

creasing m . If the correlation exponent saturates with increasing m ,

the system is considered to be chaotic and the saturation value is

called the correlation dimension of the attractor. Thus, in estimat-

ing the correlation dimension, we look for an interval for r where

log C ( r ) versus log r behaves approximately linearly. Such an inter-

val is called a scaling region. If the slopes of the curves in the scal-

ing region are approximately constant for a range of values of m ,
his constant is an estimate of the correlation dimension. The sat-

ration of the correlation exponent for increasing m is a necessary

ondition for accepting an estimate as the correlation dimension

14] . For chaotic data, the correlation dimension gives a fractional

imension for the strange attractor [16] . 

Note that the presence of noise in the data makes the estima-

ion of the correlation dimension much more uncertain. Noise may

ncrease the estimate and may cause nonconvergence of the esti-

ate for increasing m [14] . Define the noise level to be the ratio

f the standard deviation of the noise to the standard deviation of

he noise-free data. A small noise level of 2% will typically make

he estimation of the correlation dimension impossible! Thus, non-

inear noise reduction is important to noisy data. 

For a stochastic system (in contrast to a chaotic system), the

orrelation exponent increases without bound when the embed-

ing dimension is increased. Thus, the correlation exponent can be

sed to distinguish between low-dimensional dynamics and ran-

omness. 

In the calculation of the correlation sum, we encounter one

roblem, namely dynamic correlation. To avoid the dynamic cor-

elation, only pairs of points whose time distance is large enough

re used. To this aim, Provenzale et al. [32] have proposed the use

f so-called space-time-separation plot. Once such time distance

as been evaluated, the correlation sums are computed and so, the

orrelation dimension can be estimated. 

.2.4. Determinism test 

In order to confirm that type 1 diabetes is a chaotic phe-

omenon we have used the determinism test proposed by Kaplan

t al. [22] . The determinism test is of great important because it

nables us to distinguish between deterministic chaos and irregu-

ar random behavior, which often resembles chaos. A program by

erc [30] enables to compute the determinism factor κ which is

ubstantially smaller than 1 for a system with a stochastic com-

onent while it is close to 1 for a system with a chaotic compo-

ent. In an experiment, Kodba et al. [25] could conclude, from the

etereminism test, that “the deterministic signature is still good

nough to be preserved, so that the chaotic appearance of the re-

onstructed attractor cannot be attributed to stochastic influences.”

.2.5. Maximal lyapunov exponent 

The maximal Lyapunov exponent is a characteristic of the dy-

amical system and quantifies the strength of chaos. Indeed, in

haotic systems nearby trajectories diverge exponentially fast. The

roperly averaged exponent of this divergence is called the max-

mal Lyapunov exponent. It describes the average rate at which

redictability of the system is lost. More than twenty years ago,

antz [20] presented the method of local divergence rates to calcu-

ate the maximal Lyapunov exponent (see also Kantz and Schreiber

21] ). This method estimates local divergence rates of nearby tra-

ectories. 

Let the data be x 1 , x 2 , . . . , x T . Choose a delay time τ and an

mbedding dimension m ≥ 2 and prepare the m -dimensional de-

ay coordinates p(t) = (x t−(m −1) τ , . . . , x t−2 τ , x t−τ , x t ) , t = 1 + (m −
) τ, . . . , T . Choose an ε > 0, to be used later to find points of the

ata in an ε-neighborhood. Choose an integer δ (typically, δ is

etween 0 and, say, 20). Choose a t from the set T δ = { 1 + (m −
) τ, . . . , T − δ} . Find all points p ( i ) that are in the ε-neighborhood

f p ( t ); let U t be the set of these indices i . Calculate, for all i ∈ U t ,
he distance between p ( t ) and p ( i ) after the relative time δ; this

istance is defined as 

ist ( p(t) , p(i ) ; δ) = | x t+ δ − x i + δ| . (5)

hus, the distance is the absolute value of the difference between

he scalars x t+ δ and x i + δ . Calculate then the logarithm of the mean

f these distances. 
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Fig. 1. Blood glucose variations during the 14 concatenated nights of patient 1. 

Fig. 2. Average mutual information I ( τ ) of patient 1. 

Fig. 3. Fraction of false nearest neighbors as function of the embedding dimension 

m of patient 1. 
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Do this for all t ∈ T δ, and then calculate the mean of the cal-

ulated values, that is, the T δ-mean of the logarithms of the U t -
eans of the distances. In this way, we get a value that we denote

 ( δ). A formula for S ( δ) is as follows: 

 ( δ) = mean 

t∈T δ

(
ln 

{ 

mean 

i ∈U t 
[ dist ( p(t) , p(i ) ; δ) ] 

} )
. (6) 

t is a measure of the local divergence rate of nearby trajectories. 

Repeat these calculations for various values of δ, such as δ =
 , . . . , 20 . In this way we get the values of S at discrete points. For

haotic dynamical systems, the S ( δ) function behaves as follows: 

- For small values of δ, S ( δ) may behave a little irregularly. 

- For intermediate values of δ, S ( δ) increases linearly. Such val-

ues of δ define a so-called scaling region. The slope of the

linear growth is an estimate of the maximal Lyapunov expo-

nent. A positive Lyapunov exponent is an indicator of chaotic

behavior. 

- For larger values of δ, S ( δ) tends towards a constant. 

In the following section we have used the programs mentioned

bove for the determination of the time delay τ , the embedding

imension m and of course for the estimation of the correlation di-

ension, the maximal Lyapunov exponent as well as the Lyapunov

ime, i.e. , the inverse of the maximal Lyapunov exponent. 

. Results 

We applied the method of reconstruction of the attractor in

n m -dimensional space phase (recalled in the previous section)

o the time series of blood glucose variations for each of our ten

atients. In the first place, we considered the whole time series

ncluding days and nights. Nevertheless, because of the stochastic

nputs induced by daily activities of any human being (work, eat,

alk, sport,...), it has not been possible to discriminate chaos from

oise. So, in the second place, we have decided to keep only the

ights of these ten patients starting from 10:00 p.m. to 08:00 a.m.

herefore, for each patient, we have one value of glycaemia per

inute during 10 h, i.e., 600 data. But, numerical analysis methods

mply the time series to have a sufficient length, typically compris-

ng several thousand points or more. Consequently, we have con-

atenated the 14 nights of each patient in order to obtain for each

f them nearly 8400 data. Then, we applied the programs devel-

ped by Ruskeepää and Perc to each of our ten patients. In the first

ubsection, we detail the procedure for patient 1. In Section 3.2 we

ill summarize the results for all the ten patients. 

.1. Patient 1 

.1.1. Blood glucose data 

For the 14 concatenated nights of this first patient, starting

rom 10:00 p.m. to 08:00 a.m., we have N = 8243 data (see Fig. 1 ).

.1.2. Time delay 

According to Section 2.2.1 , the optimal choice for the time de-

ay is given by the first minimum of the average mutual informa-

ion I ( τ ). For our data, there is no point of minimum (see Fig. 2 ).

o, in this case, we can consider the value of τ at which the first

ubstantial decrease of the average mutual information stops and

 slower decrease begins. Thus, we can choose for the time delay,

ay, the value τ = 5 . We could also have chosen as the time delay

nother value like 10, 15, or 20. Consequently, we will use these

our values of the time delay in the following to show that the re-

ults of our computations are invariant with respect to τ . 
i

.1.3. Embedding dimension 

According to Section 2.2.2 , we use the method of false nearest

eighbors to compute the embedding dimension. However, since

e consider four possible values of the time delay, we have plotted

n Fig. 3 the fraction of false nearest neighbors for τ = 5 , 10 , 15 , 20

s a function of the embedding dimension m (the lowest curve is

or τ = 5 and the highest curve for τ = 20 ). It appears that the

raction of false nearest neighbors does not drop to zero with any

alue of m (whatever the value of τ ) but with m = 5 the fraction

s almost zero. 
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Table 1 

Fraction of false nearest neigh- 

bors (fnn) as a function of the 

embedding dimension m . 

Fraction of fnn m τ

0.0019 5 5 

0.0027 5 10 

0.0066 5 15 

0.0034 5 20 
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Fig. 4. Space-time-separation plot of patient 1. 

Fig. 5. Values of correlation sums C ( r ) of patient 1. The scaling region is between 

the two vertical lines: from the fifth to the ninth value of r (that is, for r from 

somewhat below 3 to somewhat below 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Slope of linear fits of the correlation sums in the scaling region for patient 

1. The slopes saturate so that between the two vertical lines, that is, for m equal to 

5, 6, 7, and 8, the slopes are approximately a constant, 1.721. 
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These results are summarized in Table 1 . So, for patient 1 we

can choose the embedding dimension m = 5 . 

3.1.4. Correlation dimension 

According to Section 2.2.3 , we use the method of correlation

exponent. First, to avoid the dynamic correlation we use space-

time-separation plot proposed by Provenzale et al. [31] . The plot

on Fig. 4 indicates that if points are at least, say, 500 steps from

each other, they will no more have dynamic correlation. 

We calculate correlation sums by first using τ = 5 , m =
1 , . . . , 12 , minimum time distant 500, and space distances r = 10 d ,

where d ranges from 0 to 2.5 so that we have a total of 25 values

of d (see Fig. 5 ). 

It turns out that a scaling region is between the fifth and ninth

value of r : There (between the two vertical lines, that is, for r

from somewhat below 3 to somewhat below 7) the C ( r )-curves

in Fig. 5 behave approximately linearly and, as Fig. 6 shows, the

slopes of the C ( r )-curves in the scaling region approach a satura-
ion value, approximately 1.72. Indeed, for m = 5 , 6 , 7 , and 8 the

lopes are near to each other: 1.717, 1.720,1.723, and 1.725. The

ean of these slopes is 1.721. This leads, for τ = 5 , to an estimate

f 1.721 for the correlation dimension of the attractor. 

The correlation exponent is invariant under the embedding pro-

edure. Fig. 6 shows, for τ = 5 , the invariance with respect to the

mbedding dimension m (the slopes are approximately constant

or m = 5 , 6, 7, and 8). We also estimated the correlation dimen-

ion for τ = 5 , 15, and 20. The resulting estimates, for τ = 5 , 10, 15,

nd 20, were 1.721, 1.715, 1.715, and 1.745. These estimates were

nvariant with respect to m . Because these estimates are near to

ach other, this supports the invariance of the correlation dimen-

ion with respect to τ . The mean of the four estimates gives the

nal estimate 1.72 of the correlation dimension. These calculations

or the correlation dimension was done by first using a Mathemat-

ca program to calculate the correlation sums (for a fixed value of

) and then applying a dynamic Mathematica interface to find a

caling region and the corresponding estimate of the correlation

imension. This dynamic interface contains sliders to manually ad-

ust the start and end points of the possible scaling region and

hows the slopes of the correlation sums, dynamically reflecting

he current choice of the scaling region. So, to find a scaling region

he sliders are adjusted until a promising region is found where

he correlation sums behave approximately linearly and the slopes

n the scaling region saturate with increasing m . If, in addition, the

nvariance with respect to τ can be verified, this gives support to

he estimated correlation dimension. 

.1.5. Determinism test 

While using Perc’s program, an estimate of the determinism

actor is κ = 0 . 84 . 

.1.6. Maximal Lyapunov exponent 

To estimate the maximal Lyapunov exponent, we use the

ethod of local divergence rates. First, we choose the delay time

= 5 and set ε = 3 . The embedding dimension m varies from 1 to

0. We obtain the values of S ( δ) plotted in Fig. 7 . 

It turns out that a scaling region is for δ = 1 , . . . , 6 : there the

 ( δ)-curves in Fig. 7 behave approximately linearly (for larger val-

es of m ) and, as Fig. 8 shows, the slopes of the S ( δ)-curves in the

caling region are approximately a constant for m = 12 , . . . , 17 ; the

ean of these slopes is 0.0150. This leads, for τ = 5 , to an estimate

f 0.0150 for the maximal Lyapunov exponent. 

The maximal Lyapunov exponent is invariant under the embed-

ing procedure and also under different values of ε. Fig. 8 shows,
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Table 2 

Data length for the 14 concatenated nights of each patient. 

Patient 1 2 3 4 5 6 7 8 9 10 〈 N 〉 
N 8243 8141 8226 6892 7387 8276 7843 8161 8199 8246 7961.4 ± 464.9 

Fig. 7. Values of S ( δ) of patient 1. The scaling region is between the two vertical 

lines: from δ = 1 to δ = 6. 
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Fig. 8. Slopes of linear fits of the S ( δ)-values in the scaling region for patient 1. The 

slopes are approximately a constant, 0.015, for m = 12, ..., 17. 
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Table 3 

Fraction of false nearest neighbors as a function of the embedding dimension m . 

Patient τ fnn m 

1 {5, 10, 15, 20} {0.0 019, 0.0 027, 0.0 066, 0.0034} {5, 5, 5, 5} 

2 {5, 10, 15, 20} {0.0085, 0.0110, 0.0110, 0.0120} {5, 9, 9, 9} 

3 {5, 10, 15, 20} {0.0 027, 0.0 027, 0.0 046, 0.0 021} {5, 5, 9, 9} 

4 {5, 10, 15, 20} {0.0 032, 0.0 031, 0.0110, 0.0 094} {6, 6, 6, 20} 

5 {5, 10, 15, 20} {0.0 041, 0.0 057, 0.0 064, 0.0 049} {5, 6, 16, 12} 

6 {5, 10, 15, 20} {0.0 061, 0.0 072, 0.0 074, 0.0 075} {5, 8, 14, 13} 

7 {5, 10, 15, 20} {0.0 029, 0.0 032, 0.0 033, 0.0 034} {6, 6, 17, 11} 

8 {5, 10, 15, 20} {0.0 026, 0.0 022, 0.0 026, 0.0 024} {6, 5, 5, 7} 

9 {5, 10, 15, 20} {0.0 024, 0.0 043, 0.0 052, 0.0 043} {6, 6, 10, 10} 

10 {5, 10, 15, 20} {0.0 022, 0.0 027, 0.0 024, 0.0 019} {8, 7, 13, 11} 
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or τ = 5 and ε = 3 , the invariance with respect to the embed-

ing dimension m (the slopes are approximately constant for m =
2 , . . . , 17 ). For τ = 5 , we also considered the values ε = 2 . 5 and 2,

nd we got the estimates 0.0141 and 0.0156. The estimates for the

hree values of ε are near to each other, supporting, for τ = 5 , the

nvariance with respect to ε. The mean of the three estimates is

.0149. 

We also estimated the maximal Lyapunov exponent for τ =
0 , 15 , and 20. For each τ , we considered the values 3, 2.5, and

 for ε. For each τ , the estimate was invariant with respect to ε.

he means of the estimates for τ = 5 , 10 , 15 , and 20, were 0.0149,

.0146, 0.0151, and 0.0145. These values are near to each other,

upporting the invariance with respect to τ . The mean of the four

stimates is 0.0147 (here, we used the original, more accurate esti-

ates). Thus, the final estimate of the maximal Lyapunov exponent

s 0.0147. The Lyapunov time is then 1/0.0147 ≈ 68 min. 

These calculations for the maximal Lyapunov exponent were

one by first using a Mathematica program to calculate the values

f S ( δ) (for a fixed value of τ and ε) and then applying a dynamic

athematica interface to find a scaling region and the correspond-

ng estimate of the maximal Lyapunov exponent. 
In the next subsection, we summarize the main results for all

he patients. 

.2. Patient 1 to 10 

.2.1. Data length 

The lengths of the data for the ten patients (see Table 2 ) varied

etween 6892 and 8276 with a mean of 7961.4. For each patient,

he data contains values of glucose for 14 concatenated nights. The

engths of the data vary somewhat because some values of the glu-

ose have not been recorded by the glucose sensor. The lengths of

he data turned out to be large enough for the numerical programs

o work properly. 

.2.2. Average mutual information: Determination of the time delay τ
For the time delay τ , the situation for all the ten patients was

imilar: the average mutual information did not have a local point

f minimum. As examples of the time delay, we considered the

alues τ = 5 , 10 , 15 , and 20 when we estimated the embedding

imension, the correlation dimension, and the maximal Lyapunov

xponent. 

.2.3. False nearest neighbors: Determination of the embedding 

imension m 

The embedding dimension m , estimated by the method of false

earest neighbors, varied between 5 and 20 for the four values of

. The fraction of false nearest neighbors did not drop exactly to

ero but decreased to a small enough level (typically below 0.01

ut above 0.001). The results are presented in Table 3 . 

.2.4. Correlation dimension 

The correlation dimension (see Table 4 ), estimated by the

ethod of correlation exponent, varied between 1.20 and 2.61, the

ean being 1.74. For each patient, the correlation dimension was

stimated with the four values of the time delay τ (the values of

he correlation dimension given in the last column of Table 4 are

he means of the four estimates got by using the four values of τ ).

.2.5. Determinism test 

The estimates of the determinism factor κ for the 14 concate-

ated nights of each of the 10 patients are presented in Table 5 .

he determinism factor varied between 0.79 and 0.85, the mean

eing 0.82. 

Another program developed by BenSaïda [6] has enabled to

onfirm the presence of a chaotic dynamics, as opposed to stochas-

ic dynamics, in the 14 concatenated nights of each of our 10 pa-

ients. 
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Table 4 

Estimates of the correlation dimension for each patient. 

Patient τ Values of r in the scaling region Correlation dimension ν 〈 ν〉 
1 {5, 10, 15, 20} {[5, 9], [6, 10], [2, 9], [1, 14]} {1.72, 1.71, 1.72, 1.74} 1.72 

2 {5, 10, 15, 20} {[16, 17], [16, 17], [15, 16], [13, 15]} {1.19, 1.23, 1.19, 1.18} 1.20 

3 {5, 10, 15, 20} {[10, 12], [9, 14], [4, 7], [6, 10]} {2.42, 2.67, 2.69, 2.65} 2.61 

4 {5, 10, 15, 20} {[16, 20], [13, 18], [13, 17], [12, 18]} {1.32, 1.35, 1.40, 1.44} 1.38 

5 {5, 10, 15, 20} {[18, 19], [13, 15], [13, 18], [12, 17]} {1.36, 1.39, 1.37, 1.37} 1.37 

6 {5, 10, 15, 20} {[13, 16], [11, 12], [10, 12], [9, 10]} {1.39, 1.48, 1.49, 1.48} 1.46 

7 {5, 10, 15, 20} {[15, 17], [12, 15], [11, 14], [5, 8]} {1.90, 1.92, 1.90, 1.89} 1.90 

8 {5, 10, 15, 20} {[8, 10], [5, 6], [7, 8], [2, 7]} {2.20, 2.16, 2.24, 2.18} 2.19 

9 {5, 10, 15, 20} {[12, 22], [10, 19], [10, 12], [8, 10]} {1.79, 1.79, 1.80, 1.82} 1.80 

10 {5, 10, 15, 20} {[12, 14], [9, 12], [4, 8], [4, 7]} {2.26, 2.26, 2.27, 2.31} 2.28 

Table 5 

Determinism factor κ for the 14 concatenated nights of each patient. 

Patient 1 2 3 4 5 6 7 8 9 10 〈 κ〉 
κ 0.84 0.84 0.82 0.82 0.85 0.82 0.83 0.79 0.85 0.82 0.82 ± 0.018 

Table 6 

Estimates of the maximal Lyapunov exponent (MLE) and of the Lyapunov time (LT) for each pa- 

tient. 

Patient τ ε MLE 〈 MLE 〉 〈 LT 〉 
1 {5, 10, 15, 20} {3, 2, 2.5} {0.0149, 0.0146, 0.0151, 0.0145} 0.0147 68 ′ 
2 {5, 10, 15, 20} {3, 2, 2.5} {0.0338, 0.0340, 0.0338, 0.0327} 0.0337 30 ′ 
3 {5, 10, 15, 20} {3, 2, 2.5} {0.0150, 0.0146, 0.0149, 0.0148} 0.0148 67 ′ 
4 {5, 10, 15, 20} {3, 2, 2.5} {0.0151, 0.0154, 0.0142, 0.0146} 0.0148 68 ′ 
5 {5, 10, 15, 20} {3, 2, 2.5} {0.0326, 0.0323, 0.0327, 0.0320} 0.0325 31 ′ 
6 {5, 10, 15, 20} {3, 2, 2.5} {0.0352, 0.0356, 0.0352, 0.0348} 0.353 28 ′ 
7 {5, 10, 15, 20} {3, 2, 2.5} {0.0202, 0.0203, 0.0189, 0.0196} 0.0198 50 ′ 
8 {5, 10, 15, 20} {3, 2, 2.5} {0.0177, 0.0174, 0.0180, 0.0175} 0.0177 56 ′ 
9 {5, 10, 15, 20} {3, 2, 2.5} {0.0161, 0.0160, 0.0162, 0.0160} 0.0161 62 ′ 
10 {5, 10, 15, 20} {3, 2, 2.5} {0.0163, 0.0164, 0.0161, 0.0164} 0.0163 61 ′ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

τ  

m  

r  

l  

v  

w

 

t  

s

 

e  

s  

a  

f  

d

 

m  

e

a  

m  

p  

o  

e

 

e  

h  

t  

(  

a  

l  

n  

n

3.2.6. Maximal lyapunov exponent and lyapunov time 

The maximal Lyapunov exponent (see Table 6 ), estimated by

the method of local divergence rates, varied between 0.0147 and

0.0353, the mean being 0.0215. For each patient, the exponent was

estimated with the four values of τ and, for each τ , the exponent

was estimated with ε equal to 2, 2.5, and 3 (the values given in

the next to last column of Table 6 are the means of the result-

ing 12 estimates; the four values in the fourth column correspond

with the four values of τ and are means of the estimates for the

three values of ε). The Lyapunov time (see Table 6 ) varied between

28 and 68 min, the mean being 52.5 min. The inverse of the final

estimate of the Maximal Lyapunov exponent, 0.0215, is 46.5 min. 

4. Discussion 

Starting from a database often type 1 diabetes patients wearing

a continuous glucose monitoring device, we have used numerical

methods to analyze the continuous variations of the blood glucose

every minute all day long during fourteen consecutive days. Nev-

ertheless, because of the stochastic inputs induced by daily activ-

ities of any human being (work, eat, walk, sport, etc.), it has not

been possible to discriminate chaos from noise in the whole time

series including days and nights. So, we decided to keep only the

fourteen nights of these ten recordings of the blood glucose, from

10:0 0 p.m. to 08:0 0 a.m. We then concatenated these recordings

over fourteen nights and so we obtained, for each patient, nearly

8400 data values; this amount of data was large enough for the

computations. 

We used the average mutual information to investigate the time

delay τ for each of our ten patients. As the average mutual infor-

mation did not have a local point of minimum, in later computa-

tions we considered, as examples, the values 5, 10, 15, and 20 for
. We were able to show that the estimates of the correlation di-

ension and the maximal Lyapunov exponent were invariant with

espect to these values of τ . The method of false nearest neighbors

ed to a determination of the embedding dimension m , a typical

alue being between, say, 5 and 12, the value varying with τ and

ith the patient in question. 

The test of determinism provided a mean value 0.83 of the de-

erminism factor for the ten patients. This value is close to one and

o supports the chaoticity of type 1 diabetes. 

With the four values of τ , we applied the method of correlation

xponent to the ten time series, to estimate the correlation dimen-

ion. In each case, the correlation sum saturated with increasing m

nd was then approximately constant in a scaling region, that is,

or some values of m . This behavior supports the chaoticity of our

ata. The correlation dimension was, on the average, 1.74. 

Finally, we estimated the maximal Lyapunov exponent with the

ethod of local divergence rates. For each of the ten patients, we

stimated the exponent for the four values 5, 10, 15, and 20 of τ
nd, for each τ , for the three values 2, 2.5, and 3 of ε. The esti-

ates turned out to be invariant with respect to τ and ε. For each

atient, the mean of these twelve estimates is given in Table 6 . The

verall mean of these ten estimates is 0.0215. The corresponding

stimate of the Lyapunov time is 46.5 min. 

According to Feinberg and Floyd [12] , “The notion that there

xists in man a basic rest-activity cycle with a period of 90 min

as been accepted by many investigators. This hypothesis was in-

roduced by Kleitman [9] , who based it upon early observations

e.g. Dement & Kleitman, [24] that REM sleep in adults recurred

t about 90 min intervals.” More than ten years before this pub-

ication, Hartman [18] proved that “the mean cycle length for 15

ormal adult subjects in our laboratory, studied for eight or more

ights each, was 95.8 min, with a standard deviation of 8.7 min.”
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hus, the “sleep-dream”, also called rapid eye movement (REM)-

leep, recurred in adults at about 90 min intervals and is linked to

eal time, i.e., to the circadian cycle. 

Since we have found an estimate of the Lypaunov time equal

o 46.5 min, which corresponds nearly to half the sleep cycle or

est-activity cycle, it seems to indicate that some correlations could

e highlighted between blood glucose variations in type 1 diabetes

atients and their REM-sleep. This would be subject of a new pro-

ocol of research in which type 1 diabetes patients wearing a con-

inuous glucose monitoring device will undergo a polysomnogra-

hy. 
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