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Abstract

We provide evidences for chaotic behaviour in temporarily destabilized regular systems. In particular, we focus on

time-continuous systems with the slow passage effect. The extreme sensitivity of the slow passage phase enables the exis-

tence of long chaotic transients induced by random pulsatile perturbations, thereby evoking chaotic behaviour in an

initially regular system. We confirm the chaotic behaviour of the temporarily destabilized system by calculating the larg-

est Lyapunov exponent. Moreover, we show that the newly obtained unstable periodic orbits can be easily controlled

with conventional chaos control techniques, thereby guaranteeing a rich diversity of accessible dynamical states that is

usually expected only in intrinsically chaotic systems. Additionally, we discuss the biological importance of presented

results.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Since the introduction of chaos control algorithms [1–3], chaotic behaviour has been recognized as a desirable phe-

nomenon in several research fields [4–6]. In living organisms, chaotic signature in the dynamics of vital functions might

be used to distinguish between health and disease [7–9], while in artificial systems, chaos can be exploited to assure opti-

mal functioning of devices in given circumstances [10–12], encode secret messages [13–15], stabilize nonlinear commu-

nication schemes [16,17], or explain the physical mechanism of extended-range atmospheric prediction in geophysical

systems [18,19]. This overwhelming applicability of chaos control techniques has motivated several studies on how to

make intrinsically regular systems chaotic [9,20–35]. Algorithms were first developed for discrete-time systems [9,20–22],

while afterwards also continuous-time systems become available for chaotification [24–28,30]. However, chaotifying an

arbitrary continuous-time system is more difficult than inducing chaos in a discrete map. Recently, a semiglobal tech-

nique for polynomial continuous-time systems and rational forms was introduced [35].
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In the present paper, we extend the existing theory of chaotifying continuous-time systems by introducing a simple

chaotification method that is based on temporal destabilizations of regular systems. However, rather than concentrating

on developing a mathematically rigorous algorithm, we focus on specific properties of regular continuous-time systems,

which may facilitate the desired task. In particular, we focus on systems with the slow passage effect [36–44]. Several

authors report that dynamical systems with the slow passage effect are extremely sensitive to small perturbations

[38,42,44] and even to precision of numerical algorithms [37]. Thus, it is natural to consider such properties as possible

sources of complex unpredictable behaviour in regular systems. We demonstrate how to exploit this hidden system

instability to evoke chaotic behaviour in an otherwise regular system.

Furthermore, we introduce a new algorithm for calculating the largest Lyapunov exponent of the system. In partic-

ular, we modify the algorithm developed by Wolf et al. [45], which can be used to determine the largest Lyapunov expo-

nent from a time series, i.e. without using the differential equations. We show that the temporarily destabilized system

has a positive largest Lyapunov exponent, which is a strong indicator for chaotic behaviour, hence confirming the suc-

cessfulness of chaotification in the studied system. Moreover, we show that the unstable periodic orbits embedded in the

newly obtained chaotic attractor can be successfully controlled with conventional chaos control techniques [2,46,47],

thereby additionally justifying our approach, as well as indicating the possibility of applying chaos control techniques

also to originally regular systems.

The paper is structured as follows. Section 2 is devoted to the bifurcation analysis of the slow passage phase in the

examined mathematical model. In Section 3 we present the chaotification algorithm and calculate the largest Lyapunov

exponent of the resulting attractor, whereas in Section 4 the control of newly obtained periodic orbits is presented. In

the last section we summarize the results and outline the biological importance of our findings. The examined mathe-

matical model with the complete set of model equations and parameter values is given in Appendix A.
2. Slow passage effect

The slow passage effect is characterized by a slow transition of the system through a Hopf bifurcation [36–44]. Be-

cause the passage through the bifurcation point is slow a delayed transition of the system from an unstable foci branch

to a stable steady state or periodic solution occurs. Thus, the system stays close to the unstable foci branch for a con-

siderable amount of time, before it eventually shifts to the stable solution. Since during the slow passage phase the sys-

tem wanders on an unstable solution, it is at that time very susceptible to any external perturbations, ranging from

environmental changes and random inputs [38], signals from neighbouring oscillators [42,44], or even precision of

numerical algorithms [37]. Therefore, we argue that systems with the slow passage effect posses a hidden intrinsic insta-

bility, which might be exploited for chaotifying an initially regular system.

To study the slow passage effect in the examined mathematical model [48] (see Appendix A) in more detail, we apply

the fast–slow subsystem bifurcation analysis, which was originally proposed by Rinzel [49]. The virtue of the fast–slow

subsystem method is to extract the fast changing variables of the system and then use the slow changing variables as

bifurcation parameters. The fast changing variables in the examined model were identified to be x(t) and y(t), whereas

the slow changing variable is z(t). Hence, we can reduce the 3D system (x(t), y(t), z(t)) to a 2D system (x(t), y(t)) and use

the variable z(t) as the bifurcation parameter. Results presented in Fig. 1 were obtained with the software package

AUTO97 [50]. It can be well observed that the trajectory stays close to the unstable foci branch well after the Hopf

bifurcation is exceeded in the clockwise direction. Only slowly, the trajectory starts to diverge from the unstable foci

branch, to eventually end up on the lower stable periodic branch. Thus, for the set of system parameters given in

the Appendix, the examined mathematical model expresses regular oscillatory behaviour with a well-expressed slow

passage effect, which qualifies the system for further analyses.
3. Chaotification

In order to induce chaotic behaviour in a continuous-time system with the slow passage effect, we must find a way to

exploit the hidden instability that is intrinsically incorporated in the dynamics. The most natural and simple way of

doing this is to temporarily destabilize the system with an external perturbation. Since the slow passage phase is very

susceptible to external perturbations [38], the induced short-term destabilization will have a long lasting impact on the

temporal evolution of the system. Note that during the slow passage phase even a small deviation of the trajectory from

the original limit cycle may greatly affect the system�s dynamics at a latter time [37,38,42,44]. By repeating the destabi-

lization procedure several times, we obtain an enriched dynamics made up of unstable transients, which combined yield

chaotic behaviour in the originally regular system.



Fig. 1. Fast–slow subsystem analysis of the studied system. Presented is the bifurcation diagram of the fast variable x in dependence on

the slow variable z, which was used as the bifurcation parameter. Thick solid line depicts the 2D projection of the limit cycle attractor

in the phase space. Thin solid (dashed) line represents stable (unstable) foci, while the dotted lines originating from the Hopf

bifurcation (circle) represent stable periodic solutions.
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To temporarily destabilize the system, we introduce a random symmetric impulsive input function as an additional

term to one of the fast variables of the system. In our case, Eq. (A.1) obtains an additional term of the form
f ðtÞ ¼
a if ðt mod hÞ P ðh� dÞ;
�a if ððt � dÞ mod hÞ P ðh� dÞ;
0 else;

8><
>: ð1Þ
where a is the amplitude, d the duration, and h the time interval between consecutive destabilizations. Parameters a and

d determine the strength of destabilizations and are selected randomly from intervals with defined maximum values.

Both maximums have to be determined carefully with respect to the system dynamics, i.e. fluxes that govern the tem-

poral evolution of the unperturbed dynamics. It should be noted that for each randomly selected d the amplitude a is

held constant. The time interval between consecutive destabilizations h is also variable, but not selected randomly. In

fact, h equals the time the system needs to recover from each destabilization. Thus, each time the system is about to re-

settle onto the limit cycle attractor, the next perturbation takes place. Since, however, the system recovers always at

different moments, the temporal destabilizations are random in their strength as well as in time at which they are ini-

tiated. Thereby, we are able to fully exploit the extreme sensitivity of the slow passage phase, and thus exploit the sys-

tem�s hidden instability for chaotification. Note also that f(t) is a symmetric function, which assures that the system is,

after the destabilization and before completely re-settling onto the limit cycle, determined by the autonomous, i.e.

unperturbed dynamical system. Noteworthy, we previously applied a similar method to enhance the number of control-

lable states in an intrinsically chaotic attractor [51].

The results obtained with the proposed method are presented in Fig. 2. We emphasize that the attractor presented in

Fig. 2 is made up solely of autonomous system transients. Thus, those parts of the attractor that were directly subjected

to destabilizations, i.e. when f(t) 5 0, were discarded. It can be well observed that temporal destabilizations indeed en-

rich the system�s dynamics, yielding an apparently chaotic attractor.

To verify if the attractor presented in Fig. 2 is indeed a chaotic attractor, we calculate the largest Lyapunov exponent

pertaining to the newly obtained attractor with the modified algorithm originally developed by Wolf et al. [45]. The

original algorithm can be briefly summarized as follows. Find two points of the attractor which fulfil

kp(t) � p(g)k = e � n, where p(t) = (x(t), y(t), z(t)) is a point at time t, p(g) is a point at time g, and e is the Euclidean

distance between them that should be much smaller than the extend of the attractor n. Then iterate both points forward

in time for a fixed evolution time t and calculate the distance between them, i.e. kp(t + t) � p(g + t)k = et. If the system
is chaotic, the distance after the evolved time will typically be larger than the initial e, while in case of regular behaviour

e � et. After each evolution time t a so-called replacement step is attempted in which we look for a new point p(k) of the

attractor, whose distance to the evolved point p(t + t) should equal e, under the constraint that the angular separation



Fig. 2. Impact of temporal destabilizations on the studied system. Presented are 50 autonomous transients and the original limit cycle

attractor, which is depicted with white. For both a and d used in Eq. (1), values were selected randomly from the unit interval [0, 1]. In

accordance with more or less strong temporal destabilizations h varied from 15 s (16.7 s is the oscillatory period of the regular system)

to maximally 80 s.
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between the phase space vectors constituted by the pairs (p(t + t), p(g + t)) and (p(t + t), p(k)) is small. This procedure is

repeated until the initial point of the attractor, i.e. p(t) at t = 0 s, reaches the last one. Finally, the largest Lyapunov

exponent K can be calculated according to the equation
K ¼ 1

Mt

XM
i¼0

ln
et
e
; ð2Þ
where M is the total number of replacement steps, and thus Mt equals the sum of all different h used in Eq. (1).

In order to calculate the largest Lyapunov exponent of our temporarily destabilized system we have to modify the

above-described algorithm, since the attractor is made up of 50 autonomous transients that are not directly connected

with each other. Note that we have discarded those parts of the attractor where f(t)5 0, which induces a discontinuity

for each attempted destabilization. Hence, each time the above algorithm encounters a point p(n) at time n such that

[h � (n mod h)] < t an error would be introduced since the trajectory would go through a discontinuity during t, and
thus et would essentially be overestimated. To correct this, we exploit the fact that an arbitrarily small neighbourhood

of every point that forms the chaotic attractor is repeatedly visited by the trajectory during the temporal evolution of

the system. Hence, each time the trajectory is about to go through a discontinuity, i.e. (n mod h) = 0, a new search rou-

tine is initiated where we search for a close neighbour p(m), which fulfils kp(n) � p(m)k = d, where d should be smaller

than e in Eq. (2), and p(m) is not the n + 1st point in time. Henceforth, p(m) replaces p(n) and the discontinuity is

thereby avoided. Since the dynamics of chaotic attractors is ergodic, the probability of finding a suitable p(m) equals

1. Note that although only 50 transients were used in Fig. 2, it is impossible to observe any discontinuity in the attrac-

tor. Results obtained with the modified algorithm are presented in Fig. 3. It can be well observed that the largest Lyapu-

nov exponent converges well to a positive value K = 0.041 s�1, which is a strong indicator for chaotic behaviour in the

system, and thus fully confirms the successfulness of the chaotification procedure. Although the obtained Lyapunov

exponent is rather small in comparison to some other chaotic systems, the result is fully convincing because even intrin-

sically chaotic states of the mathematical model under consideration do not exceed values of 0.05 s�1 [52].
4. Chaos control

Finally, it is of interest to verify if the enriched dynamics of the initially regular system can be exploited by control-

ling one of the unstable periodic orbits (UPOs) embedded in the newly obtained chaotic attractor. The control of UPOs

is carried out with the algorithm proposed by Boccaletti and Arecchi [46,47], which is based on the delayed feedback

method originally proposed by Pyragas [2]. Here we will briefly summarize the algorithm, whereas its complete descrip-

tion can be found in [46,47]. Although the algorithm can be applied to an arbitrary dimensional system, we will, for



Fig. 3. Largest Lyapunov exponent pertaining to the temporarily destabilized system. The value converges well to K = 0.041 s�1 that is

indicated by the thin dashed line. Parameter values used for the algorithm were: e = 0.01, t = 20 s, and d = 0.00005.
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simplicity reasons and consistence with the studied mathematical model, summarize it for a 3D system. Let us consider

a dynamical system
dp

dt
¼ Fðp; lÞ; ð3Þ
where p(t) = (x(t), y(t), z(t)) and F = (Fx, Fy, Fz) are a 3-dimensional vector and the governing vector field, respectively,

and l is a set of fixed system parameters. After determining the period T of a particular UPO, the latter can be stabilized

by introducing an additive correction term (U = (Ux, Uy, Uz)) to each of the three differential equations of the system.

The relative weight of the correction term applied to a particular differential equation, i.e. Uw where w denotes either x,

y or z, is calculated according to the equation
UwðtÞ ¼
1

ss
ðwðt � T Þ � wðtÞÞ; ð4Þ
where ss is the minimum of all sðiÞs , calculated for all dimensions of the dynamical system according to the equation
sðiÞs ¼ sðiÞt =ð1� tanhðrkwðtÞÞÞ; ð5Þ
whereby s = t � dt, dt being the time step for numerical integration. In Eq. (5) r is a strictly positive constant chosen so

as to forbid sðiÞt , from going to zero. The local expansion and contraction rates kw(t) are calculated with respect to the

period T of a particular UPO that is to be stabilized according to the equation:
kwðtÞ ¼
1

ss
ln

wðtÞ � wðt � T Þ
wðsÞ � wðs� T Þ

����
����. ð6Þ
Note that this local variation rates also determine the time interval during which the correction term has a constant

value, thereby reflecting the necessity to perturb the dynamics more or less often in order to stabilize the desired UPO.

We apply the above-described algorithm to the studied temporarily destabilized system. In Fig. 2 we show that the

applied short-term destabilizations enrich the system�s dynamics, yielding a vast diversity of unstable dynamical states

that is usually expected only in intrinsically chaotic systems. From the time course of variable x presented in Fig. 4(a), it

can be well observed that the temporal destabilizations indeed have a large impact on the systems dynamics. Note that

in a very short time insert following the impact of f(t), a total of four different UPOs can be identified. Results presented

in Fig. 4(b) and (c) show that these UPOs can be successfully controlled with the described algorithm for controlling

chaotic behaviour. Herewith, we confirm our prediction that traditional chaos control techniques are applicable also to

temporarily destabilized regular systems, and that the latter possess a rich diversity of accessible dynamical states that is

usually expected only in intrinsically chaotic systems.



Fig. 4. Chaos control of the temporarily destabilized regular system: (a) impact of destabilization—parameter values used in Eq. (1)

were a = 0.25 and d = 1.0; (b) control of the first UPO following the impact of f(t); (c) control of the second UPO following the impact

of f(t).
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5. Conclusions

In the present paper, we study a regular system with the slow passage effect under the influence of symmetric impul-

sive perturbations that were applied to temporarily destabilize the system�s dynamics. We show that due to the extreme

sensitivity of the slow passage phase, short pulsatile perturbations have a large impact on the dynamics, evoking long

unstable autonomous transients that ultimately yield chaotic behaviour in the originally regular system. To confirm the

chaotic behaviour in the newly obtained attractor, we introduce a modified algorithm originally developed by Wolf

et al. [45] to overcome the problem with discontinuities that emerge because parts of the attractor where f(t)5 0 were

omitted. We confirm the chaotic behaviour of the temporarily destabilized system by calculating a positive largest

Lyapunov exponent. Moreover, we show that the newly obtained unstable periodic orbits can be easily controlled with

conventional chaos control techniques, thereby guaranteeing a rich diversity of accessible dynamical states that is

usually expected only in intrinsically chaotic systems. In summary, we extend the existing theory of chaotifying

time-continuous systems by applying a simple yet effective procedure that is able to evoke chaotic behaviour in a regular

system with the slow passage effect.

The presented results may also have important biological implications. In particular, it has often been found that

pulsatile perturbations may improve performance of biological systems, either by restoring normal, i.e. healthy, system

functioning or enhancing their overall effectiveness. On the cellular level, it has been found that electrically stimulated

Ca2+ influx can resume apparently normal fertilization and early embryonic development in human oocytes that fail to

fertilize after intracytoplasmic sperm injection [53]. Examples of positive influences on functioning of a whole organ or

tissue include reanimation of the human heart with electroshocks [54], treatments of psychical diseases with electric

stimuli applied to the brain [55], or enhancing cartilage growth and bone healing with electromagnetic fields [56–60].

These phenomena have not yet been fully explained by the scientific community. While the reanimation of the human
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heart with strong electroshocks may seem self-explanatory and has been used successfully for many decades, other phe-

nomena seem to have more intriguing background and are subject of fearsome debate [61]. Here, we provide some inter-

esting results showing that such perturbations, although applied in a seemingly random fashion, may have a large

impact on the system�s dynamics, and even shift the behaviour from regular to chaotic. Since it is a widespread belief

that, especially in nature, chaos is a desirable system state enabling excellent adaptation possibilities and enhanced sur-

vival chance, such dramatic changes in the system�s dynamics might be a good starting point for further investigations

concerning these fascinating real-life phenomena.
Appendix A

The mathematical model for intracellular calcium oscillations proposed by Marhl et al. [48] is described by the fol-

lowing differential equations:
dx
dt

¼ J ch � Jpump þ J leak þ Jout � J in þ JCaPr � JPr; ðA:1Þ

dy
dt

¼ ber

qer

ðJpump � J ch � J leakÞ; ðA:2Þ

dz
dt

¼ bm

qm

ðJ in � JoutÞ; ðA:3Þ
where
J ch ¼ kch
x2

x2 þ K2
1

ðy � xÞ; ðA:4Þ

Jpump ¼ kpumpx; ðA:5Þ
J leak ¼ kleakðy � xÞ; ðA:6Þ
JPr ¼ kþxcPr; ðA:7Þ
JCaPr ¼ k�cCaPr; ðA:8Þ

J in ¼ kin
x8

x8 þ K8
2

; ðA:9Þ

Jout ¼ kout
x2

x2 þ K2
1

þ km

� �
z; ðA:10Þ

cPr ¼ cPrTot � cCaPr; ðA:11Þ

cCaPr ¼ cCaTot � x� qer

ber

y � qm

bm

z. ðA:12Þ
Parameters values are: kch = 4230 s�1, kleak = 0.05 s�1, kpump = 20 s�1, kin = 300 lM s�1, kout = 150 s�1, km =

0.00625 s�1, k+ = 0.1 lM�1 s�1, k� = 0.01 s�1, K1 = 5.0 lM, K2 = 0.8 lM, cPrTot = 90 lM, cCaTot = 120 lM,

qer = 0.01, ber = 0.0025, qm = 0.01, bm = 0.0025. Although the mathematical model has a specific biological importance,

and so the parameter values as well as the system variables are not dimensionless, we omit the use of physical units in

the present paper, since biological particularities are presently not of special importance. For details regarding the bio-

logical meaning of variables and parameter values see [48].
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