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Abstract

We present an overview of measures that are appropriate for determining the flexibility of regular and chaotic attrac-
tors. In particular, we focus on those system properties that constitute its responses to external perturbations. We
deploy a systematic approach, first introducing the simplest measure given by the local divergence of the system along
the attractor, and then develop more rigorous mathematical tools for estimating the flexibility of the system�s dynamics.
The presented measures are tested on the regular Brusselator and chaotic Hindmarsh–Rose model of an excitable neu-
ron with equal success, thus indicating the overall effectiveness and wide applicability range of the proposed theory.
Since responses of dynamical systems to external signals are crucial in several scientific disciplines, and especially in nat-
ural sciences, we discuss several important aspects and biological implications of obtained results.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

There exist several theoretical as well as experimental studies investigating responses of dynamical systems to exter-
nal perturbations such as noise, periodic inputs or step like pulses, for example. In dependence on the properties of a
given dynamical system and the applied external perturbation, responses can vary extremely, ranging from practically
no effects to suppressed or enhanced spectral responses of threshold-crossing events [1], regularisation of chaotic states
[2–8], chaotification [9–18], or synchronisation of coupled oscillators [19–21], only to mention some of the more prom-
inent examples. In particular in biological systems, responses to external perturbations are of crucial importance since
they are vital for flawless functioning of living organisms. For example, the addition of noise amplifies weak external
input signals and herewith facilitates signal detection and transduction in the tissue [22–31]. These phenomena are
known as stochastic resonance effects. Moreover, effective responses to external perturbations can lead to synchronous
calcium waves in tissue [32,33] already at very low coupling strengths between neighbouring cells [20,21]. This is an ex-
tremely important phenomenon, since calcium ions are recognised to be one of the most important second messengers,
regulating many cellular processes from egg fertilization to cell death [34,35]. Furthermore, there also exist studies evi-
dencing that noise, besides amplifying weak external signals, can also increase the robustness of biological systems [36],
thereby assuring reliable and immutable information processing.
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Since responses of dynamical systems to external forcing can be qualitatively and quantitatively very different, the
question arises if it is possible to estimate in advance whether a given system, or its particular state, is more or less sus-
ceptible to an applied external perturbation. We refer to the property of a dynamical system that determines the effect of
the applied external perturbation on the system dynamics as the flexibility. More precisely, if the system is flexible its
susceptibility to external perturbations is very high, meaning that even small-amplitude signals will have a large impact
on the system dynamics, whereas if the system is not flexible it remains largely unaffected even by strong perturbations.
Although flexibility is a very important system property, little light has been shed on the characteristic quantities of a
dynamical system that constitute it. The aim of the present paper is to find and mathematically define the particular
system properties that determine the flexibility of an attractor, regardless of its complexity.

In our previous works [17,20,30,37,38], we showed that for a N-dimensional dynamical system given with the vector
field F = (f1, f2, . . . , fN), the time dependent divergence $ Æ F, termed as the local divergence, is a simple but rather effec-
tive measure for determining the flexibility of an attractor. Intuitively, the role of the local divergence in determining
response abilities of a dynamical system to external perturbations can be well explained, since the local divergence re-
flects the contractive properties of an attractor in the phase space. Therefore, if an attractor is locally weakly attractive,
i.e. has a close to zero local divergence, it seems much easier to alter its shape, thus favouring responses of a system to
external perturbations. However, for complex systems this measure is rather loose and must be accompanied with
extensive descriptive explanations in order to define the flexibility of an attractor. Furthermore, there exist special cases
where the local divergence can give spurious results, i.e. indicating that the system is not flexible, where in fact it is.
Moreover, the local divergence gives only information about the flexibility of the system infinitesimally close to the
attractor, whereas it does not provide any information about the surrounding phase space. It also does not provide
any information about which phase space direction, with respect to the trajectory that constitutes the attractor, is most
susceptible to external perturbations.

In this paper, we present more advanced and sophisticated methods for determining the flexibility of dynamical sys-
tems that, in several ways, overcome the above-discussed difficulties. We demonstrate our results on two well-known
dynamical systems, namely the Brusselator [39] and the Hindmarsh–Rose model of an excitable neuron [40].

The paper is structured as follows. Section 2 is devoted to the accurate mathematical description of the methods used
for determining the flexibility of a dynamical system. In Section 3 we provide a short description of the exemplary
dynamical systems [39,40], whereas in Section 4 we present the results. In the last section we discuss merits and limita-
tions of our methods. Additionally, possible applications of the methods in engineering and biological sciences are
discussed.
2. Methods

2.1. External forcing

The flexibility of a given dynamical system F = (f1, f2, . . . , fN) is studied in response to an external forcing that takes
the form of an additional flux J that is introduced to a particular system variable xi. Accordingly, the corresponding
differential equation fi = dxi/dt is replaced by:
fi ) f i þ J . ð1Þ
In all calculations, we use a simple square-shaped external forcing of the form
JðtÞ ¼ h
1; if ðt > tsÞ and ðt < ts þ sdÞ;
0; else;

�
ð2Þ
where h is the amplitude of the forcing signal, ts is the starting time of the pulse, and sd is the pulse duration.

2.2. Methods for determining the flexibility

Flexibility is a measure for the susceptibility of a dynamical system to external forcing. Flexible systems are suscep-
tible to weak external perturbations and can better adjust their behaviour in accordance with the external signal. In
general, the sum of all Lyapunov exponents (ki, where i 2 {1, . . . ,N}; N is the dimension of the phase space) can be
introduced as an appropriate quantity for determining the flexibility of regular as well as chaotic attractors. Crucial
thereby is the fact, that we calculate the Lyapunov exponents locally along the attractor. These locally defined Lyapu-
nov exponents give information about the attractive properties of particular parts of the attractor. The sum of all
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Lyapunov exponents at a given time corresponds to the so-called local divergence of the vector field F = (f1, f2, . . . , fN),
and thus represents the volume contraction in the phase space:
Flex1 ¼ r � F ¼
X
i

ki. ð3Þ
As already advocated [17,20,30,37,38], Flex1 is a universal but rather rough measure for estimating the flexibility of an
attractor. In particular, it is very appropriate for systems with a nearly constant vector field norm along the trajectory
(tr), i.e. kFktr 
 const. In this case the Lyapunov exponent ktr, measuring the contraction of the phase space along the
trajectory, is close to zero at any time, i.e. in addition to hktri = 0 for periodic orbits, also ktr(t) 
 0 at any time t. In such
cases:
Flex1 
 Flex2 ¼
X
j

kj; for j 2 f1; . . . ;Ng ^ j 6¼ tr. ð4Þ
For dynamical systems with time scale separation, where kFktr 6 const. and ktr(t)6 0, the flexibility of the corre-
sponding attractor is more accurately given by Flex2 rather than Flex1. However, since the trajectory of systems with
time scale separation, as are for example relaxation oscillators, moves through certain phase space areas very fast, Flex2
still cannot be considered as the fully appropriate quantity for determining the flexibility of the attractor. The problem
lies in the fact that the time sd in which J acts on the dynamics can be considerably longer than the typical time the
system needs to sweep through the phase space. Accordingly, the flexibility of the attractor at time ts can be vastly dif-
ferent from the flexibility at time ts + sd. Thus, to get the most accurate measure for the flexibility also in cases where
kFktr 6 const. and ktr(t) 6 0, we define the flexibility of an attractor Flex3 as Flex3 = hFlex2i calculated at a particular
time t for the period sd according to the equation:
Flex3 ¼ hFlex2i ¼
1

sd

Z tþsd

t

X
j

kj

 !
dt; for j 2 f1; . . . ;Ng ^ j 6¼ tr. ð5Þ
If in addition to kFktr 6 const. and ktr(t)6 0, some phase space dimensions, denoted by j = ext, are characterized
by extreme values of Lyapunov exponents, i.e. kext have much higher/lower values than other kj, which can be the case
in higher dimensional systems, the flexibility has to be evaluated very carefully by taking all kext into account separately,
whilst calculating the sum of all other kj according to:
Flex4 ¼
1

sd

Z tþsd

t

X
j

kj

 !
dt; for j 2 f1; . . . ;Ng ^ j 6¼ tr ^ j 6¼ ext. ð6Þ
For the separate consideration of kext the average values hkexti have to be calculated, identically as for other kj, during
time sd, in which J 6 0. Only for these kext that satisfy jhkextij � jkjj, j 2 {1, . . . ,N} ^ j5 tr ^ j5 ext, the effects of
hkexti have to be treated separately, whereas otherwise kext can be included into the sum as in Eq. (5).
3. Mathematical models

The above-presented methods for determining the flexibility of regular and chaotic attractors will be applied on two
well known dynamical systems; namely the Brusselator [39] and the Hindmarsh–Rose model of an excitable neuron [40],
which are described next.

3.1. Brusselator

The Brusselator [39] is a widely used model for describing autocatalytic chemical reactions of the form:
2X + Y! 3X, which describe self-production of substance X (activator) under the control of substance Y (inhibitor).
The simplest autocatalytic model scheme can be described with the following equations:
dx
dt

¼ 1

sx
ð1� ðAþ 1Þxþ yx2Þ; ð7Þ

dy
dt

¼ 1

sy
ðAx� yx2Þ; ð8Þ
where x and y are the concentrations of the activator and the inhibitor, respectively; sx and sy determine the time scales
of x and y, whereas A is the control parameter. In our calculations, we use the parameter values: sx = 1, sy = 100 and



Fig. 1. Phase space analysis of the Brusselator. Arrows represent the vector field of the system, whilst the thin solid line denotes the
nullcline of variable x. For parameter values see text.
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A = 1.02. The corresponding limit cycle attractor together with the vector field and the nullcline of Eq. (7) is presented
in Fig. 1. The nullcline of Eq. (7), obtained as the solution y(x)jdx/dt=0, has a K-like shape and comes very close to the
limit cycle at the upper left corner, which strongly indicates that the system is characterised by relaxation oscillations.

3.2. Hindmarsh–Rose model

The Hindmarsh–Rose (HR) model of an excitable neuron [40] is a polynomial model derived from the Hodgin–Hux-
ley (HH) equations [41]. Generally, the polynomial form of the HR model is much more convenient, both for the math-
ematical analysis as well as numerical simulations, in comparison to the more physiological HH-type models.
Fascinatingly, Osipov and Ponizovskaya [42,43] have showed that the traditional HR equations can be simplified even
further, finally obtaining the equations:
Fig. 2. Three-dimensional chaotic attractor of the Hindmarsh–Rose model. For parameter values see text.
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dx
dt

¼ 1

sx
ð�sxxþ y � ax3 þ bx2 þ zÞ; ð9Þ

dy
dt

¼ �ax3 � ðd � bÞx2 þ z; ð10Þ

dz
dt

¼ 1

sz
ð�sx� zþ cÞ. ð11Þ
For a detailed explanation of the derivation and the particular meaning of the variables and parameters we refer the
reader to the original articles [42,43]. In our calculations, we use parameter values: sx = 0.03, sz = 0.8, a = 0.49,
b = d = s = 1.0 and c = 0.0322. For the given parameter values, the system exhibits chaotic behaviour, as presented
in Fig. 2.
4. Results

4.1. Results for the Brusselator

The Brusselator is a rather simple dynamical system with some obvious properties concerning the response abilities
to external perturbations, which were already studied in the past [44,45]. Here, we use the model for demonstrating the
effectiveness of our methods defined in Section 2.2, and to show the relationship with the previous related approaches
such as the bifurcation analysis [46,47] and the nullcline based insights.

We start by demonstrating the effectiveness of the first measure of the flexibility (Flex1), which states that the local
divergence can be used for estimating the flexibility of a dynamical system. Obtained results are shown in Fig. 3. The
step-like external forcing (Eq. (2)) is systematically applied during one oscillation period. The dashed line in Fig. 3(a)
and (b) represents the boundary between the flexible region in which the system responds to the external forcing with a
Application of the flexibility measure Flex1 on the Brusselator. (a) Forcing in the rigid part of the attractor. (b) Forcing in the
e part of the attractor. (c) Phase space view of Fig. 3(b). (d) Time course of local divergence (Flex1) for one oscillation period.
eter values for the forcing signal: sd = 10.0 and h = 0.32.
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new spike and the robust region in which there is no considerable response. Fig. 3(c) shows the phase space view of the
system�s response presented in Fig. 3(b). In particular, the inset of Fig. 3(c) shows the emergence of a new premature
spike in the phase space. The arrow denotes the application of the external forcing. To explain the appearance of a new
spike in the flexible part of the attractor, we calculate the local divergence (Flex1) along the whole limit cycle. Results
are shown in Fig. 3(d). It can be well observed that the flexible part of the attractor is characterised by close to zero local
divergence (Flex1 
 0). Thus, the phase space there is weakly contractive, which facilitates responses even to very weak
external signals. In the robust part, which is characterised by more negative values of Flex1, the contraction of the phase
space around the limit cycle is stronger, so that the applied weak external forcing cannot induce a considerable response
of the system in the sense of a new spike.

By calculating Flex1, the flexibility of a dynamical system is estimated by considering the different contraction prop-
erties of the phase space along the attractor. This is a simple and very useful measure for the flexibility if ktr(t) 
 0 or if
ktr is negligible in comparison with the sum of all Lyapunov exponents. In general, the flexibility of a system depends
significantly only on the contraction properties of the phase space orthogonal towards the trajectory, whilst phase space
contractions along the trajectory, should not be taken into account. Therefore, for estimating the flexibility of dynam-
ical systems, only those Lyapunov exponents that are orthogonal to the tangent of the trajectory kj, where
j 2 {1, . . . ,N} ^ j5 tr, have to be taken into account. This consideration results in an improved measure for the sys-
tem�s flexibility Flex2, as given with Eq. (4). Since the Brusselator is only two-dimensional, only the second Lyapunov
exponent (k2) determines the phase space contraction along the trajectory, and thus Flex2 = k2. The results are pre-
sented in the phase space as grey-scaled stripes along the trajectory, where the grey intensity represents the strength
of the contraction (C1) orthogonal to the trajectory and is calculated according to the equation:
C1 ¼ �
X
j

kjkDrk; ð12Þ
where kDrk is the square norm of the distance orthogonal to the trajectory. Thereby, we get a topological picture of the
phase space where the grey intensity represents the landscape around the trajectory. If the sign of the C1 is positive, we
can imagine a _-shaped canyon surrounding the trajectory, whereby the depth is determined by the sum of the orthog-
onal Lyapunov exponents kj (in our case only k2). The larger the positive value of C1 is, the more difficult it is to force
the trajectory away from its originally determined path. If on the other hand C1 is negative, it can be imagined that the
trajectory moves on a ^-shaped hill. Thus, even a small perturbation results in a more or less large excursion of the
trajectory depending on the value of C1. Results, together with the applied forcing at several different times, are pre-
sented in Fig. 4. Basically, they reflect the results presented in Fig. 3. Nevertheless, Fig. 4 reveals two interesting phe-
nomena that need to be explained further. First, the direction of the forcing signal (the sign of h) is not irrelevant with
respect to the forcing effect. From Fig. 4(a) it can be well observed that the forcing signals with h > 0 (thick dotted lines)
evoke much larger excursion of the trajectory as in the case when h < 0 (thin dotted lines). This indicates that in fact the
approximation given by C1 is not completely accurate, and thus the true topology of the phase space around the tra-
jectory is more complicated, i.e. obviously it is not symmetric, but asymmetric. Second, the calculations of C1 also pre-
dict that the largest excursions of the trajectory should be obtained when the system is forced on the descending
diagonal part of the trajectory (Fig. 4(b)) where the phase space is divergent (note that C1 is negative in this part of
the limit cycle). However, when the same forcing signal as in Fig. 4(a) is applied to this part of the limit cycle, virtually
no excursion of the trajectory away from its originally determined path can be observed. Due to these anomalies there
still exists the need for further improvements concerning the above-presented measures for the flexibility of the dynam-
ical system.

To improve the estimation of the flexibility of a dynamical system, we have to take into account also the speed of the
trajectory along the attractor. If namely the speed of the trajectory in a given phase space point is very high, Flex2 is not
an appropriate measure for the flexibility of the system in that particular point because the system�s dynamics might
undergo extensive changes during the forcing time sd. Thus, to get an appropriate measure for the flexibility also in
cases where kFktr 6 const. and ktr(t) 6 0, we use the measure Flex3 = hFlex2i, as given with Eq. (5). The effectiveness
of Flex3 in comparison to Flex2 is presented in Fig. 5. It can be well observed that in Fig. 5(b) the positive divergent
parts of the limit cycle (see Fig. 5(a)) disappear, which indicates that the trajectory moves through the corresponding
parts of the phase space very fast, whereby the divergent parts average out. Since the duration of the divergent part is
much shorter than the duration of the attractive part, the whole section of the trajectory is still very robust to external
perturbations, and hence no excursions can be obtained in this part of the limit cycle. This result gives us a good expla-
nation why the applied external forcing in the descending diagonal part of the limit cycle (see Fig. 4(b)) does not evoke
any excursions of the trajectory away from its originally determined path, although Flex2 > 0.

Another question arising in Fig. 4(a) was, why the forcing signals with h > 0 (marked with thick dotted lines)
evoke much larger excursion of the trajectory as in the case when h < 0 (marked with thin dotted lines). This behaviour



Fig. 4. Application of the flexibility measure Flex2 on the Brusselator for various parts of the attractor. Thick dotted lines in (a) show
the impact of forcing for sd = 10.0 and h = 0.32, whilst thin dotted lines represent forcing effects for sd = 10.0 and h = �0.32.

Fig. 5. Comparison of the flexibility measures Flex2 (a) and Flex3 (b) for one oscillation period of the Brusselator.
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indicates that the topology of the phase space around the trajectory is asymmetric. However, the asymmetry cannot be
obtained by the mathematical measures defined by Eqs. (3)–(6) because the Lyapunov exponents represent the contrac-
tion of the phase space only infinitesimally close to the trajectory. Therefore, results presented in Fig. 4 are only valid
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for kDrk < e, where e ! 0. In other words, the true topology of the surrounding phase space at the same distance away
from the trajectory as shown in Fig. 4 is in fact very different. In order to see the true topological picture of the phase
space, we must calculate the norm of the vector field component orthogonal to the trajectory in every point of the phase
space according to the equation:
Fig. 6.
thick a
C2 ¼ F � Dr̂. ð13Þ
The results are presented in Fig. 6, where similarly as in Fig. 4 the grey-scale with assigned positive values represent
up-hills, i.e. obstacles that hinder effects of the applied forcing signal. In the left part of Fig. 6, it can be well observed
that the phase space to the left of the trajectory is steeper than to the right and thus excursions of the trajectory for h > 0
(thick dotted lines) are more expressed than for h < 0 (thin dotted lines).

Despite the fact that the above analysis provides a very deep insight into the dynamics of the mathematical model,
presenting such results for more than two-dimensional dynamical systems is very difficult and requires special tech-
niques. The biggest obstacle thereby represents the graphical presentation of obtained results. Note that for more than
two-dimensional systems phase space portraits are often entangled, as for example shown in Fig. 2. Nevertheless, we
believe that the results presented for such relatively simple dynamical systems as is the Brusselator are very enlightening
and persuasive, and thus the basic concept is worth developing further.

4.2. Results for the Hindmarsh–Rose model

As by the Brusselator, we first use the simplest approach in order to determine the flexibility of the system. In par-
ticular, we calculate the local divergence along the trajectory of the chaotic attractor Flex1, as given by Eq. (3). The time
course of x and the corresponding local divergence are presented in Fig. 7(a) and (b). Because, for the chosen parameter
values, the Hindmarsh–Rose model has a more complex dynamics than the Brusselator, these results are not as trans-
parent in terms of determining the flexibility of the system as in the previous case. The non-flexible areas of the attractor
characterized by well-expressed negative dells of local divergence are clearly visible, whereas the flexible parts are not so
obvious.

To shed more light on the flexibility of the chaotic attractor, we take into account only the Lyapunov exponents that
are orthogonal to the tangent of the trajectory, which are k2 and k3, and consider the speed of the trajectory along the
attractor by averaging the sum of the Lyapunov exponents over the forcing time sd = 1.0 (see Fig. 8). Thus, the flex-
ibility measure Flex3 as given by Eq. (5) is applied. The results are presented in Fig. 7(c), where positive (point A) and
close to zero (point B) parts of the time course of Flex3 represent the most flexible parts of the attractor, whereas the
negative parts (points C and D) represent more rigid, i.e. non-flexible areas of the phase space, which are difficult to
affect directly by the external forcing.

To demonstrate the effectiveness of the flexibility measure Flex3, we apply the external forcing in points A, B, C
and D of the time course as indicated by the arrows in Fig. 7(c). At all four points the duration of the pulse is kept
constant (sd = 1.0), whereas the amplitude of the external signal increases from point A to D. The increase of the
Orthogonal vector field component analysis of the Brusselator. The thin solid line denotes the nullcline of variable x, whereas
nd thin dotted lines show impacts of various external perturbations for the same parameter values as in Fig. 4(a).



Fig. 7. Application of the flexibility measures Flex1 and Flex3 on the Hindmarsh–Rose model. (a) Time course of variable x. (b) Time
course of local divergence (Flex1). (c) Time course of Flex3, whereby arrows indicate times at which the external forcing is applied in
Fig. 8.
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forcing amplitude h from the point A towards D has been introduced in order to increase the persuasiveness of pre-
sented results and to add more credibility to the applied flexibility measure. Flex3 namely predicts that at point A
the system is most flexible, whilst it becomes more and more rigid towards D. Results presented in Fig. 8 show that
this is indeed true even in the case of increasing amplitudes of the external forcing.

Before evaluating the results presented in Fig. 8 in more detail, it is important to keep in mind the key property of
chaos, which is the extreme sensitivity to changes in initial conditions. Thus, every applied external signal, regardless of
its amplitude and duration will, as time progresses, induce discrepancies between the perturbed (thick solid line in
Fig. 8) and unperturbed trajectory (thin solid line in Fig. 8). Thus, in order to evaluate solely the effects of the external
forcing and not the intrinsic dynamics of the system, one has to consider the difference that emerges between the per-
turbed and unperturbed trajectory immediately after the applied perturbation, since the latter discrepancy is the direct
consequence of the external signal. The results in Fig. 8 fully confirm the predictions regarding the system�s flexibility
that where inferred from Fig. 7(c). It can be well observed that at point A already a small-amplitude forcing immedi-
ately evokes a new spike in the time course of x, whereas at point C, for example, even a more than three times stronger
external signal cannot induce the same perturbation. Furthermore, at point D the immediate impact of an even stronger
external perturbation is extremely minute, which confirms the prediction that the system is very rigid at that point. Note
that the induced discrepancy becomes eligible only after one whole oscillation cycle, which is, however, solely the con-
sequence of the system�s chaotic dynamics. In summary, results presented in Fig. 8 clearly underline the successfulness
of the applied flexibility measure Flex3 also for chaotic systems, thus confirming its overall effectiveness and wide appli-
cability range.
5. Discussion

We present four different measures for determining the flexibility of regular and chaotic attractors. The most
straightforward measure, given by the local divergence of the system along the attractor (Flex1), provides useful



Fig. 8. Effects of external forcing on the Hindmarsh–Rose model at various times denoted by arrows in Fig. 7(c): (a) sd = 1.0 and
h = 0.13, (b) sd = 1.0 and h = 0.33, (c) sd = 1.0 and h = 0.42, (d) sd = 1.0 and h = 0.55.
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insights, especially for simple oscillators, whereas for complex systems it must be accompanied by additional descriptive
explanations or replaced by more powerful mathematical measures. As the first improvement, we propose to eliminate
from the sum of all Lyapunov exponents, giving the local divergence of the system, those that measure the contraction
of the phase space along the trajectory. Thereby, we obtain the flexibility measure Flex2. Similarly as Flex1, however,
the latter also suffers from the fact that during the forcing time, the system�s dynamics might change substantially,
which is especially true for system with time-scale separation. Thus, in such cases the local measures Flex1 and Flex2
are not appropriate since they do not take into account the speed of the trajectory along the attractor. To overcome
this deficiency, as the second improvement, we propose to integrate Flex2 over the duration of the forcing time, thus
yielding Flex3 = hFlex2i, which can be considered as the most appropriate and widely applicable measure for determin-
ing the flexibility of regular as well as chaotic attractors, while still being fairly easy to implement. Nevertheless, Flex3
also has some debility, and can be improved further. In particular, since it relies on the Lyapunov exponents, it provides
information about the contraction/divergence of the phase space only infinitesimally close to the trajectory, and gives
no insights on the surrounding phase space. This information, on the other hand, can be obtained by calculating the
vector field component orthogonal to the trajectory, whereby the true phase space topology can be made visible. How-
ever, the task of presenting such results for more than two-dimensional systems is rather difficult, and so the develop-
ment of appropriate graphical tools is left for future studies.

Furthermore, we also outlined an appropriate approach for higher dimensional systems (Flex4), where it can occur
that only one or few Lyapunov exponents have very negative values, whilst all others are close to zero. In such cases, the
values of all above-discussed measures (Flex1, Flex2, and Flex3) would still be very negative, thus indicating a very rigid
system, which cannot be easily altered by an external forcing. Nevertheless, this interpretation would be false, since in
this case the system still has many degrees of freedom that are very susceptible to external perturbations (directions
characterized by close to zero Lyapunov exponents), with only one or few rigid phase space directions. Thus, for higher
dimensional systems, it is advisable to calculate Flex4, which means that in the sum of Lyapunov exponents all non-
extreme Lyapunov exponents are included, whereas the remaining degrees of freedom are evaluated separately for
the flexibility.
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The flexibility of a dynamical system is a key property since it constitutes responses to external perturbations, which
are omnipresent and affect the functioning of artificial as well as biological systems. In making projects for tall building,
for example, scientists have to be able to foretell impacts of strong winds, earthquakes, and other natural forces on the
building, since thereon often rely lives of many people. Even more importantly, the nowadays ever-present wireless
communication technologies have made electromagnetic radiation a permanent companion of our every day lives.
Obviously, it is of outstanding importance to understand how such external influences might affect the functioning
of the human brain, as well as other organs and cells in living organisms. Interestingly, controlled external perturba-
tions may be used to improve the performance of biological systems, either by restoring normal, i.e. healthy, system
functioning or enhancing their overall effectiveness. It has been shown experimentally that external electromagnetic
fields can facilitate cartilage growth and bone healing [48–52]. On the cellular level, it has been found that the electri-
cally stimulated Ca2+ influx into the human oocytes can resume apparently normal fertilisation and early embryonic
development in the oocytes that fail to fertilize after intracytoplasmic sperm injection [53]. Other well-known examples
of positive influences on functioning of whole organs are also reanimation of the human heart with electroshocks [54],
or treatments of psychic diseases with electric stimuli applied to the brain [55], for example. All these phenomena have
not yet been fully explained by the scientific community. While the reanimation of the human heart with strong elec-
troshocks may seem self-explanatory and has been used successfully for many decades, other phenomena seem to have
more intriguing background and are subject of fearsome debate [56]. Although answers to the above questions are often
sought and obtained experimentally, mathematical modelling might be the tool-of-choice for the future, providing in-
sights that are currently not attainable experimentally, or outlining innovative directions for future experimental work,
whereby the determination of flexibility of resulting mathematical models will be of crucial importance.
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