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Abstract

We study effects of spatiotemporal additive noise on the spatial dynamics of excitable neuronal media that is locally
modelled by a two-dimensional map. We focus on the ability of noise to enhance a particular spatial frequency of the
media in a resonant manner. We show that there exists an optimal noise intensity for which the inherent spatial peri-
odicity of the media is resonantly pronounced, thus marking the existence of spatial coherence resonance in the studied
system. Additionally, results are discussed in view of their possible biological importance.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

It is a well-documented fact that noise can enhance the response of a system to weak external stimuli in a resonant
manner [1,2], whereby this phenomenon has been termed accordingly as stochastic resonance. Remarkably, construc-
tive effects of noise can be observed also in the absence of any deterministic external inputs in systems with no explicit
time scales [3,4]. This striking phenomenon, on the other hand, has been termed coherence resonance [5].

Following advances in the study of constructive effects of noise on temporal systems, noise effects on system with
spatial degrees of freedom [6] have also gained a lot of attention during the past decade. Spatiotemporal stochastic res-
onance has been first reported in [7] for excitable systems, while spatial coherence resonance has been introduced in [8]
for systems near pattern forming instabilities. Moreover, there exist studies reporting noise-induced spiral growth and
enhancement of spatiotemporal order [9–14], noise sustained coherence of space–time clusters and self-organized crit-
icality [15], noise enhanced and induced excitability [16,17], noise induced propagation of harmonic signals [18], as well
as noise sustained and controlled synchronization [19] in space extended systems. Remarkably, stochastic resonance can
also be observed in a noise-free environment in systems with spatiotemporal on–off intermittency [20], whereby the term
dynamical stochastic resonance was proposed to described the phenomenon.

Until now, however, little attention has been devoted to the explicit analysis of characteristic spatial frequencies of
nonlinear media. Following the seminal work of Carrillo et al. [8], we recently showed that additive or multiplicative
spatiotemporal noise is able to enhance a particular spatial periodicity of excitable media in a resonant manner [21,22].
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Thereby, we were able to extend results reporting spatial coherence resonance published previously in [8] for system
near pattern-forming Turing instabilities also to excitable media.

In the present study, we provide first evidences for spatial coherence resonance in excitable neuronal media with dis-
crete local dynamics. Map-based media models are computationally more efficient than their time-continuous counter-
parts, and thus present a more appropriate environment for large-scale network modelling, as advocated in [23].
However, although being able to replicate complex experimentally observed neuronal behaviour, it is of interest to ver-
ify if discrete systems also possess similar properties with respect to noisy perturbations. Recently, Jiang [24] has shown
that a discrete temporal neuronal model is able to exhibit multiple resonances in response to periodic stimuli and addi-
tive or parametric noise. Here, on the other hand, we focus on the spatial dynamics of noise-induced patterns in locally
discrete neuronal media.

In order to evidence spatial coherence resonance in the system, we analyse spatial frequency spectra in dependence
on different levels of additive spatiotemporal noise. Note that although stochastic [25] and coherence resonance [26–29]
phenomena have been extensively studied in arrays of dynamical systems, our work focuses explicitly on the spatial
[8,21,22] rather than temporal or spatiotemporal system scale. In particular, we show that there exists an optimal level
of additive noise for which a particular spatial frequency of the system is resonantly pronounced. We emphasize that no
additional deterministic inputs are introduced to the system, and the latter is locally initiated from steady state initial
conditions. Hence, the studied spatial structures are induced solely by additive noise and reflect an inherent spatial peri-
odicity of the media.

The excitable media under study is locally modelled by a discrete two-dimensional map that has been recently pro-
posed by Rulkov [30] to describe the regularization of an array of chaotically oscillating neurons. Since neurons are
known to be noisy analog units, which only if coupled can carry out highly complex and advanced computations with
cognition and reliability [31], it is evident that excitable neuronal tissue combines features of being both noisy and spa-
tially extended. Therefore, our study is strongly motivated also from the biomedical point of view, and hopefully out-
lines some possibilities for future experimental work, especially in the field of neuroscience, where excitability and noise
in space extended systems appear to be universally present.
2. Mathematical model

The studied mathematical model of locally discrete excitable media is given by
uiþ1 ¼ a=ð1þ u2
i Þ þ vi þ Dr2ui þ n; ð1Þ

viþ1 ¼ vi � bui � c; ð2Þ
where the neuron cell membrane voltage ui(x,y) and the variation of ion concentration near the neuron membrane
vi(x,y) are considered as dimensionless two-dimensional scalar fields on a n · n square lattice with mesh size Dx = Dy,
whereby the local dynamics of ui is much faster (b,c� 1) than that of vi, whose diffusive spread is also neglected. More-
over, n is spatiotemporal additive Gaussian noise with zero mean, white in space and time, and variance r2 [6]. The
Laplacian D$2ui, D being the diffusion coefficient, is integrated into the numerical scheme via a five-point finite-differ-
ence formula as described by Barkley [32] with no-flux boundary conditions. For parameter values a < 2 and
b = c = 0.001 the local dynamics is governed by an excitable steady state (u*,v*) = (�1,�1 � a/2), whilst for a > 2
the discrete model exhibits various oscillatory behaviour ranging from simple spike-like to chaotic bursting oscillations
[30]. For a more detailed analysis of the local dynamics of the model we refer the reader to the original article [30], as
well as to Refs. [23,33,34], where a slightly more elaborate but similar map-based neuronal model is analysed. In what
follows, we will show that there exists an optimal intensity of additive spatiotemporal noise n for which a particular
spatial frequency of the media is resonantly pronounced, thus providing evidences for spatial coherence resonance in
the studied system.
3. Spatial coherence resonance

To quantify effects of various noise intensities on the spatial scale of the studied system we calculate the structure
function according to the equation
Pðkx; kyÞ ¼ hH 2ðkx; kyÞi; ð3Þ
where H(kx,ky) is the spatial Fourier transform of the ui-field at a particular i, and h� � �i is the ensemble average over
noise realizations. Note that P(kx,ky) can also be interpreted as the spatial power spectrum of the system. Fig. 1 shows



Fig. 1. Two-dimensional power spectra of the spatial profile of ui for r = 0.0033 (left panel), r = 0.0038 (middle panel), and r = 0.0048
(right panel). Parameter values used for the calculations where a = 1.99, b = c = 0.001, D = 0.02, n = 128, and Dx = 1.0, whereby the
system was initiated from steady state initial conditions from all lattice sites.
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three spatial power spectra for various additive noise levels. It can be well observed that for small noise levels the pre-
sented spectrum shows no particularly expressed spatial frequency. For somewhat larger r, however, the spectrum
develops waterfall-like well-expressed circularly symmetric rings, indicating the existence of a preferred spatial fre-
quency induced by additive noise. As the noise level is further increased random fluctuations start to dominate the spa-
tial scale and thus, similarly as by small noise levels, no preferred spatial frequency can be inferred.

To study results presented in Fig. 1 in more detail, we exploit the circular symmetry of the presented spatial power
spectra as proposed in [8]. In particular, we calculate the circular average of the structure function according to the
equation
Fig. 2.
differe
pðkÞ ¼
Z

Xk

P k
*� �

dXk ; ð4Þ
where k
*

¼ ðkx; kyÞ, and Xk is a circular shell of radius k ¼ k
*���
���. Left panel of Fig. 2 shows results for three different r. It

can be observed that there indeed exists a particular spatial frequency, marked with the thin solid line at k = kmax, that
is resonantly enhanced for some intermediate level of additive noise. To quantify the ability of each particular noise
level to extract the characteristic spatial periodicity in the system more precisely, we calculate the signal-to-noise ratio
(SNR) as the peak height at k = kmax normalized with the background fluctuations existing in the system. This is the
spatial counterpart of the measure frequently used for quantifying constructive effects of noise on the temporal domain
of dynamical systems [35], whereas a similar measure for quantifying effects of noise on the spatial scale of space ex-
tended systems was also used in [8]. Right panel of Fig. 2 shows how the SNR varies with r for three different diffusion
constants D. It is evident that there always exists an optimal level of additive noise for which the peak of the circularly
averaged structure function is best resolved, thus indicating the existence of spatial coherence resonance in the studied
locally discrete excitable media.
Spatial coherence resonance in the studied map-based excitable media. (a) Circular average of the structure function for three
nt r at D = 0.02. (b) SNR in dependence on r for various diffusion constants. Other parameter values are the same as in Fig. 1.



Fig. 3. Characteristic snapshots of the spatial profile of ui at optimal r for D = 0.005 (left panel), D = 0.01 (middle panel), and
D = 0.02 (right panel). Note that all figures are depicted on 128 · 128 square grid with a linear colour profile, blue marking �1.6 and
red 0.0 values of ui. (For interpretation of colours in this figure legend, the reader is referred to the web version of the article).
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The existence of a characteristic spatial periodicity in the studied media at the optimal r can be well corroborated by
studying snapshots of typical ui-field configurations for various D, as presented in Fig. 3. It is evident that for all D there
exists an inherent spatial scale that is resonantly enhanced by additive noise, thus providing visible evidences that sup-
port results presented in Figs. 1 and 2. Importantly, note how the characteristic scale, i.e. the width of noise-induced
patterns, increases with increasing D from left towards the right panel in Fig. 3. As we will argue next, this observation
holds the key to explaining the above-reported spatial coherence resonance in locally discrete excitable media.

It is an establish fact that coherence resonance phenomena in temporal excitable systems with no explicit time scales
can be attributed to different noise dependencies of the activation (ta) and excursion time (te) [5]. In particular, since te is
much more robust to noisy perturbations [36] than ta, there exists an optimal noisy intensity where ta� te but still fluc-
tuations of te are moderate, thereby marking the most coherent response of the system in dependence on r. Jiang [24]
has recently advocated that for discrete systems the coherence resonance, both in excitable as well as oscillatory states,
must also be attributed to the very noise susceptible initial stage of oscillations. Here we extend this reasoning to sys-
tems with spatial degrees of freedom by taking into account the rate of diffusive spread in each particular space direc-
tion that is proportional to

ffiffiffiffi
D
p

[37]. We argue that during te a particular lattice site acts like a circular (after local
initialization all directions for spreading are equally probable) front initiator. After initialization the front starts to
spread through the media with a rate proportional to

ffiffiffiffi
D
p

. When embarking on neighbouring sites the front can,
depending on the level of additive noise, cause new excitation or eventually die out. In particular, if r is large enough,
i.e. ta short enough, neighbouring sites have a large probability to also become excited, which eventually nucleates a
wave that propagates through the media. Since larger D constitute faster diffusive spread, it is understandable that
the characteristic spatial scale of coherent structures induced by increasing D increases (see Fig. 3). However, since
Fig. 4. Dependence of the optimal spatial wave number kmax, corresponding to the maximum of p(k) at the optimal r, on different
values of D. Dots indicate numerically obtained values, whereas the solid line indicates the predicted dependence kmax ¼ 1=

ffiffiffiffiffiffi
sD
p

.
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for larger D local excitations tend to die out more quickly, and larger coherent structures also require a higher rate of
local excitations to propagate through the media, it is evident that shorter ta (larger r) are required to produce sustained
waves. This explains the increasing r that is required for the optimal response at ever-larger D, as shown in the right
panel of Fig. 2. Furthermore, since larger r blur local excursion phases (te) as well, the maximal spatial coherence
(SNR) that can be achieved by additive noise decreases with increasing D. In summary, we emphasize that the noise
robust excursion time te, combined with the diffusive spread rate proportional to

ffiffiffiffi
D
p

, marks an inherent spatial scale
of the media that is indicated by the resonantly enhanced spatial wave number kmax. Since the characteristic spatial scale
is determined by the inverse of the resonantly enhanced spatial wave number, our reasoning thus predicts the depen-
dence kmax ¼ 1=

ffiffiffiffiffiffi
sD
p

, whereby s / te � constant. Fig. 4 shows numerically obtained kmax for different D. It is evident
that obtained values are in excellent agreement with the inverse square root function, thereby validating our above
explanation. Nevertheless, an open question remains how the constant s is explicitly linked to te, which is left as a prob-
lem to be solved in future studies. The main point is that the inverse square root function fits to the numerically ob-
tained values with a constant s, which reflects a noise robust te that is characteristic for discrete and continuous
excitable systems [5,24]. Together with a given D, this property of excitable systems constitutes an inherent spatial scale
that can be resonantly enhanced by additive noise, thus in our case explaining the existence of spatial coherence reso-
nance in locally discrete excitable media.
4. Discussion and outlook

We show that spatiotemporal additive noise is able to extract an inherent spatial scale of map-based excitable media
in a resonant manner. In particular, there exist an optimal level of additive noise for which the spatial periodicity of the
system is resonantly pronounced. Thus, the presented results offer convincing evidence for the existence of spatial coher-
ence resonance in the studied media. We argue that the observed phenomenon occurs as a consequence of different noise
dependencies of the activation and excursion times of the local map whereby the diffusion constant, representing the
rate of diffusive spread, determines the actual resonant spatial frequency, which decreases with increasing D.

The present study supports the appropriateness of map based neuronal models for simulating complex large-scale
neurobiological networks, as previously advocated in [23]. Particularly, in conjunction with studies regarding the tem-
poral dynamics of noise-induced behaviour [24], our results show that discrete models possess identical noise-response
properties as their continuous counterparts. Thus, given the computational efficiency of map-based models, combined
with their ability to fully replicate complex autonomous as well as noise-induced temporal and spatial behaviour of con-
tinuous models, we argue that they have a bright future in mathematical modelling of entangled biological systems.

Moreover, since it has been discovered that excitable systems guarantee robust signal propagation through the neu-
ronal tissue in a substantially noisy environment [38], and studies evidencing the existence of stochastic resonance in the
human brain have recently been mounting [39–42], it would be very interesting to elucidate if spatial coherence reso-
nance in the nervous system can be confirmed also experimentally. In conjunction, it would be extremely interesting
to elucidate if, similarly as in temporal systems, in space extended systems also the so-called spatial stochastic resonance
can be observed. Since given the omnipresence of wireless communication techniques nowadays, deterministic-like
external influences like electromagnetic radiation also affect the functioning of neuronal tissue, it is of outstanding
importance to provide insights into how such spatially periodic deterministic signals, in conjunction with stochastic
fluctuations, might affect the brain functioning as well.
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