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Noise-delayed decay occurs when the first-spike latency of a periodically forced neuron
exhibits a maximum at particular noise intensity. Here we investigate this phenomenon
at the network level, in particular by considering scale-free neuronal networks, and under
the realistic assumption of noise being due to the stochastic nature of voltage-gated ion
channels that are embedded in the neuronal membranes. We show that noise-delayed
decay can be observed at the network level, but only if the synaptic coupling strength
between the neurons is weak. In case of strong coupling or in a highly interconnected pop-
ulation the phenomenon vanishes, thus indicating that delays in signal detection can no
longer be resonantly prolonged by noise. We also find that potassium channel noise plays
a more dominant role in the occurrence of noise-delayed decay than sodium channel noise,
and that poisoning the neuronal membranes may weakens or intensify the phenomenon
depending on targeting.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

A challenging research issue in neuroscience is the
understanding the neural coding mechanism in the ner-
vous system. In the past decades, much effort has been de-
voted to explain how neuronal information is represented
by the individual or ensemble neuronal activities [1]. So far
many neural encoding mechanisms have been proposed,
including the rate coding [2,3], temporal coding [4,5], pop-
ulation coding [1,6], synchrony coding [7], transient coding
[8], latency coding [9,10]. Among these encoding mecha-
nisms, latency coding is a fast and energy efficient theoret-
ical hypothesis, assuming that neurons may perform
information processing with only one spike considering
the appearance time of the first spike in response to a stim-
ulus. First-spike latency coding has been studied with
experimental protocols in different neuronal structures
such as somatosensory [10,11], olfactory [12], auditory
[13,14] and visual systems [15,16], and it has been shown
that the first spike latency conveys a considerable amount
of, or even more, information than those of other spikes.
Latency coding has also been suggested as an underlying
mechanism for the rapid response process in the nervous
system of humans and animals [17].

Besides these experimental works, many theoretical
and computational studies have also been performed to
investigate the influence of different biophysical mecha-
nisms shaping the first-spike latency response of neurons
[18–26]. In this context, it has been shown that the neuro-
nal noise, as a ubiquitous biophysical component in the
nervous system, significantly influences the first-spike la-
tency dynamics of model neurons. Pankratova et al.
[18,19] analyzed the impact of noise on the response la-
tency of Fitzhugh–Nagumo and Hodgkin–Huxley (H–H)
neuronal models driven by a suprathreshold periodic forc-
ing, and obtained a non-monotonic dependence of the
mean latency on the noise strength at the frequency
boundaries of the suprathreshold spiking regime. More
precisely, for small noise levels, spike latency does not
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change very much. For moderate noise levels, however, the
noise induces an increase in spike latency indicating the
delay in signal detection. Finally, for too high noise levels,
the system is dominated by the noise and the spike latency
gets lower values than the deterministic case. The authors
attributed this resonance-like behavior of the spike latency
to a phenomenon called ‘‘noise delayed decay’’ (NDD),
which was also previously described in potential systems
by Mategna et al. [27], and suggested that their results
demonstrated the first example of NDD in excitable
systems.

So far, although the NDD has been extensively studied,
all the previous works [18,19,21,23,25] considered the sub-
ject on the level of single cell. Since the neurons in vivo are
embedded in networks of active cells, a naturally arising
question to be tackled is that whether the NDD is present
at the level of neuronal networks, if yes, how the topolog-
ical properties of the network influence the phenomenon.
To our knowledge, the first attempt has been carried out
by Ozer and Uzuntarla [22] to study the NDD phenomenon
on the small-world neuronal network. Ozer and Uzuntarla
[22] showed that increasing the number of random short-
cuts within the network decreases the NDD effect for an
intermediate coupling strength, indicating the network
structure plays a key role by providing an additional oper-
ating regime, that is absent in the regular network. How-
ever, that attempt assumed a controlled source of noise
that affects the neuron dynamics additively and, in most
cases, without concerning of biological reality. However,
such assumption is no longer valid in in vivo experiments
in actual neural systems, where noise is mainly the result
of the inherent activity of the neurons, and therefore not
easily can be controlled by the experimentalist [28]. Thus,
realistic noise modeling approaches are required to explain
the occurrence of NDD in neural systems with concrete
biological mechanisms. From a biophysical standpoint, an
important source of noise in neurons is that the stochastic
dynamics of voltage-gated ion channels, i.e. random transi-
tions between open and closed states. The fluctuations of
the number of open ion channels around the correspond-
ing mean values give rise to random ionic conductance
fluctuations. Works by various groups [29–34] have shown
how channel noise can modify excitability, cause sponta-
neous firing and result in variability in spike timing as well
as interspike intervals.

To answer the aforementioned questions, we systemat-
ically investigate the NDD in a population of Hodgkin–
Huxley neurons by using a realistic approach for the noise
in the system. We explicitly model noise as resulting from
the stochastic nature of voltage-gated ion channels embed-
ded in the neuronal membrane. In addition, as the under-
lying topology of the neuron population, we construct a
scale-free (SF) complex network because a power law dis-
tribution of the degree of neurons has been found applica-
ble for the real brain networks [35]. We examine how
topological features of the network, i.e. coupling strength,
average connection degree, influence the NDD. By control-
ling the number of working ion channels in neuronal mem-
branes, we also analyze the contributions of specific
channel subunits to the occurrence of NDD in the consid-
ered system.
2. Model and methods

To effectively simulate neuronal dynamics on the scale-
free networks of neurons, we used the stochastic Hodgkin–
Huxley neuron model, being biophysically more realistic
one. In the network, the time evolution of the membrane
potential of the each coupled neuron is given by the fol-
lowing equation [19]

Cm
dVi

dt
¼ �GNaðmi; hiÞðVi � VNaÞ � GKðniÞðVi � VkÞ

� GLðVi � VLÞ þ
X

j

eij½VjðtÞ � ViðtÞ� þ sðtÞ; ð1Þ

where Vi denotes the membrane potential of the neuron
i = 1, 2, . . ., N (N is the total number of neurons within the
network). GNa, GK and GL denote sodium, potassium and
leakage conductance, respectively. Cm = 1 lF/cm2 is the
membrane capacitance. VNa = 115 mV, VK = �12 mV and
VL = 10.6 mV are the reversal potentials of sodium, potas-
sium and leakage currents, respectively. In the model, the
leakage conductance is equal to GL = 0.3 m S cm�2,
while the sodium and potassium conductance change
dynamically in accordance with the following two
equations:

GNaðmi;hiÞ ¼ gmax
Na xNam3

i hi; GKðniÞ ¼ gmax
K xK n4

i ð2Þ

In Eq. (2), gmax
Na ¼ 120 mScm�2 and gmax

K ¼ 36 mScm�2 are
the maximum sodium and potassium conductance, respec-
tively. xNa and xK are the two scaling parameters that rep-
resent the proportion of the working (non-blocked) ion
channels to the overall number of sodium and potassium
channels, respectively. Unless stated otherwise, we set
the scaling factors xNa = xK = 1. Here, we consider that all
the neurons in the network are subjected to a strong peri-
odic signal s(t) = A sin(xt) which is supra-threshold. We set
the amplitude of the periodic signal to A = 4 lA/cm2 as in
Pankratova et al. [19] and, set the frequency of periodic sig-
nal to x = 0.13 ms�1 (�20 Hz) which is just above the fir-
ing threshold (16 Hz) for the amplitude of 4 lA/cm2 [19].
eij denotes coupling strength between neurons i and j. If
neurons i and j are connected then eij = e, otherwise equal
to zero. m and h denote the activation and inactivation of
gating variables for the sodium channel, respectively,
whereas the potassium channel includes an activation gat-
ing variable n.

In the HH model, dynamics of gating variables change
over time as a function of membrane potential determinis-
tically [36]. To take into account the stochastic ion channel
dynamics, we use the Fox’s algorithm presented in [37]
due to its widespread use and computational efficiency.
In the Fox’s algorithm, the gating variables are described
by the following Langevin generalization [37]:

dyi

dt
¼ ayi

ð1� yiÞ � byyi þ fyi
ðtÞ; y ¼ m;n;h ð3Þ

where ayi
and byi

are the voltage-dependent rate functions
for the gating variable yi, defined in units of ms [36,37]. The
stochasticity fyi

, occurring due to the random opening and
closing of individual ion channels, is modeled as an inde-
pendent zero mean Gaussian white noise whose autocorre-
lation functions are given as follows [37]:
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fmðtÞfmðt0Þh i ¼ 2ambm

NNaxNaðam þ bmÞ
dðt � t0Þ ð4aÞ

fhðtÞfhðt0Þh i ¼ 2ahbh

NNaxNaðah þ bhÞ
dðt � t0Þ ð4bÞ

fnðtÞfnðt0Þh i ¼ 2anbn

Nkxkðan þ bnÞ
dðt � t0Þ ð4cÞ

where NNa and NK represent the total numbers of sodium
and potassium channels in a given cell membrane area,
respectively. The total channel numbers are calculated as
NNa;K ¼ qNa;K

�ðCellMembraneAreaÞ. The number of channels
per square micrometer of membrane area is qNa = 60 for
sodium and qK = 18 for potassium, respectively [21–
23,36,37]. One can easily obtain from Eq. (4) that the inten-
sity of the channel noise depends on the cell membrane
area for a given channel density. When the cell size is large
enough, stochastic effects of the channel noise become
negligible and the collective dynamics approach the deter-
ministic description. However, when the cell size is small,
stochastic dynamics of the individual channels have signif-
icant effects on the membrane dynamics [23].

Following the procedure in [38,39], we construct a
scale-free neuronal network which comprises N = 200
identical H–H neurons. Then, we define the latency to first
spike for each neuron as the time of the first upward cross-
ing of the membrane potential past a fixed detection
threshold value of 20 mV, which equals to the value used
in [19,21,22]

To analyze the response dynamics of the network, we
will refer to the mean value of the appearance time of
the first spikes for each neuron as the mean response time
(MRT). Then, the mean response time (MRT) of the net-
work is computed as follows:

MRT ¼ 1
N

XN

i¼1

ti

* +
ð5Þ

where ti is the appearance time of the first spike for the
neuron i within the network. We also compute the
Fig. 1. Noise delayed decay in a scale-free network of stochastic Hodgkin–Huxley
fixed value of the average degree kavg = 4. (a) The mean response time vs. the cell
cell membrane area.
standard deviation of the appearance time of the first
spike, or temporal jitter as follows:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

t2
i �

1
N

XN

i¼1

ti

 !2
vuut* +

ð6Þ

In Eqs. (5) and (6), h�i represent the averaging process over
50 different network realizations. For each network real-
izations, we assumed that the initial conditions are the
same for all neurons within the network as in [19,21,22].

3. Results and discussions

Having established that the NDD phenomenon, as pre-
viously described in the literature, occurs on the level of
a single cell, we now investigate the phenomenon on the
level of network. We first examine whether the channel
noise is able to induce NDD in a scale-free neural network
and, how the key topological properties of the network
influence the first-spike latency dynamics of the popula-
tion in response to a suprathreshold periodic driving. To
do so, we set the average connection degree of neurons
kavg = 4, and compute the mean response time (MRT) and
its standard deviations, henceforth called jitter, as a func-
tion of the cell membrane area for five different values of
the synaptic coupling strength. Fig. 1a and b feature the
obtained results. When the cell membrane area is large,
regardless of the level of synaptic coupling strength within
the neurons, it is seen that the MRT of the network is very
close to the first-spike timing of deterministic single neu-
ron. This is due to the very large number of ion channels
embedded in neuronal membranes which impart very
weak stochasticity to neurons’ dynamics. Thus, all the neu-
rons in the network are locked to the external stimulus
and, act synchronously resulting in a nearly zero synaptic
current. However, with the decrease in cell size from large
values, the influence of intrinsic ion channel noise and syn-
aptic coupling strength begin to arise. More precisely, for
most of the range of coupling strengths of interest in
Fig. 1, MRT and the jitter increase substantially as the cell
neurons for different values of electrical coupling strength e obtained by a
membrane area, (b) The jitter of the response latencies as a function of the
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size decreases up to a moderate value. After reaching some
maximum, they start to decrease with further decrease in
cell size. This increase for a particular range of cell size
(noise strength) and then later decrease in MRT indicates
a clear signature of channel noise induced NDD in our con-
sidered system. Importantly, it is also seen in Fig. 1 that the
synaptic coupling strength acts as a scaling factor in deter-
mining the NDD level in the network: increased values of e
decrease the maximums of MRT and jitter. This means that
delay in external signal detection can be reduced or mini-
mized in a strongly coupled neuron population, as well as
the temporal spiking precision can be enhanced. Indeed,
for very large values of e (see e P 0:04 curves), MRT and jit-
ter do not change very much for almost full span of mem-
brane area. Similar influences of e on NDD were also
reported in our previous work [22] where the underlying
network topology for the population was a small-world
network structure. Thus, we suggest that the high synaptic
coupling strength in a neuron population reduces the NDD
effect regardless of the network topology.

To gain more insight into the dependence of NDD on
scale-free network’s topological features, we further
investigate the influence of average connection degree
of neurons on NDD. We carried out this investigation be-
cause kavg determines the density of interneuronal links
within the network, and it is accordingly an important
parameter. For this purpose, we fix the synaptic coupling
strength e = 0.01 so as to lead NDD in MRT against cell
membrane area, then calculate the MRT and jitter for dif-
ferent values of kavg. Fig. 2 illustrates the obtained re-
sults. It is seen that the impact of increasing kavg is
comparable to the impact of increasing e when compared
to the MRT and jitter presented in Fig. 1. Namely,
although there exists a constant coupling strength within
the neurons in the network, increased values of kavg de-
creases the MRT and jitter indicating that delay in exter-
nal signal detection due to the intrinsic noise can be
reduced or even completely removed (for kavg = 12, data
not shown here), and temporal spiking precision can be
Fig. 2. The dependence of response time statistics on the average degree
obtained by a fixed value of e = 0.01. The mean response time and the
jitter of response latencies (inset) as a function of cell membrane area.
enhanced in a scale-free network with high interneuronal
link density.

Following above investigations, where we showed that
NDD might occur in neural systems as a consequence of
ion channel stochasticity and, the network features might
play a constructive role in minimizing this effect, we inves-
tigate now the relative contributions of different channel
subunits on the occurrence of this phenomenon in our con-
sidered system. To understand the role of specific ion chan-
nels, we constructed a hybrid stochastic HH system for
each neuron in the network in which one of the channel
populations are stochastic and the other deterministic,
and simulated the system for three different cases: (1)
Na channels stochastic, K channels deterministic, (2) K
channels stochastic, Na channels deterministic, (3) both
Na and K channels are stochastic. Notably, we considered
a scale-free network configuration with e = 0.01 and
kavg = 4 so as to work in a regime where the NDD is present.
The obtained results are shown in Fig. 3. It is seen that
regardless of the source of stochasticity from ion channels,
NDD still appears as a function of cell membrane area.
However, when only the Na channels are stochastic, the
maximums in MRT and jitter get lower values, and further-
more, NDD occurs at smaller cell sizes compared to the
fully stochastic model. This is due to the difference in total
number of sodium and potassium channels for a given cell
size, that is the Na channel density for a given membrane
patch area is 3.3 times larger than the K channel density
(qNa/qK ffi 3.3). Based on the previous statistical models
on ion channel populations, the size of open channel fluc-
tuations is proportional to 1=

ffiffiffiffiffiffiffi
Nch
p

, favoring that ion chan-
nels with large number of population Nch impart less
fluctuation to the related ionic conductance [34]. Thus,
Na channel stochasticity alone is able to provide the re-
quired conductance fluctuations at smaller cell sizes for
the occurrence of NDD effect. On the other hand, when
only the K channels gated stochastically, we see that
MRT and jitter curves closely follow the trend of fully sto-
chastic model, indicating that K channels are more domi-
nant than Na channels in determining the NDD in the
considered system. This might be due to the difference in
timescales of these two types of channels, where the K
channels work with slower gating kinetics than the Na
channels. Because the membrane capacitance acts as a
low pass filter, noise from channels with faster kinetics
(Na channels) is more attenuated than the noise from
channels with slower kinetics (K channels) [40,41]. Our
findings on the contributions of different subunits to
NDD are consistent with the previous works reporting that
the K channel stochasticity accounts ffi 75% of the total
channel noise [29,41,42] and it is the dominant effect in
determining the spike-time reliability [33,42].

Finally, we examine how the number of working ion
channels for a given membrane patch influences the NDD
phenomenon. This investigation is carried out because
although the intensity of channel noise is related with
the total number of ion channels, its actual impact is deter-
mined by the number of channels that are open near the
threshold for spike firing. Previously, Schneidman et al.
[33] reported that there is a short distance in terms of
the number of open channels between spiking and non-



Fig. 3. Relative contributions of sodium and potassium channels noise to the occurrence of NDD in a scale-free network obtained by fixed values of e = 0.01
and kavg = 4. (a) The mean response time vs. cell membrane area for three different sources of channel noise. (b) The jitter of the response latencies as a
function of the cell membrane area for three different sources of channel noise.
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spiking stable states, and that fluctuations due to only a
few channels are responsible for the transition between
these two stable states. Therefore, controlling the number
of working ion channels for a given membrane patch is
of great importance to understand the impact of different
channel subunits on neuronal dynamics, particularly here
on NDD. In this context, some toxins such as tetraethylam-
monium (TEA), tetradotoxin (TTX) and saxitoxin (STX) are
widely used in experiments to block or reduce the number
of specific ion channels [43,44]. Here, by using the fully
stochastic model for a network configuration by e = 0.01
and kavg = 4, we vary the density of one channel type
(either xNa or xK) while keeping the other equal to one. Ob-
tained results are presented in Fig. 4a for potassium and in
Fig. 4b for sodium ion channel block. In the case of potas-
sium channel block, MRT of the network decreases gradu-
ally with the reduction of working potassium channels,
indicating that signal detection performance of the net-
work is improved by potassium channel block. Moreover,
although the NDD effect on MRT still appears as a function
of cell size for all values of xK, the cell size (noise intensity)
Fig. 4. The dependence of mean response time on cell membrane area in the ca
Different levels of sodium channel block.
at which the maximal MRT occurs shifts towards to the
right. It is also seen in Fig. 4a that NDD effect also tends
to disappear with the decrease in xK. Notably, we did not
consider xK < 0.5 because the response trend of the system
does not qualitatively change very much. On the other
hand, in the case of sodium channel block, a reduction in
working sodium channels influences the MRT oppositely
compared to the case of potassium channel block. Namely,
decreasing the xNa always increases the MRT, and the NDD
effect first occurs for xNa = 1, 0.95, then disappears for
xNa = 0.9, 0.85 and, reoccurs for xNa = 0.8. We did not con-
sider the value of xNa < 0.8, because the applied stimulus
is subthreshold for these blocking levels, meaning that it
is alone insufficient to initiate spike in deterministic condi-
tions. As a result, the sodium channel block degrades the
signal detection capabilities of the scale-free networks as
shown in Fig. 4b.

The above underlying effects of the channel blocking on
NDD phenomenon can be explained as follows. In potas-
sium channel block case, two main reasons are effective
on the emergence of such a result. One of them is that
se of channel blocking. (a) Different levels of potassium channel block. (b)
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the reduction of the number of working potassium chan-
nels (increasing the potassium channel noise) increases
the excitability of the each neuron in the network [45],
and causes a diminishment in the threshold level for spik-
ing. Consequently, neurons in the network fire more rap-
idly than in the unblocked case, thus, the MRT of the
network declines. The other reason is that decreasing the
xK changes the frequency range of the suprathreshold cur-
rent stimulus with a fixed amplitude of 4 lA/cm2 and,
causes a shift of the lower boundary to the smaller fre-
quency (for xK = 0.8 the lower boundary is 6 Hz, data not
shown here) for the suprathreshold spiking regime. There-
fore, the suprathreshold current signal with the amplitude
of 4 lA/cm2 and the frequency of x = 0.13 ms�1 becomes
increasingly suprathreshold, and thus the NDD phenome-
non, being more pronounced at the frequency boundaries,
weakens and needs more noise (thus small membrane
patch areas) to occur.

On the other hand, in the case of sodium channel block,
decreasing the number of working sodium channels in-
creases the activation barrier for spiking as stated in [45].
At the same time, the suprathreshold periodic stimulus ap-
proaches the subthreshold regime and, the sensitivity of
the first spike time to the noise increases [23]. For example,
in a scale-free network of deterministic HH neurons, the
first spike appearance times in response to s(t) are
9.14, 11.16, 52.62, 53.44, 55.12 ms for
xNa = 1, 0.95, 0.9, 0.85, 0.8, respectively. In the considered
stochastic system here, the MRT of the network increases
when compared to the unblocked case due to the increase
in spiking barrier. As for the NDD, for both unblocked case
and xNa = 0.95, the neurons in the network fire in the
ascending part of the first cycle of the suprathreshold sig-
nal in approximately deterministic conditions (large mem-
brane sizes >105 lm2). Then, an intermediate range of the
channel noise delays the occurrence of firing events to
the later cycles. However, in the presence of very strong
channel noise (membrane area <6 lm2), neurons fire be-
fore the deterministic conditions because the channel
noise dominates the neuronal dynamics. As a result, NDD
is not observable. For xNa = 0.9 and xNa = 0.85, all neurons
in the network fire in the second cycle of the suprathresh-
old signal at large membrane sizes. In these two cases, neu-
rons are divided into several groups with the increase in
channel noise. Some groups of neurons fire at the first or
second cycle of the stimulus, the other groups fire in the la-
ter cycles than the second cycle of the stimulus. As the
number of neurons in the former group is greater than
those of the latter group, the average MRT declines monot-
onously with the increasing of channel noise, and thus the
NDD is not observable for these sodium block levels. For
xNa = 0.8, due to the increasing sensitivity of the first spike
appearance time to the noise, the NDD phenomenon reap-
pears at an intermediate range of channel noise.
4. Summary

In the present paper, we investigated how the ion chan-
nel noise, stemming from the probabilistic nature of the ion
channels, affects the first spike latency in response to a
suprathreshold stimulus in a scale-free network of stochas-
tic HH neurons. We have obtained that an intermediate
range of channel noise degrades the signal detection capa-
bility of the scale-free network and causes the emergence of
the NDD effect. Then, we analyze the effects of network
parameters, which are coupling strength and average de-
gree, on the NDD phenomenon. We have arrived at the re-
sult that the network parameters can be used for the
enhancement of the signal detection capability of scale-free
network by decreasing the MRT and the jitter of the first
spike latency. Second, we have studied which channel noise
type, sodium or potassium channel noise, plays decisive
role in determining the bell-shaped dependence of the
NDD on channel noise. We have shown that the potassium
channel noise is generally a dominant factor on the occur-
rence of the NDD phenomenon in large and intermediate
cell sizes, but, as depicted in MRT and jitter plots in
Fig. 3a and b, the sodium channel noise is more determina-
tive in small cell sizes. Finally, we analyze the effects of the
number of the working ion channels, which are open near
the threshold, by blocking one channel type while the other
channel type is unblocked, on the first spike timing due to
the importance stated in Results and discussions section.
The results presented in Fig. 4a and b have revealed that,
with the increasing of potassium channel block, MRT of
the scale-free network decreases and, thus the signal detec-
tion capability of the network increases. Moreover, with the
reduction of working potassium channels, first spike la-
tency dynamics are dominated by the sodium channels,
and thus, the NDD effect appears at small membrane sizes
with small amplitudes. On the other hand, with the
reduction of working sodium channels, in contrast to the
potassium channel block, MRT of the network increases
and signal detection capability of the network decreases.
In addition, the NDD effect disappears up to xNa = 0.8. For
xNa = 0.8, channel noise suppresses the stimulus effects
and the NDD effect reappears.
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