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We study the effects of periodic subthreshold pacemaker activity and time-delayed coupling on
stochastic resonance over scale-free neuronal networks. As the two extreme options, we introduce
the pacemaker, respectively, to the neuron with the highest degree and to one of the neurons with
the lowest degree within the network, but we also consider the case when all neurons are exposed
to the periodic forcing. In the absence of delay, we show that an intermediate intensity of noise is
able to optimally assist the pacemaker in imposing its rhythm on the whole ensemble, irrespective
to its placing, thus providing evidences for stochastic resonance on the scale-free neuronal net-
works. Interestingly thereby, if the forcing in form of a periodic pulse train is introduced to all
neurons forming the network, the stochastic resonance decreases as compared to the case when only
a single neuron is paced. Moreover, we show that finite delays in coupling can significantly affect
the stochastic resonance on scale-free neuronal networks. In particular, appropriately tuned delays
can induce multiple stochastic resonances independently of the placing of the pacemaker, but they
can also altogether destroy stochastic resonance. Delay-induced multiple stochastic resonances
manifest as well-expressed maxima of the correlation measure, appearing at every multiple of the
pacemaker period. We argue that fine-tuned delays and locally active pacemakers are vital for
assuring optimal conditions for stochastic resonance on complex neuronal networks.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3133126�

It is well known that noise can play a constructive role in
different types of nonlinear dynamical systems, and sto-
chastic resonance is perhaps the most prominent example
of this fact. The objective of this article is to extend the
scope of stochastic resonance to complex networks,
whereby the deterministic periodic input is limited not
only in its strength but also in its outreach. More pre-
cisely, scale-free neuronal networks are studied on which
the subthreshold periodic forcing is introduced only to a
single neuron of the network, thus acting as a pacemaker.
We want to determine to what extent the complex scale-
free topology can aid the pacemaker to entrain the com-
plete neuronal ensemble with the help of fine-tuned addi-
tive noise. Moreover, the new findings are compared with
results obtained via the more traditional setup where ev-
ery neuron of the network is subjected to a weak periodic
forcing. It is found that scale-free topologies are very ef-
ficient in propagating noise-supported localized weak
rhythmic activities. Also, it is found that these paced net-
works are superior to globally forced networks in that
stochastic resonance is better expressed on the former.
Importantly, since time delays are inherent to the nervous
system we take this explicitly into account via time-
delayed coupling. We report on the occurrence of
delay-induced multiple stochastic resonances on scale-
free neuronal networks, which appear due to the locking

between the delay length and the oscillation period of the
pacemaker.

I. INTRODUCTION

The constructive role of noise in nonlinear dynamics has
been the subject of intensive research in the past, and it re-
mains a vibrant topic today. Especially the phenomenon of
stochastic resonance1–3 has been studied extensively due to
its applications in many different fields, ranging from physi-
cal to social systems. In general, stochastic resonance is
characterized by the optimization of the output signal-to-
noise ratio in a nonlinear dynamical system following the
addition of a weak external signal.4–8 Coherence resonance is
a closely related phenomenon, which however, refers to the
resonant response of a dynamical system to pure noise;
hence it has also been termed as autonomous stochastic
resonance.9–11 Notably, both stochastic and coherence reso-
nances have been reported to exist in a wide variety of neu-
ronal models.4,5,10,11 Of particular interest for the present
work, due to the usage of the same mathematical model of
neuronal dynamics, multiple resonances in the Rulkov neu-
ronal model12 have also been observed and reported.13 Ef-
fects of correlated noise on the dynamics of coupled neurons
have also been investigated thoroughly,14–18 whereby the im-
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portance of different temporal and spatial correlation lengths
has been firmly established.

Recently, stochastic and coherence resonances on com-
plex neuronal networks have attracted increasing attention,
and indeed some new features due to the underlying complex
interaction topologies have been revealed. The stochastic
resonance on excitable Watts–Strogatz small-world
networks19 via a pacemaker was studied by means of the
discrete Rulkov map,20 where it was shown that only for
intermediate coupling strengths is the small-world property
able to enhance the stochastic resonance. Moreover, the sto-
chastic resonance on Newman–Watts networks21 of
Hodgkin–Huxley neurons could be amplified via fine-tuning
of the small-world network structure, depending significantly
on the coupling strengths among neurons and the driving
frequency of the pacemaker.22 Coherence resonance on
Watts–Strogatz small-world Hodgkin–Huxley neuronal net-
works has also been investigated, and it was found that in-
creasing the randomness of the network topology leads to
enhancement of temporal coherence.23 Furthermore, Kwon
et al.24 showed that the coherence resonance can be consid-
erably improved by adding a small fraction of long-range
connections for an intermediate coupling strength in a Watts–
Strogatz small-world neuronal network with spatially corre-
lated noise input. Preceding these studies were reports on the
array-enhanced coherence resonance by using an array of
coupled FitzHugh–Nagumo neurons,14,25 as well as stochas-
tic resonance on small-world networks of overdamped
bistable oscillators.26 Noise-induced phenomena in two-
dimensional spatially extended neuronal networks have also
attracted considerable attention in the past, and several stud-
ies were devoted to the exploration of possible effects of
noise. There are some comprehensive reviews dedicated to
this subject.27,28 In particular, while spatial coherence reso-
nance was first introduced near pattern forming
instabilities,29 it subsequently was reported also in excitable
neuronal media.30 Noteworthy, spatiotemporal coherence of
noise-induced patterns has also been investigated on a regu-
lar Hodgkin–Huxley neuronal network,31 and it was found
that the order of the firing rate function could be enhanced as
the connections among neurons became stronger.

In this study, the objective is to extend the scope of
stochastic resonance on complex neuronal networks, particu-
larly scale-free networks,32 pacemakers, and time-delayed
coupling, thus bringing the setup closer to actual conditions.
Delays are inherent to the nervous system because of the
finite speed at which action potentials propagate across neu-
ron axons and due to time lapses occurring in both dendritic
and synaptic processings.33 Notably, it has been suggested
that time delays can facilitate neural synchronization and
lead to many interesting and even unexpected dynamical
phenomena.34–36 Moreover, since a power-law distribution of
the degrees of neurons has been found applicable for the
coherence among activated voxels using functional magnetic
resonance imaging,37 and the robustness against simulated
lesions of anatomic cortical networks was also found to be
very similar to that of a scale-free network,38 our study ad-
dresses a relevant system setup. We report on the pacemaker-
driven stochastic resonance in scale-free neuronal networks

and compare it with the more classical setup entailing the
subthreshold periodic forcing of all neurons constituting the
network. Interestingly, we find that stochastic resonance with
the locally acting pacemaker is better expressed than the one
with the globally forced neuronal network. Primarily though,
we present some nontrivial effects induced by finite delays in
coupling. In particular, we show that multiple stochastic
resonances can occur on scale-free neuronal networks if the
duration of the delay is appropriately tuned. This is primarily
attributed to the emergence of locking between the delay
length and the oscillation period of the pacemaker.

The remainder of this paper is organized as follows. In
Sec. II the Rulkov map model is reviewed,12 which will be
employed to obtain an efficient setup for simulating neuronal
dynamics on scale-free networks.32 In Sec. II, the time-
delayed coupling scheme and the measure for stochastic
resonance are introduced as well. Main results are presented
in Sec. III, whereas Sec. IV summarizes the new findings and
discusses their implications.

II. MATHEMATICAL MODEL AND SETUP

To effectively simulate the neuronal dynamics on scale-
free networks, the Rulkov map is utilized,12 which succinctly
captures some of the main dynamical features of the complex
continuous-time models yet ensures exceptionally efficient
numerical analysis and processing. The spatiotemporal evo-
lution of the studied neuronal network is governed by the
following iteration equations:

x�i��n + 1� = �f�x�i��n�� + y�i��n� + ���i��n�

+ D�
j

�i,j�xj�n − �� − xi�n�� ,

�1�
y�i��n + 1� = y�i��n� − �x�i��n� − �, i = 1, . . . ,N .

Here, x�i��n� is the membrane potential of the ith neuron and
y�i��n� is the variation of ion concentration, representing the
fast and the slow variables, respectively. The slow temporal
evolution of y�i��n� is due to the small values of the positive
parameters � and �, which within this study are chosen as
�=�=0.001 unless otherwise stated. Moreover, n is the
discrete-time index, while � is the main parameter determin-
ing the dynamics of individual neurons constituting the
scale-free network. If ��2.0 then all neurons occupy excit-
able fixed �equilibrium� points �x�=−1, y�=−1− �� /2��,
whereas if �	2.0 then regular bursting oscillations �limit
cycles in the phase space� emerge via a Hopf bifurcation.12

For larger � still, these regular oscillations become
chaotic.39,40 Here, we set �=1.95 and initiate each neuron
from fixed point initial conditions, so that the additive spa-
tiotemporal Gaussian noise ��i��n�, having mean ���i��n��i,n

=0 and autocorrelation ���i��n���j��h��=
ij
�n−h�, acts as the
only source of large-amplitude excitations. Furthermore, in
Eq. �1� f�x�=1 / �1+x2� is a nonlinear function describing the
essential ingredients of neuronal dynamics, D is the coupling
strength, the parameter � determines the noise intensity, and
� is the delay length. The latter three parameters will be the
focus of attention within this work, whereas � and � will be
varied only occasionally.
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As the base for interactions between neurons the scale-
free network is employed which is generated via growth and
preferential attachment as proposed by Barabási and
Albert,32 consisting of N=200 vertices in this study. Each
vertex corresponds to one neuron, whose dynamics is gov-
erned by the noise-driven Rulkov map. In Eq. �1�, �i,j =1 if
neuron i is coupled to neuron j, and �i,j =0 otherwise. The
preferential attachment is introduced via the probability �,
which states32 that a new vertex will be connected to vertex
i depending on its degree ki according to ��ki�=ki /� jkj. This
growth and preferential attachment scheme yields a network
with an average degree kav=�iki /N and a power-law degree
distribution with the slope of the line equaling �−3 on a
double-logarithmic graph in the present study. Notably, the
analytical slope of the line is �3 exactly. Such networks
having kav=6 will be used throughout this work.

It remains of interest to mathematically introduce the
subthreshold periodic pacemaker, which takes the form of a
spike train defined by


�r��n� = 	g if �n mod t� � �t − w�
0 otherwise.


 �2�

In Eq. �2� the parameters t, w, g, and n are defined as fol-
lows: t determines the oscillation period of the spike train
�pacemaker�, w is the width of each spike, g defines the
amplitude of the spikes �the baseline is 0�, and n is the
discrete-time index introduced above in Eq. �1�. Moreover,
the subscript r denotes the chosen neuron among all N
=200 neurons constituting the excitable �each neuron occu-
pies a fixed point and can thus be excited by weak perturba-
tions� scale-free network, to which the pacemaker is intro-
duced as an additive term to the variable x�r��n�. In our
numerical simulations, we choose the parameter values
t=700 �unless otherwise stated�, w=50 and g=0.015, which
ensure that without introducing any noise ��=0� the pace-
maker is subthreshold, meaning that by itself it cannot in-
duce large-amplitude excitations from any of the neurons
constituting the network.

To quantitatively characterize the collective response of
the neuronal network, we introduce the average membrane
potential X�n�= �1 /N��i=1

N x�i��n� as the main output to be ex-
amined further. The correlation of the average membrane
potential X�n� with the frequency of the pacemaker �
=2
 / t is computed via the Fourier coefficients according to

Qsin =
2

Tt
�
n=1

Tt

X�n�sin��n� , �3�

Qcos =
2

Tt
�
n=1

Tt

X�n�cos��n� , �4�

where T=300 is the number of periods of the pacemaker
used. Note that the sine and cosine functions in Eqs. �3� and
�4� have the same frequency �=2
 / t as is used for pacing
the neuronal network �note that t in Eq. �2� is the oscillation
period of the spike train�, and that thus these equations de-
termine the correlation between the output of the network
X�n� and the frequency of the pacemaker. We therefore use

the Fourier coefficient Q=�Qsin
2 +Qcos

2 as a numerically ef-
fective measure for stochastic resonance, capturing suc-
cinctly the collective spatiotemporal behavior of the neuronal
network and its correlation with the pacemaker rhythm. In
general, Q can exhibit a bell-shaped dependence as a key
parameter �for example, �� is varied, indicating the occur-
rence of stochastic resonance. Importantly, since the genera-
tion of scale-free networks has inherent random ingredients,
which can be additionally amplified by individual vertex
�neuron� pacing, final results shown below were averaged
over 30 independent runs for each set of parameter values
�wherever applicable� to guarantee an appropriate accuracy.

III. RESULTS

We start by setting �=0 and introducing the pacemaker
to the neuron with the lowest degree kmin within the network;
thus r= i�kmin�. Space-time plots obtained by varying � are
presented in Fig. 1, where it can be observed that the exci-
tatory fronts follow the pacemaker rhythm �oscillation period
is t=700� only with an intermediate value of � �see Fig.
1�c��. On the other hand, either � largely fail to evoke exci-
tations �see Fig. 1�a�� or the excitatory fronts have defects
and are not frequent enough �see Fig. 1�b��. Noise intensities
exceeding the optimal value, however, have the ability to
initiate excitations on their own �even when the pacemaker is
not firing�, thus again failing to conform to the weakly im-
posed rhythm �see Fig. 1�d�� or, further still, completely
over-ruling the deterministic dynamics �see Fig. 1�e��. Pre-
sented results therefore indicate a classical stochastic reso-
nance scenario, where an intermediate noise intensity ensures
the best response of the system to weak external determinis-
tic forcing. Notably, qualitatively identical results are ob-
tained if the pacemaker is introduced to the neuron with the
largest degree r= i�kmax� within the scale-free network. It is
of interest to assess these observations quantitatively.

To describe the pacemaker-driven stochastic resonance
more precisely, we consider the dependence of Q on � in
Fig. 2�a� for different options with respect to the placing of
the pacemaker. It can be observed that, irrespective of

FIG. 1. Space-time plots obtained at �=0 and D=0.006 for different �
values, equaling �a� 0.005, �b� 0.008, �c� 0.025, �d� 0.05, and �e� 0.08. The
color profile is linear, black depicting x�i��n�=−1.7 and white x�i��n�=0.1,
with eight shades of gray in between.
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whether the pacemaker is introduced to the neuron with the
minimal r= i�kmin� or the maximal degree r= i�kmax� or to all
neurons of the network �“all” in Fig. 2�a��, there exists an
intermediate optimal noise intensity � for which Q is maxi-
mal, thus exhibiting a bell-shaped dependence characteristic
of the stochastic resonance. Interestingly, one can observe
that as the pacemaker is introduced to all neurons constitut-
ing the network, the stochastic resonance decreases rather
dramatically. On the other hand, whether the pacemaker is
introduced to the neuron with the highest �r= i�kmax�� or to
one of the neurons with the lowest degree �r= i�kmin�� does
not notably affect the outlay and magnitude of Q in depen-
dence on �. The placing of an individual pacemaker is
mostly irrelevant because in a scale-free network chances are
high that the low-degree neurons will be connected to one of
the main high-degree neurons �hubs� with no more than a
single direct link. Hence now, whether we introduce the
pacemaker directly to the main hub or one link further away
�to any of the low-degree neurons� is not vital since the pace-
maker rhythm does not deteriorate much within nearest or
even next-nearest neurons. Somewhat more surprising and
counterintuitive is the fact that the weak periodic forcing of
all neurons is less efficient in imposing a certain rhythm of
excitatory fronts than an individual pacemaker. We argue that
this effect is a consequence of the essentially nonbiased state
of neurons constituting the scale-free network, where only an
individual neuron is forced. Such nonbiased �not inclined
toward an excitation by a pacemaker� noisy neurons can re-
spond even to the weakest input from their neighbors, thus
synchronizing optimally into practically perfect excitatory
fronts. On the other hand, if all neurons are weakly forced,
chances for phase slips are much higher since every neuron
acts on its own �due to its individual forcing�, indeed trying
to enforce its rhythm to the neighbors. Thus, competition
between excitations emerges, which is detrimental to the
overall synchrony of the network, in turn decreasing the cor-
relation with the forcing frequency and leading to the decline
of stochastic resonance. In fact, the phenomenon shown in
Fig. 2�a� is one of the few examples where less is actually
more in terms of efficiency of noise-induced synchrony and
correlation with weak external forcing in neuronal dynamics.

Before turning to the impact of finite, i.e., nonzero de-
lays �, we investigate in Fig. 2�b� stochastic resonance in the
transition to the strong coupling region �high vales of D�.
Results are presented for r= i�kmin�, but they are qualitatively
identical also for r= i�kmax� and if all the neurons are exposed
to the weak periodic forcing �not shown�. Evidently, the sto-
chastic resonance phenomenon prevails irrespective of D,
except that the optimal value of � shifts to slightly higher
values upon its increase. Thus, it can be concluded that the
pacemaker-driven stochastic resonance on scale-free neu-
ronal networks is a robust phenomenon, occurring largely
independently of the particular placing of the pacemaker or
the strength of the coupling. Moreover, an individually paced
neuron is actually more effective in warranting ordered ex-
citatory fronts in accordance with the weakly imposed
rhythm than the global forcing of the whole network. In what
follows, therefore, focus is on individually paced noise-
driven scale-free neuronal networks, where one of the neu-
rons having the lowest degree will be chosen as the input for
the deterministic forcing.

As when examining the dependence of the neuronal dy-
namics on � in Fig. 1, we start by presenting in Fig. 3 the

FIG. 2. �Color online� �a� Dependence of Q on � at �=0 and D=0.006 for different placings of the pacemaker within the scale-free network �see also the main
text for further details�. �b� Dependence of Q on � and D at �=0 when the pacemaker is introduced to one of the neurons having the lowest degree
�r= i�kmin��.

FIG. 3. Space-time plots obtained at D=0.006 and �=0.025 for different �
values, equaling �a� 300, �b� 700, �c� 1000, �d� 1400, and �e� 1600. In all
panels the color profile is identical as in Fig. 1.
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space-time plots obtained for different values of � while
keeping the coupling strength D=0.006 and the noise inten-
sity �=0.025 fixed. Results shown in the five panels of Fig.
3 illustrate the spatiotemporal dynamics of neurons on the
studied scale-free neuronal network with r= i�kmin�. From
careful visual inspection, an intermittent pattern of regularity
and disorder can be inferred upon increasing �. In particular,
while for �=700 �panel �b�� and �=1400 �panel �d�� the ex-
citatory fronts are synchronous and largely obeying the pace-
maker rhythm, for �=300 �panel �a��, �=1000 �panel �c��,
and �=1600 �panel �e�� either the regularity is completely
lost or at least the excitatory fronts become ragged and
gradually lose synchrony with the imposed frequency. In-
deed, the delay-induced transitions to ordered spatiotemporal
dynamics on scale-free neuronal networks appear intermit-
tently at roughly integer multiples of the period of the pace-
maker, equaling t=700, which corresponds rather accurately
to the so-called global-resonant oscillation period41 of each
individual Rulkov neuron for the currently used parameter
values �=�=0.001 and �=1.95, which can be extracted
from the map by calculating the Fourier transform of noise-
driven oscillations.41 By setting t largely different from the
global-resonant oscillation period of individual neurons,
however, the intermittent outlay presented in Fig. 3 can no
longer be observed. Visual inspection of Fig. 3 thus reveals
that regular and irregular front propagations appear intermit-
tently as the delay is increased, indicating that finite �non-
zero� delays in coupling among neurons might play a pivotal
role in generating spatiotemporal order of neuronal activity
on scale-free networks in accordance with a weak localized
deterministic input, provided that the latter is adjusted to
approximately agree with the global-resonant oscillation fre-
quency of the neurons.

To account for the above visual interpretation quantita-
tively, we adjust the local dynamics of each neuron �thus far
we have not varied this� by varying � and �, in turn affecting
the speed of the temporal evolution of yi�n� and conse-
quently the global-resonant oscillation frequency. At the
same time, we adjust the oscillation period t of the pace-
maker correspondingly. In particular, we consider three dif-
ferent cases, namely, �=�=0.0006, �=�=0.001, and �=�
=0.0016, and change the oscillation period of the pacemaker
to t=1200, t=700, and t=500, respectively. These t values
are in good agreement with the global-resonant frequency of
an individual neuron with the corresponding values of � and
�. Results presented in Fig. 4 show that, in accordance with
the visual inspection of Fig. 3, multiple resonance in Q de-
pending upon the increase in � are obtained by given � and
D. Following the common terminology, these are termed as
delay-induced multiple stochastic resonance on scale-free
neuronal networks. Moreover, it is clear that the particular
locations of the maxima of Q shift to different values of � as
�, �, and t are varied. Crucially, however, it is always so that
the locking between � and integer multiples of t is preserved.
Thus, resonances depending on � appear at integer multiples
of t only if the latter is close to the global-resonant oscilla-
tion period41 of the individual neurons. On the other hand,
values of � outside the regions of multiple integers of t im-
pair the stochastic resonance significantly, as can be inferred

from the rather sharp descents of Q toward smaller values, as
soon as the optimal � are replaced by other values. We there-
fore conclude that the delay-induced stochastic resonances of
neuronal activity are due to the locking between the delay
length � and the global-resonant oscillation period of indi-
vidual neurons if the latter is close to the oscillation period of
the pacemaker. This is valid independently of the particular
placing of the pacemaker and also for globally paced scale-
free neuronal networks with different coupling strengths.

Finally, we present some results where the above-
outlined dependencies can be observed at a glance. Figures
5�a� and 5�b� show Q in dependence on � and � for two
combinations of � and �. In panel �a�, where �=�=0.001
and t=700, multiple stochastic resonances are clearly eli-
gible as narrow white-shaded regions, appearing roughly at
integer multiples of �=700 across suitable spans of �. Prac-
tically identical, for �=�=0.0016 and t=500, stochastic
resonances appear at integer multiples of �=500, again
strengthening our argumentation with respect to the connec-
tion with the global-resonant oscillation period of individual
neurons and the corresponding similarly set forcing period of
the pacemaker. It is worth emphasizing that regions of opti-
mal � are very narrow, especially if compared to the rather
broad regions of noise intensities � that still warrant reason-
ably high Q, suggesting that fine-tuned delays might be cru-
cial for efficient recognition of weak localized external sig-
nals. Also notable are some fuzzily expressed regions of
stochastic resonance at ��70 in both panels of Fig. 5. How-
ever, these are most likely due to the fact that shorter, if
compared to the optimal, delay lengths do not influence the
neuronal dynamics strong enough to fully prohibit noise-
induced correlations between the pacemaker and the neu-
ronal dynamics. This occasionally yields results similar to
the case of �=0 though only at substantially higher noise
intensities, which are needed to compensate for the disturb-
ing impact of nonoptimal delays. Moreover, we note that for
other forcing frequencies of the pacemaker we have per-
formed similar investigation, yet only when the pacemaker

FIG. 4. �Color online� Dependence of � on � for different combinations of
� and � �see also main text for further details� when the pacemaker is
introduced to one of the neurons with the lowest degree �r= i�kmin��. Where
applicable, other parameter values are the same as in Fig. 3.
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frequency is close to the global-resonant frequency41 of in-
dividual neurons forming the scale-free network can multiple
stochastic resonances be observed at integer multiples of the
forcing period.

IV. SUMMARY AND DISCUSSION

In sum, we have studied stochastic resonance phenom-
ena on scale-free neuronal networks in dependence on the
noise intensity and time-delayed coupling when the pace-
maker is introduced to different individual neurons or acts as
global forcing. We found that the stochastic resonance occurs
irrespective of the location of the pacemaker and of local or
global forcing considerations. Yet remarkably, locally intro-
duced weak pacemakers guarantee better expressed stochas-
tic resonance than global forcing. Indeed, it is generally be-
lieved that global input is not common in real neuronal
systems, and in fact local inputs are far more likely. In par-
ticular, given a huge number of neurons, it is unnecessary
and even impossible to introduce external signals or stimuli
to all. Only weak, partial and local inputs are reasonable,
guaranteeing low energy consumption and efficiency in large
neuronal networks. Furthermore, by introducing delays to the
coupling scheme, we observed multiple stochastic reso-
nances upon fine-tuning of the delay length, which appear at
every multiple of the forcing frequency if the latter is close
to the global-resonant oscillation frequency of individual
neurons �note that the deterministic dynamics is of fixed
�equilibrium� point type�.41 More precisely, the multiple sto-
chastic resonances appear in an intermittent fashion as the
delay increases, where the intermittency is a direct conse-
quence of the on/off locking between the forcing frequency
and the delay length. Thus, we have shown that noise and
time-delayed coupling play complementary roles in ensuring
optimal detection of weak localized stimuli in scale-free neu-
ronal networks via stochastic resonance. We therefore be-
lieve that fine-tuned delays can effectively supplement re-
cently identified mechanisms for the enhancement of
neuronal synchronization,42,43 as well as synchronization44–47

and detection of weak signals48 on complex and scale-free
networks in general, thereby constituting an important factor

of interneuronal communication. This argumentation seems
to be supported also by actual biological data, demonstrating
that conduction velocities along axons connecting neurons
vary from 20 to 60 m/s.49 Real-life delays are thus within the
range of milliseconds, suggesting that substantially lower or
higher values may be preclusive for optimal functioning of
neuronal tissues. We hope our study will be a useful supple-
ment to the existing body of literature for the function-follow
form concept,50,51 as well as the role of complex neuronal
networks in general,52,53 and also serve as a viable source of
information when striving toward further advances in the
field.
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