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Calcium ions play an important role in both intra- and intercellular signaling. In pancreatic acinar
cells intracellular Ca®* regulates exocytotic secretion and fluid secretion. In this paper we study the
typical experimental traces of Ca’* responses in pancreatic acinar cells obtained in response to the
physiological agonist acetylcholine. To determine whether they are stochastic or deterministic in
nature, we analyze the traces with methods of nonlinear time series analysis. In particular, by
performing surrogate data tests and employing a determinism test for short time series, we show
that the responses of pancreatic acinar cells to acetylcholine are stochastic with only faintly ex-
pressed deterministic features. Presented results thus corroborate the notion that mathematical mod-
els should take stochasticity explicitly into account when describing intra- and intercellular pro-
cesses, and that indeed further efforts should be directed toward this subject. © 2009 American

Institute of Physics. [DOI: 10.1063/1.3160017]

Calcium ions (Ca**) play an important and versatile role
as second messengers in living cells. Ca®* signaling con-
trols several cellular functions in different cell types and
is thus of key importance for normal functioning of living
organisms. Activation of the cell via external stimuli trig-
gers a series of biochemical reactions, which often leads
to periodic elevations of cytosolic Ca** concentration. In
this manner, information is transmitted to target pro-
teins. A thorough understanding of the rather complex
molecular and cellular mechanisms that govern Ca>* os-
cillations requires mathematical modeling. During the
past years several mathematical models have been devel-
oped, which are, especially the early ones, mainly deter-
ministic. However, those models are approximate, treat-
ing molecules expressed in concentrations as continuous
variables, neglecting fluctuations associated with the fi-
nite number of molecules composing the reactions as well
as the fact that concentrations of molecular species can
only vary by a discrete amount. Indeed, biochemical re-
actions occur as rapid successions of individual elemen-
tary events, whose exact timing is effectively random.
Furthermore, recent experimental and theoretical inves-
tigations on cellular signaling indicate that stochasticity
plays a vital role by the coordination of cellular pro-
cesses. As a result, stochastic modeling is gaining more
and more attention. Despite the fact that several discus-
sions about the importance of stochastic versus determin-
istic approaches in the modeling of biochemical processes
have been put forward in the past few years, the question
about the real nature of Ca** signaling seems not yet to
be completely resolved. Only a few experimental obser-
vations were devoted to the analysis of stochastic versus
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deterministic origin of Ca®* oscillations and all of them
indicated a great extend of stochasticity in intracellular
Ca?* dynamics. In this paper we examine whether the
experimentally measured Ca* oscillations in pancreatic
acinar cells within the intact tissue are stochastic or de-
terministic in nature. For this purpose we utilize methods
of nonlinear time series analysis. This is an important
consideration also because irregularly appearing traces
are often advertised as chaotic, while in fact their origin
has little or nothing to do with deterministic nonlineari-
ties responsible for the onset of deterministic chaos. Our
results indicate a prevalence of stochasticity in intracel-
lular Ca?* dynamics in pancreatic acinar cells.

I. INTRODUCTION

In many excitable and nonexcitable eukaryotic cell
types, including pancreatic acinar cells, Ca>* has been rec-
ognized as an important second messenger in intracellular
signaling.l’2 In response to extracellular agonists, such as
certain hormones and neurotransmitters (e.g., acetylcholine),
the intracellular Ca** concentration usually increases. The
response to agonists is frequently characterized by repeated
elevations of this concentration, which is known as Ca**
oscillations.”™ These oscillations are maintained, controlled,
and shaped by a complex interplay of Ca’* fluxes between
the cytosol, intracellular Ca®* stores, Ca**-binding proteins,
and the external environment, often limited to just one pole
of the cells under physiological conditions.” Localized Ca2*
oscillations in pancreatic acinar cells occur via both the
inositoltriphosphate (IP;) and the ryanodine pathway.

Many theoretical studies have been conducted in order to
explain the phenomenon of Ca®* oscillations (for review see
Refs. 6 and 7). The mechanisms of Ca?* oscillations have
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been mainly modeled as deterministic processes.6 However,
stochastic effects in biological cells often cannot and should
not be neglected. In absolute terms, the number of membrane
receptors, ion channels, and calcium ions in some organelles
is very low. Thus, the stochastic effects can play an impor-
tant role’ and the modeling of particular aspects of Ca>*
signaling in cells definitely requires stochastic treatment.
Due to these facts, a range of stochastic models has been
developed for the modeling of single Ca>* channels,”” intra-
cellular CaZ* oscillations,uHS coupled oscillators,“’l“’17 and
intercellular Ca®* wave propagation.lg*20 In order to demon-
strate the importance of stochastic versus deterministic mod-
eling, some direct comparisons of stochastic and determinis-
tic models have been performed as well, '

Theoretical predictions about the role of stochasticity at
the cellular level can give important hints for experimental
investigations. There is still a lack of direct experimental
evidence confirming either the stochastic or the deterministic
nature of intracellular Ca®* signals. However, only recently
Dupont et al.** scrutinized the influence of stochasticity on
Ca®* oscillations in hepatocytes. Via a combined experimen-
tal and computational approach they revealed that the Ca>*
dynamics is strongly affected by inherent fluctuations. An-
other interesting contribution has been reported by Skupin et
al.,”> who succeeded in showing that intracellular Ca®* sig-
naling is clearly subjected to stochastic dynamics, thus im-
plying that Ca®" oscillations are a sequence of random
spikes, which, however, can in some circumstances appear
rather regular, indeed nearly deterministiclike. Their study is
based on a thorough statistical analysis of measured time
series in human embryonic kidney cells, in processed li-
poaspirate cells, and in two types of glial cells (astrocytes
and microglia). In our previous study we show that experi-
mental Ca?* traces in hepatocytes show an extremely high
degree of stochasticity at the cellular level.?® In the present
paper we analyze the stochastic versus the deterministic na-
ture of experimentally measured Ca®* oscillations in pancre-
atic acinar cells. In contrast to previous studies, Ca>* re-
sponses in isolated cells were measured within the intact
tissue. The analysis is based on methods of nonlinear time
series analysis.27

It should be emphasized that the methods of nonlinear
time series analysis have been successfully applied to experi-
mentally obtained biomedical signals at the level of whole
organszg'29 with prominent examples including the character-
ization of the dynamics of cardiac tissue,30 networks of neu-
ral cells,”’ or the human locomotion apparatus.?’z’33 The re-
sults of these analyses found several medical applications,
e.g., a noninvasively detection of “silent” heart arrhythmias
or imminent heart failure or the extraction of the fetal elec-
trocardiogram from maternal recordings.34 Furthermore, the
analyses of electroencephalographic recordings can be used
to diagnose epilepsy,%*37 whereas recordings obtained from
the human locomotion apparatus can be used to determine
neurodegenerative diseases like Parkinson’s disease, Hun-
tington’s disease, or amyotrophic lateral sclerosis.”* ™ Al-
though these studies analyzing experimental traces obtained
at the organ level have proved that nonlinear time series
analysis methods have vast potential and applicability in
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FIG. 1. Two-photon excitation image of the acinar cell structure within
living whole pancreas slice. The intercellular spaces are visualized with the
extracellular solution containing a fluid-phase tracer, sulphorhodamine B.
The image intensity has been inverted. A detailed description of the image
preparation can be found in Ref. 43.

various fields of medicine and biology, there is still a lack of
studies analyzing the experimental traces at the tissue and
cellular level. Moreover, irregular behavior may often be
mistakenly advertised as chaos, where in fact external or
inherent unpredictable disturbances render the behavior sto-
chastic rather than deterministically chaotic. In order to prop-
erly address these issues and to make a further step toward
understanding the functioning of biological organisms at the
cellular level, we use methods of nonlinear time series analy-
sis to determine the stochastic/deterministic nature of intrac-
ellular Ca?* responses in single pancreatic acinar cells, still
embedded in their normal cellular context.*'

First, we present the experimental methods and measure-
ments of cytosolic Ca>* concentration in pancreatic acinar
cells stimulated with acetylcholine. These experimentally ob-
tained traces are then analyzed with methods of nonlinear
time series analysis, and their stochastic/deterministic nature
is determined. We show that the responses of pancreatic aci-
nar cells to acetylcholine are mainly stochastic with only
minute markers of determinism. These results are discussed
and compared to previous model predictions and studies of
oscillatory experimental traces obtained at the organ level.

Il. EXPERIMENTAL METHODS

To measure the concentration of intracellular Ca**
([Ca**]) in pancreatic acinar cells within the intact tissue
whole pancreas slices were prepared as described
previously.“ A typical image of the acinar cell structure
within living whole pancreas slice is shown in Fig. 1. To
observe [Ca’*] changes in a large number of acinar cells,
slices were bulk loaded with 6 uM Fura-PE3 AM (stock, 4
mM in DMSO with 5% pluronic acid F-127; Molecular
Probes). After loading for 60 min on an orbital shaker, the
slices were incubated for at least 15 min in indicator-free ES
at 32 °C to achieve a sufficient degree of de-esterification.
Monochromatic light (Polychrome IV, TILL Photonics) at
380 nm was short pass filtered (at 410 nm), reflected by a
dichroic mirror (centered at 400 nm), and directed through a
60X water immersion objective (NA=1) (NA denotes nu-
merical aperture). The emitted fluorescence was transmitted
by the dichroic mirror and further filtered through a 470 nm
barrier filter. Images were obtained using a cooled emCCD
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FIG. 2. Temporal traces of cellular responses evoked by cc,=25 nM,

cach=50 nM, and ¢, =250 nM from top to bottom, respectively (see also

the main text for details). The sampling rate was 0.5 s7\.

camera (Ixon, Andor Technology) and native ANDOR soft-
ware. [Ca®*] was calculated from the background-subtracted
intensity images obtained at 380 nm excitation using the
equation derived as described in Ref. 42. Images were re-
corded at the sampling rate of 0.5 s~'. All necessary calcu-
lations were performed using a custom written MATLAB
script, and image acquisition and hardware triggering
parameters were calculated and controlled by a custom
ANDORBASIC (Andor Technology) program.

Traces of the in vivo measurements of intracellular Ca>*
in pancreatic acinar cells are presented for three different
concentrations of acetylcholine in Fig. 2. The sampling rate
is 0.5 s~!, whereas the Ca’* concentration is presented by
the fluorescence in arbitrary units. For the following analyses
we have eliminated potential end-to-end mismatch from the
experimental traces. In addition, all traces have been rescaled
to the unit interval for simplicity. These alterations do not
affect the results.

lll. MATHEMATICAL METHODS AND RESULTS

By applying methods of nonlinear time series analysis
on the experimental traces, we aim to determine whether
their origin is deterministic or stochastic. First, we define x;
as the time series to be examined, where x is the rescaled
value of the fluorescence presented in Fig. 2 and 7 is the
discrete time index defined as the actual time ¢ divided by
sampling rate. We start by employing surrogate data
methods,** which enable us to test different null hypotheses
related to the presumably stochastic nature of the Ca®* re-
cordings. The three null hypotheses that we will test are the
following: (A) x; are independent (temporally uncorrelated)
random numbers drawn from some fixed but unknown dis-
tribution, (B) x; originate from a stationary linear stochastic
process with Gaussian noise, and finally, (C) x; originate
from a stationary Gaussian linear process that has been dis-
torted by a monotonic, instantaneous, time-independent non-
linear function.*” Depending on the outcome of the surrogate
data test a particular null hypothesis can be rejected or con-
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firmed. Notably, several surrogates from the original series x;
have to be generated to achieve a desired significance level «
by each test. Our goal is to achieve a significance level of
a=0.99 (99%) when confirming or rejecting a null hypoth-
esis, which means that [1/(1-a)]-1 surrogates need to be
generated for a single-sided test.

As the characteristic marker of nonlinearity is able to
discern stochasticity from determinism in a time series, we
use the zeroth-order prediction error 'y.27 Specifically, we
will use the notation 7, to indicate the results obtained on the
original (rather than surrogate) traces. If y,<y for all
[1/(1-a)]-1 surrogates and for all forward prediction steps
n then a null hypothesis can be rejected with a significance
level a. On the other hand, if ;> vy at any instance of the
test the null hypothesis is confirmed. For further details we
refer the reader to page 44 of Ref. 27 as well as to Ref. 26,
where an identical analysis has been performed.

The simplest null hypothesis is, as mentioned above, that
the data are independent random numbers drawn from some
fixed but unknown distribution [hypothesis (A)]. Surrogates
for hypothesis (A) are generated simply by randomly shuf-
fling the data without repetition. This procedure yields time
traces (surrogates) with exactly the same distribution but in-
dependent construction. However, since it is clear solely
from visual observations that the recordings presented in Fig.
2 are not independent random numbers, we do not show
results for this particular test. Of course it holds that v, is
always smaller than v, irrespective of n. Formally, we can
thus reject the null hypothesis that the studied data sets are
composed of independent random numbers.

A more interesting null hypothesis is that the recordings
originate from a stationary linear stochastic process with
Gaussian noise [hypothesis (B)]. Such a process is uniquely
determined by the mean, the variance, and the autocorrela-
tion function. Appropriate surrogates therefore consist of cor-
related data points with the same autocorrelation function as
the original recording, which can be realized by randomizing
the phases of the Fourier transform of the original recording,
and then perform the inverse Fourier transform to obtain the
desired temporal traces. The blue vertical columns in Fig. 3
show v in dependence on 7. Indeed, the trend of y in depen-
dence on n for the surrogates is quite closely related to the
trend of 7y,, and for some 7 it can be observed that y,=7,
particularly for cxcp,=50 nM (n=3,4) and csc,=250 nM
(all n). We can refine this surrogate test further by accounting
for the amplitude distortion imposed by the randomization of
phases of the Fourier transform by using the so-called am-
plitude adjusted surlrogates.27’45 Results of this test are shown
by red vertical columns in Fig. 3, and indeed, except for the
cach=25 nM case, it is impossible to reject the null hypoth-
esis that the studied data sets originate from a stationary
linear stochastic process with Gaussian inputs. Note that for
cach=50 nM and cxc, =250 nM v, fall within the distribu-
tion of 7y for all n. From this we conclude that stochastic
influences prevail in experimentally observed single-cell re-
sponses within intact tissue, which is especially obvious in
case of higher agonist concentrations. Higher stochasticity
levels by higher agonist concentrations can be attributed to
higher baseline Ca>* concentrations and a larger influence of
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FIG. 3. (Color online) Surrogate data test for different null hypotheses.
Colored vertical columns indicate the distribution of zeroth-order prediction
errors vy for the three different surrogates and green circles denote prediction
errors for the original recordings (7,) both in dependence on the number of
prediction step n. More precisely, blue (gray when printed) and red (light
gray when printed) vertical columns show the distribution of 7 for the sur-
rogates that originate from a stationary linear stochastic process with Gauss-
ian noise. The first test [results presented by blue (gray when printed) ver-
tical columns] is most permissive and accordingly the null hypothesis can be
rejected for cyc,=25 nM but no longer for all n if ¢y, =50 nM or ccp
=250 nM. By applying a more rigorous surrogate generation routine for this
null hypothesis [hypothesis (B)] [results presented by red (light gray when
printed) vertical columns], the result indicated by blue (gray when printed)
columns is further strengthened with the c,c,=25 nM trace passing only
marginally. Black vertical columns show the distribution of vy for the surro-
gates that originate from a stationary Gaussian linear process that has been
distorted by a monotonic, instantaneous, time-independent nonlinear func-
tion. Clearly, all 7, are within the spans of 7, thus preventing the rejection of
the null hypothesis [hypothesis (C)]. This leads to the conclusion that apart
from an instantaneous nonlinear function acting on a noisy output, further
markers of determinism in examined Ca®" recordings are not present. All y
and 7y, were calculated by embedding each time series into a three-
dimensional phase space with delay 7=1. Neighbors for prediction were
sought among those points that were inside 10% of maximal distance to the
reference.

channel inhibition, as can be inferred from Fig. 2.

The most common deviation from the null hypothesis
(B) is that the data do not follow a Gaussian distribution.
Accordingly, a more general null hypothesis is that the time
series originated from a stationary Gaussian linear process
that has been distorted by a monotonic, instantaneous, time-
independent nonlinear function [hypothesis (C)]. Appropriate
surrogates can be generated via an iterative procedure pro-
posed by Schreiber and co-worker,”” which uses an imple-
mentation similar to a Wiener filter to enforce the correct
spectrum to the resulting surrogates. As for the other hypoth-
eses, we have generated [1/(1—-a)]—1 such surrogates and
calculated the zeroth-order prediction error vy in dependence
on n. It is fascinating to discover that none of the experimen-
tal recordings are able to pass the test, as can be concluded
from comparing 7y (black vertical columns) with 7, (green
symbols) in Fig. 3. Note that in all cases 7, is well within the
distribution of 7 irrespective of n. This further corroborates
the fact that experimentally observed cellular responses are
imbued with stochastic features, and that indeed, apart from
an instantaneous nonlinear function acting on the underlying
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noisy output, markers of determinism are grossly lacking.

Results from surrogate data testing can be additionally
supported by the application of a determinism test for short
time series, recently proposed by Binder et al.*® This is use-
ful since the method of surrogate data is not actually a de-
terminism test, as it can only serve to reject certain null
hypotheses. The determinism test exploits statistical proper-
ties of the growth of small separations between trajectories in
the phase space, in particular, the expression d(f) = d,e™ that
describes their temporal evolution. While for a deterministic
system, either regular or chaotic, this expression holds
whereby M is related to the largest Lyapunov exponent, a
random system will have d independent of d,. This fact in-
spired Binder et al.*® to propose a determinism test for short
time series, which can be summarized as follows. For a se-
ries of n points generate all possible n(n—1)/2 distances d,
between distinct points in the phase space, reconstructed
from the time series with the embedding dimension m and
delay 7. Next, evolve all initial distances forward in time for
a fix number of time steps i and calculate the resulting dis-
tances d;. Finally, plot the graph d; versus d,, whereby dif-
ferent values of d, should be averaged over small bins to
annihilate statistical fluctuations. If the binned d; versus d,
dependence for small d; can be fitted well by a line with a
positive slope and zero intercept, the origin of the studied
time series is likely to be deterministic, while independent d;
with respect to different d;, and a positive intercept of the y
axis are a sure sign of random origin. Notably, the determin-
ism test proposed by Binder et al.*® is robust and generally
applicable, yet it has some difficulties with sinusoidal time
series if average separations between the trajectories fluctu-
ate substantially, and even more so if the sampling frequency
is incommensurable with the main oscillation frequency of
the series. However, the analyzed Ca®* responses are clearly
not sinusoidal, which lead to the conclusion that the deter-
minism test is suitable for our purposes. Figure 4 features the
results of the analysis for the three considered experimental
recordings and different values of i. Irrespective of which
time series is used and the value of i, all data points do not
intercept the vertical axis at 0, thus supplementing nicely the
results and conclusions derived from the surrogate tests,
showing conclusively that stochasticity prevails in experi-
mentally observed responses of pancreatic acinar cells to
acetylcholine within the intact tissue.

IV. DISCUSSION

Our results show that the Ca®* traces measured in pan-
creatic acinar cells in response to acetylcholine are mainly
stochastic with only minute markers of determinism. Surro-
gate data testing has revealed that in case of lower, physi-
ologically more relevant acetylcholine concentrations, the
null hypothesis (C) could not been rejected. Thus we can
conclude that the underlying processes that govern the intra-
cellular Ca’* oscillations at these stimulation levels are in-
deed stochastic in nature, although certain signs of nonlinear
components that are involved in the signal generation seem
to be present. By higher stimulation levels, even the null
hypothesis (B) could not be rejected, thus indicating that the
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FIG. 4. (Color online) Results of the determinism test for c,c,=25 nM,
cach=50 nM, and c,c,=250 nM from top to bottom as denoted also in the
individual panels. Each recording was analyzed by using the parameters m
=3, 7=1,and i=1,2,3 (squares, circles, and triangles). While all data points
can be fitted fairly well with a straight line, none of them has an intercept at
0, which is according to Binder er al. (Ref. 46) is a clear sign for lack of
determinism. In addition, it is evident that as i increases even marginally the
dependence of d; on d, becomes flat fast (d; becomes independent of d),
which further strengthens the conclusion that the analyzed traces have sto-
chastic origin.

stochasticity is then so high that the recorded traces cannot
be distinguished from a stochastic Gaussian linear process.
We supplement these findings with a determinism test for
short time series, which has also confirmed lack of determin-
ism in measured Ca** responses. In addition, the highest lev-
els of stochasticity have been found at high acetylcholine
concentrations, which is also in agreement with the results of
the surrogate data method.

It should be noted that in our study we have used the full
time series of Ca* oscillations for the analysis. Other recent
studies”**” deviate from our approach in that they take into
account only the time intervals between successive Ca®*
peaks. Because of this difference a discrepancy between the
reported results can emerge. In Ref. 47 the authors stated that
stimulated oscillations have smaller entropy compared to
spontaneous oscillations, which can be seen as a contradic-
tion to our results presented in Fig. 3, where we conclude
that higher stimulation levels lead to higher stochasticity in
the recorded traces. However, considering full records of
Ca’* oscillations also takes into account the base levels of
Ca’* that are highly sensitive to internal and external pertur-
bations. A similar effect can also be observed at high levels
of overstimulated Ca®* responses, where high-frequency os-
cillations appear at higher Ca>* base levels, thereby substan-
tially contributing to the overall levels of stochasticity.

Our results indicate that stochasticity is an important fac-
tor in the dynamics of intracellular Ca?* oscillations. Indeed,
the results suggest that mathematical models should take in-
herent fluctuations explicitly into account when describing
cellular processes. The reported results are fully in agree-
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ment with the previous analysis of experimental data and
theoretical predictions.M*26 Combined with previous results,
they represent an important experimentally based confirma-
tion of previous theoretical declarations,” > which hypoth-
esized that stochasticity must be taken into account when
processes at the cellular level are modeled. Moreover, the
unquestionable existence of inherent fluctuations confirms
the feasibility of noise-induced phenomena at the single cell
scale, such as stochastic or coherence resonance, which were
frequently observed and studied theoretically.‘m’49

Finally, we also compare our results, showing that cellu-
lar signals at cellular level are mainly stochastic, with the
results of nonlinear time series analysis of biological signals
measured at the level of the organ which indicate a high
degree of determinism.****° This apparent discrepancy be-
tween the stochastic nature of cellular signals and determin-
istic nature of signals in tissues is in full agreement with the
recent model predictions obtained for Ca>* oscillators in dif-
fusively coupled cells."® The model predicts a transition from
stochasticity to determinism in Ca’* oscillations when going
from responses of isolated cells to responses of a large num-
ber of coupled cells. It has been shown that the collective
dynamics of coupled cells is, unlike that of isolated cells,
deterministic for large-enough ensemble sizes. These model
predictions are in best agreement with the nonlinear time
series analysis of experimental results at the cellular level,
where the extent of stochasticity is rather high,26 and at the
level of the organ, where it has been shown that the nature of
measured signals is predominantly deterministic.™' In the
future, it would certainly be of great interest to observe if
ensembles of cells forming the tissue exhibit a more deter-
ministic dynamics as individual cells. Namely, the tissue can
provide conditions for apparently regular oscillations as de-
scribed before;25 however this depends on the level of com-
munication among the cells as well as the network structure
underlying the interactions. Apparently, such conditions are
not met within the intact acini of pancreatic tissue slices.
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