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We propose an experimental setup allowing for the characterization of laser droplet generation in
terms of the underlying dynamics, primarily showing that the latter is deterministically chaotic by
means of nonlinear time series analysis methods. In particular, we use a laser pulse to melt the end
of a properly fed vertically placed metal wire. Due to the interplay of surface tension, gravity force,
and light-metal interaction, undulating pendant droplets are formed at the molten end, which even-
tually completely detach from the wire as a consequence of their increasing mass. We capture the
dynamics of this process by employing a high-speed infrared camera, thereby indirectly measuring
the temperature of the wire end and the pendant droplets. The time series is subsequently generated
as the mean value over the pixel intensity of every infrared snapshot. Finally, we employ methods
of nonlinear time series analysis to reconstruct the phase space from the observed variable and test
it against determinism and stationarity. After establishing that the observed laser droplet generation
is a deterministic and dynamically stationary process, we calculate the spectra of Lyapunov expo-
nents. We obtain a positive largest Lyapunov exponent and a negative divergence, i.e., sum of all
the exponents, thus indicating that the observed dynamics is deterministically chaotic with an
attractor as solution in the phase space. In addition to characterizing the dynamics of laser droplet
generation, we outline industrial applications of the process and point out the significance of our
findings for future attempts at mathematical modeling. © 2010 American Institute of Physics.
�doi:10.1063/1.3367772�

The dripping faucet is one of the paradigmatic examples
of deterministic chaos. Due to the inherently nonlinear
interplay between the surface tension, mass of the drop-
lets, and the dripping rate, the system exhibits extreme
richness of dynamics, culminating in the emergence of
deterministically chaotic behavior. Here we propose and
examine the dynamics of a conceptually closely related
process, which, however, is governed by additional physi-
cal phenomena. While the complexity of laser droplet
generation also relies on the interplay between the sur-
face tension and the increasing droplet mass, the addition
of light-metal interaction and the fact that molten metal
has different properties than water warrant diversity if
compared with the traditional dripping faucet experi-
ment. It is, therefore, all the more fascinating that from
the viewpoint of dynamics, the two processes share deter-
ministic chaos as an inseparable ingredient. Indeed, our
analysis reveals that the phase space, reconstructed from
the indirect temperature measurements of the metal
droplets, is characterized by an attractor having negative
divergence and a positive largest Lyapunov exponent. As
such, it has all the properties that are characteristic for
deterministically chaotic systems. These essential insights

into the dynamics of laser droplet generation from ex-
perimental data are paramount for the proper introduc-
tion of the process to actual industrial applications, as
well as to modeling attempts that may further facilitate
its understanding. Demonstrating the emergence of chaos
in a realistic engineering setup adds to the evergreen na-
ture of the subject, and in this sense, we hope that the
study will be inspirational and spawn further research
aimed at unraveling the dynamics of laser droplet gen-
eration and revealing its full potentials.

I. INTRODUCTION

Nonlinear dynamical systems1 offer a gateway to fasci-
nating phenomena that imbue many facets of our existence.
Although frequently going by unnoticed, deterministic
chaos,2 fractal structures,3 synchronization,4 and even the
stochastic resonance5 are phenomena that are at the very
heart of numerous man-made and natural systems. Be it only
a thought or a heartbeat,6 the organization of traffic,7 or the
weather forecast,8 nonlinear dynamics plays an important
role in it all. However, while the dripping faucet9 and the
flapping of butterfly wings10 are paradigmatic examples of
deterministic chaos, their omnipresence and universal appeal
are in stark contrast with many of the processes in engineer-
ing and technical sciences, where the complexity underlying
them frequently remains unexplored or at least unknown to
the wider audience. Since mathematical models for complex
processes are difficult to construct, and are therefore either
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nonexistent or capture only the essential ingredients of the
dynamics, one of the common obstacles to overcome is the
characterization of the process from experimental or ob-
served data sets.

Nonlinear time series analysis11 enables the determina-
tion of characteristic quantities, for example, the number of
active degrees of freedom or invariants such as the Lyapunov
exponents,2 of a particular system by analyzing the time
course of one of its measured variables. In the past two de-
cades numerous successful applications of nonlinear time se-
ries analysis on data sets from the most diverse fields of
research have been reported,12 and there are still new ap-
proaches being proposed to date. One of the most recent
advances is the merging of concepts from the theory of com-
plex networks13 and time series analysis,14 particularly also
recurrence plots,15 which together gave rise to new quantifi-
ers for experimental data sets.16 Despite the availability of
comprehensive and well-documented programs,17 however,
there are still branches of science in which the application of
these methods could lead to substantial advancements. The
failure of applying them is in part certainly due to the diffi-
culties associated with successfully bringing together scien-
tists that are working on very different and seemingly com-
pletely disjoint subjects, and also due to the fact that not all
data sets are equally amenable to methods of nonlinear time
series analysis. While the latter indeed offer tools that bridge
the gap between experimentally observed irregular behavior
and the theory of dynamical systems, it should be empha-
sized that this is true foremost if the series under study has
properties that are typical of deterministic dynamical
systems.18–20 Moreover, is has to be verified if the observed
irregular behavior originated from a stationary system,21,22

for it may solely be a consequence of varying system param-
eters during data acquisition. These are important issues that
have to be addressed, especially on experimental recordings,
as we will try to emphasize throughout this work.

In this paper we propose an experiment that allows us to
characterize the process of dripping via laser-induced heating
of the end of a properly fed metal wire, i.e., the laser droplet
generation. Particularly, we are interested in the dynamical
properties of this process, which via the analogy with the
dripping faucet9 promise to be very interesting. However,
although being conceptually similar, we note that the laser
droplet generation is governed by additional physical phe-
nomena. While the surface tension and droplet mass also
play a crucial role, the additional effects brought about by
light-metal interaction, heating, phase transitions, and the
fact that molten metal has different properties than water
distinguish the process significantly from the traditional drip-
ping faucet experiment. In our case a laser pulse is used to
melt the end of a vertically placed metal wire. Due to the
interplay between the surface tension and the gravity force a
pendant droplet is formed from the molten end. The pendant
droplet eventually becomes fully detached due to its growing
mass and the laser light-matter interaction. During the pro-
cess of droplet formation the wire has to be properly fed,
thereby mimicking the flow rate of water in the dripping
faucet experiment. The most important variable to monitor
during the process is the temperature of the wire end and the

pendant droplet, which we realize indirectly by means of a
high-speed infrared �IR� camera. Variations in the tempera-
ture over time are subsequently obtained as the mean value
over the pixel intensity of every IR snapshot. We start unrav-
eling the dynamics of the observed laser droplet generation
via the embedding theorem,23 which enables the reconstruc-
tion of the phase space from a single observed variable,
thereby laying foundations for further analysis. We use the
mutual information24 and the false nearest neighbor �fnn�
method25,26 to obtain optimal embedding parameters for the
phase space reconstruction. Subsequently, we apply a
determinism18 and a stationarity21 test to verify that the ob-
served behavior is indeed a consequence of deterministic dy-
namics and that all the parameters were held constant during
data acquisition. After establishing that the studied tempera-
ture recording originates from a deterministic and stationary
laser droplet generation, we calculate the spectra of
Lyapunov exponents,27,28 whereby a positive largest
Lyapunov exponent29 and a negative divergence both point
toward the fact that the observed dynamics is deterministi-
cally chaotic with an attractor as solution in the phase space.
We also outline potential industrial applications of the pro-
cess and give pointers toward its appropriate mathematical
modeling. It is notable that the number of droplet-based tech-
nologies has increased substantially in recent years.30 From
this point of view laser droplet generation has an industrial
potential especially in joining,31,32 where accurate math-
ematical models would be paramount for further application
developments.

The paper is structured as follows. Section II is devoted
to the accurate description of the experimental setup and the
acquisition of the time series. Section III features results of
nonlinear time series analysis, while in Sec. IV we summa-
rize the paper and outline the potential implications of our
findings.

II. EXPERIMENTAL SETUP

The laser droplet generation phenomenologically con-
sists of two phases. In the first phase a laser pulse is used as
a source of energy to melt the end of a vertically placed
metal wire. From the molten end a pendant droplet is formed
due to the action of surface tension and gravity force. Be-
cause the surface tension drags the pendant droplet up the
wire the latter has to be properly fed. The second phase
encompasses the detachment of the pendant droplet from the
tip of the wire. To achieve this the surface tension force
needs to be overcome, which in our case happens as a result
of droplet mass growth. This scenario can be referred to as
spontaneous dripping. Notably, a metal droplet can be used
in different manufacturing applications. The most promising
one is droplet joining, where a molten droplet is placed onto
the joining spot.31,32 The heat content of a droplet is suffi-
cient to produce a high-temperature weld, whereas the vol-
ume of the droplet can be used to fill gaps or bridge dimen-
sional tolerances. Other potential applications include the
generation of three-dimensional structures by means of a se-
lective deposition of droplets into layers as well as micro-
casting. The most common and important process underlying
these technologies is laser droplet generation. However, for

013129-2 Krese, Perc, and Govekar Chaos 20, 013129 �2010�



an effective optimization and control of the process it is es-
sential to know its dynamics. We aim to determine this from
experimental data.

In order to study the dynamics of laser droplet genera-
tion we have developed an experimental system that is sche-
matically depicted in Fig. 1. The main parts of the experi-
mental setup are the Nd:YAG �yttrium aluminum garnet�
pulse laser, the optomechanical elements, the wire feeder,
and the IR camera. The Nd:YAG laser is used for generating
laser pulses with a wavelength of 1.06 �m. The maximal
laser pulse power is 8 kW and the pulse duration is between
0.3 and 20 ms. The maximal pulse repetition rate is 300 Hz
with an average power of 0.25 kW. To assure uniform heat-
ing of the wire and process symmetry, the laser light is di-
vided into three equal laser beams. By means of the optom-
echanical elements the beams are distributed equiangular
along the wire circumference and perpendicularly focused
onto the wire’s surface. The wire is vertically fed via a con-
trolled wire feeder. Maximal acceleration and velocity of the
wire are 20 m /s2 and 0.3 m/s, respectively. The wire con-
troller is also applied to synchronize the triggering of the
laser pulses with the stepwise wire feeding. Since the tem-
perature is the most important variable of the process it was
indirectly measured by means of a high-speed IR camera.
Given the properties of the light emitted at the wire end and
the pendant droplets, the snapshots were acquired at wave-
lengths between 3.5 and 5 �m.

Based on the description of the experimental setup it is
obvious that there are a number of parameters that can influ-
ence the process of laser droplet generation. For a selected
wire material, however, the most important ones are the laser
pulse and wire feeding parameters. Proper estimates for the
laser pulse parameters can be obtained based on the analysis
of the heat balance of a molten pendant droplet.32 Parameters
of the wire feeding generally depend on the dynamics of the
droplet. However, an average wire feed velocity can be esti-
mated based on the desired droplet volume.32 Here we have
used a nickel wire having a diameter of 0.6 mm. Other pa-
rameters and setup details are as follows. A rectangular laser
pulse with power of 1440 W, duration of 12 ms, and fre-
quency of 3 Hz was used. During the laser pulse, the wire
was fed by a triangular velocity profile with a maximal ve-
locity of 0.3 m/s. The motivation behind the usage of a tri-

angular profile of the feeding velocity is twofold. First, it is
simple and transparent enough to be easily implemented ex-
perimentally, and second, due to its simplicity, it is as non-
invasive on the inherent dynamics of the droplet generation
as possible, in particular, allowing swift adjustments in ac-
cordance with the droplet growth and subsequent detach-
ment. The sampling frequency of the IR camera was 1428
Hz at snapshot size of U�V=32�64 pixels. A short se-
quence of snapshots is shown in Fig. 2, where an example of
droplet growth and subsequent detachment is depicted �see
also the supplementary video�. Finally, the spatiotemporal
temperature field was converted into a single scalar time se-
ries by calculating the mean value of the pixel intensity of
every snapshot according to

xi =
1

UV
�
u=1

U

�
v=1

V

xi
u,v. �1�

In Eq. �1� xi
u,v is the ith snapshot value of the �u ,v� pixel, and

thus is as a proxy of the local temperature T�u ,v , t�=xi
u,v,

where t= idt �see also Eq. �2��. The resulting time series is,
rescaled to the unit interval and denoised by means of a
Wiener filter, shown in Fig. 3. Upon visual inspection of the
time series, lower and higher frequency oscillations can be
inferred, which can be linked nicely with the two-phase pro-
cess of laser droplet generation. Namely, the lower frequency
oscillations correspond to droplet volume �mass� and tem-
perature growth, which is followed by a sudden drop of the
signal amplitude due to the droplet detachment.

III. TIME SERIES ANALYSIS

We start the time series analysis by applying the embed-
ding theorem,23 which states that for a large enough embed-
ding dimension m the delay vectors

Laser

Optical fiber

Opto-mechanical element

120°

Wire

Laser beams

IR camera

Wire feeder

120°

FIG. 1. �Color online� Schematic presentation of the experimental setup.
The temperature is measured indirectly by means of a high-speed IR camera
�see main text for details�.

FIG. 2. �Color online� A sequence of snapshots from the IR camera showing
growth of the pendant droplet and its detachment. The time increases
from the upper left to the lower right panel. We also provide a supplemen-
tary video file from the IR camera, showing the process of laser droplet
generation in continuous time �enhanced online�.
�URL: http://dx.doi.org/10.1063/1.3367772.1�
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z�i� = �xi,xi+�,xi+2�, . . . ,xi+�m−1��� �2�

yield a phase space that has exactly the same properties as
the one formed by the original variables of the system. In Eq.
�2� variables xi ,xi+� ,xi+2� , . . . ,xi+�m−1�� denote values �res-
caled to the unit interval for simplicity� of the indirectly
measured temperature at times t= idt , t= �i+��dt , t= �i
+2��dt , . . . , t= �i+ �m−1���dt, respectively, whereby � is the
embedding delay and dt is the sampling time of data points
equaling 7�10−4 s. Altogether, the examined time series
consists of i=1,2 , . . . ,66 732 data points.

While the implementation of Eq. �2� is straightforward,
we first have to determine proper values for the embedding
parameters m and �. For this purpose, the mutual
information24 and the fnn method25 can be used, respectively.
Since the mutual information between xi and xi+� quantifies
the amount of information we have about the state xi+� pre-
suming we know xi,

33 Fraser and Swinney24 proposed to use
the first minimum of the mutual information as the optimal
embedding delay. Results presented in Fig. 4 show that the
mutual information I��� has the first minimum at ��250.
The fnn method, on the other hand, relies on the assumption
that the phase space of a deterministic system folds and un-
folds smoothly with no sudden irregularities appearing in its
structure. By exploiting this assumption one comes to the
conclusion that points that are close in the reconstructed em-
bedding space have to stay sufficiently close also during for-
ward iteration. If a phase space point has a close neighbor
that does not fulfill this criterion, it is marked as having a
fnn. As soon as m is chosen sufficiently large, the projection
effects due to a mapping of the time series onto a space with
too few degrees of freedom should disappear, and with them
the fraction of points that have a fnn should converge to

zero.25 Note that the method implicitly assumes that a deter-
ministic time series is given as input. This, however, cannot
be taken for granted, and indeed a simple extension of the
originally proposed fnn method26 can be used also as a de-
terminism test. Here we employ the classical algorithm pro-
posed by Kennel et al.25 and use the determinism test due to
Kaplan and Glass.18 Results of the false nearest method are
presented in Fig. 5, showing that fnn→0 at m=5. We will
thus use �=250 and m=5 as input for Eq. �2� in what
follows.

Having all the parameters at hand for reconstructing the
phase space from the observed variable �see left panel of
Fig. 6�, we can proceed by employing the determinism test
proposed by Kaplan and Glass.18 The test is simple but ef-
fective, measuring average directional vectors in a coarse-
grained embedding space. The idea is that neighboring tra-
jectories in a small portion of the embedding space should all

FIG. 3. �Color online� The time series capturing the process of laser droplet
generation via the pixel intensity of high-speed IR snapshots �see Fig. 2�.
The main panel shows the time series xi rescaled to the unit interval with an
integer time scale. The inset shows the series before �red line; gray in
printed journal� and after �black line� Wiener filtering, removing the high-
frequency noisy component that is due to the IR imaging. No additional
noise filtering has been made prior to further analysis.

FIG. 4. �Color online� Determination of the proper embedding delay via the
mutual information method. The first minimum occurs at ��250 �blue
dashed line�, which we will use in all subsequent calculations.

FIG. 5. �Color online� Determination of the minimally required embedding
dimension. The fraction of fnn’s drops close ��0.01� to zero �blue dashed
line� at m=5, which we will use in all subsequent calculations.
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point in the same direction, thus assuring uniqueness of so-
lutions in the phase space, which is the hallmark of deter-
minism. To perform the test, the embedding space has to be
coarse grained into equally sized boxes. The average direc-
tional vector pertaining to a particular box is then obtained as
follows. Each pass p of the trajectory through the kth box
generates a unit vector ep, whose direction is determined by
the phase space point where the trajectory first enters the box
and the phase space point where the trajectory leaves the
box. The average directional vector Vk through the kth box is
then

Vk = n−1�
p=1

n

ep, �3�

where n is the number of all passes through the kth box.
Completing this task for all occupied boxes gives us a direc-
tional approximation for the vector field. If the time series
originates from a deterministic system, and the coarse
grained partitioning is fine enough, the obtained directional
vector field Vk should consist solely of vectors that have unit
length. Hence, if the system is deterministic, the average
length of all the directional vectors � will be close to one.
The determinism factor pertaining to the five-dimensional
embedding space presented in Fig. 6 that was coarse grained
into a 12�12� ¯ �12 grid is �=0.9, which confirms the
deterministic nature of the studied time series. The two-
dimensional projection of the directional vector field is
shown in the right panel of Fig. 6. It is also informative to
generate surrogates34 from the studied series, for example, by
employing the iterative procedure proposed by Schreiber and
Schmitz,35 albeit with the cautionary note that surrogates en-
able only the rejection �or acceptance� of a given null hy-
pothesis. As such, they do not allow more far-reaching con-
clusions on the role of stochasticity in the examined series,
and thus cannot be used as a substitute for the preceding
determinism test. In our case the determinism factor drops to

0.48���0.61 �based on 20 generated surrogates�, which
thus rejects the null hypothesis that the laser droplet genera-
tion is a stationary Gaussian linear process that has been
distorted by a monotonic, instantaneous, time-independent
nonlinear function.

It remains of interest to verify if the laser droplet gen-
eration is a stationary process. To this purpose, we apply the
stationarity test proposed by Schreiber.21 In general, station-
arity violations manifest so that various nonoverlapping seg-
ments of the time series have different dynamical properties.
Since linear statistics, such as the mean or standard data
deviation, usually do not posses enough discrimination
power when analyzing irregular signals, nonlinear statistics
have to be applied. One of the most effective has proven to
be the cross-prediction error statistic. The idea is to split the
time series into several short nonoverlapping segments, and
then use a particular data segment to make predictions in
another data segment. By calculating the average prediction
error �gh when considering points in segment g to make pre-
dictions in segment h, we obtain a very sensitive statistics
capable of detecting minute changes in dynamics, and thus a
very powerful probe for stationarity.21 Results presented in
Fig. 7 were obtained by dividing the whole time series into
26 nonoverlapping segments of 2500 points, thus yielding
262 combinations to evaluate �gh. Since the cross-prediction
errors are uniformly spread across the whole g-h plane, i.e.,
none of the segments is an exceptionally bad �or good�
source of data to make predictions in the other segments, we
can refute nonstationarity in the proposed laser droplet gen-
eration experiment. An interesting feature of the stationarity
test presented in Fig. 7 is also the emergence of white diago-
nals, appearing parallel to the main white diagonal. While
the latter is expected because there is g=h �the segment used
for making predictions is also the one we test them against�,
the other white diagonals appear due to the pseudoperiodic-
ity, which can be inferred from the outlay of the time series

FIG. 6. Determinism test. The left panel features the reconstructed phase
space using �=250 and m=5, while the right panel shows the pertaining
approximated directional vector field. Determinism factor of the phase space
according to Kaplan and Glass �Ref. 18� is �=0.9.

FIG. 7. �Color online� Stationarity test. The whole time series was parti-
tioned into 26 nonoverlapping segments each occupying 2500 data points.
The color map displays average cross-prediction errors �gh in dependence on
different segment combinations.
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�see Fig. 3�. In particular, although the growth and subse-
quent detachment of droplets is obviously not a strictly peri-
odic process, the similarity of the individual periods of drop-
let growth, as well as the similar lengths of time spans
between consecutive droplet detachments, nevertheless lead
to the recurrent emergence of white diagonals also beyond
g=h. This, in turn, can also be seen as evidence supporting
the determinism in the examined time series.

Finally, we calculate the spectra of Lyapunov exponents
� j where j=1,2 , . . . ,m, knowing with reasonable certainty
that the obtained results are due to deterministic nonlinear
dynamics rather than noise or varying systems parameters
during data acquisition. We employ radial basis functions for
the approximation of the flow in the phase space. Using the
phase space reconstruction parameters obtained above,
M =10 nearest neighbors of each z�i� to make the fit, and the
stiffness parameter r=7,27 the exponents change their sign
upon time reversal of the flow and converge robustly as the
number of iterations increases. Figure 8 features the indi-
vidual convergence curves, from which we obtain �1

= �3.2	0.1� s−1, �2= �0.0	0.1� s−1, and the divergence as
the sum over all � j equal to 
=−�145	3� s−1. From the
positive largest Lyapunov exponent, the vanishing second
Lyapunov exponent, and the negative divergence, we can
conclude that the dynamics of laser droplet generation is de-
terministically chaotic, and that there exists a stable attractor
in the phase space to which any given cloud of initial con-
dition converges in time.

IV. SUMMARY

We have proposed an experimental setup with the aim of
determining the dynamics of laser droplet generation. Using
a high-speed IR camera, we have indirectly measured the
spatiotemporal profile of temperature around the molten end

of the wire and the pending droplets. Subsequently, the time
series was obtained as the mean value over the pixel inten-
sity of every IR snapshot, and analyzed systematically with
methods of nonlinear time series analysis. After reconstruct-
ing the phase space from the observed variable, we have
verified that the latter has properties that are typical for de-
terministic and dynamically stationary systems. We have
shown that the minimally required embedding dimension is
five, which altogether suggests that it would be justified to
mathematically model the process of laser droplet generation
with no more than five first-order ordinary differential equa-
tions. Also, we have determined the whole spectra of
Lyapunov exponents by approximating the flow in the phase
space with radial basis functions. Our calculations revealed
that the largest Lyapunov exponent is positive, the second is
zero, while the divergence is negative, thus obtaining strong
indicators that the observed dynamics is deterministically
chaotic with an attractor as solution in the phase space. Thus,
although the laser droplet generation is governed by addi-
tional physical phenomena, including light-metal interaction,
heating and phase transitions, the dynamics of the process is
similar to the one observed in traditional dripping faucet ex-
periments. In addition, the presented results indicate that
nonlinearity is an innate ingredient of laser droplet genera-
tion, which should be taken into account in future modeling
and controlling attempts. We hope that the study will be of
value when striving toward a deeper understanding of the
examined process and its integration into outlined industrial
applications.
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