
Effects of correlated Gaussian noise on the mean firing rate
and correlations of an electrically coupled neuronal network

Xiaojuan Sun,1,2,a� Matjaž Perc,3,b� Qishao Lu,2,c� and Jürgen Kurths4,d�

1Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084,
People’s Republic of China
2Division of General Mechanics, Beihang University, 100191 Beijing, People’s Republic of China
3Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor,
Koroška cesta 160, SI-2000 Maribor, Slovenia
4Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany and Institute of Physics,
Humboldt University Berlin, 12489 Berlin, Germany

�Received 25 February 2010; accepted 9 August 2010; published online 21 September 2010�

In this paper, we examine the effects of correlated Gaussian noise on a two-dimensional neuronal
network that is locally modeled by the Rulkov map. More precisely, we study the effects of the
noise correlation on the variations of the mean firing rate and the correlations among neurons versus
the noise intensity. Via numerical simulations, we show that the mean firing rate can always be
optimized at an intermediate noise intensity, irrespective of the noise correlation. On the other hand,
variations of the population coherence with respect to the noise intensity are strongly influenced by
the ratio between local and global Gaussian noisy inputs. Biological implications of our findings are
also discussed. © 2010 American Institute of Physics. �doi:10.1063/1.3483876�

It is thoroughly documented and established that noise
can play a constructive role in neuronal systems. Noise
correlations, which have been observed in the brain, are
thereby usually assumed to be ignorable. However, it has
been shown that noise correlations cannot be avoided and
may indeed play a vital role in neuronal dynamics,
mainly because they affect the amount of information
transmitted across the cortex as well as the computa-
tional strategies of neuronal networks. In the context of
transmission of neuronal information, there is an ongoing
debate about whether a cortical neuron is sensitive to the
mean firing rate of presynaptic neurons and their corre-
lations or not. Regardless of this, the mean firing rate and
the correlations among neuronal groups are two impor-
tant factors determining the transmission of information
across the network. Here we elaborate on the effects of
correlated Gaussian noise (noise correlation) on the mean
firing rate and the correlations among neurons of an elec-
trically coupled neuronal network. We find that the noise
correlation has little effect on the variations of the mean
firing rate with respect to the noise intensity. Variations
of the population coherence with respect to the noise in-
tensity, however, are strongly influenced by the ratio be-
tween local and global Gaussian noise in the overall noise
intensity, which can be tuned by the noise correlation.
Our results indicate that noise correlation may have a
significant impact on the response of postsynaptic neu-
rons if these are sensitive to correlated neuronal
activities.

I. INTRODUCTION

Neurons are usually subject to random fluctuations on
different scales, ranging from channel noise created by ran-
dom ion flow across the plasma membrane to synaptic noise
created by the activity of other neurons. In experiments, it
has been shown that noise has constructive effects on neu-
ronal dynamics. For example, William and Durand1 showed
that an appropriate noise intensity can improve the detection
of subthreshold signals in a resonant manner. Higgs et al.2

found that synaptic noise increases the gain in many pyrami-
dal neurons with large slow after hyperpolarization. Jacobson
et al.3 found that channel noise contributes significantly to
membrane voltage fluctuations at the subthreshold voltage
range. In theoretical and computational studies, the construc-
tive role of noise in neuronal systems has been reported as
well. For example, it was shown that noise is able to evoke
coherence and stochastic resonance in single neurons,4–8 as
well as in one-dimensional9,10 and two-dimensional11–14 neu-
ronal networks. Related to the present study, in the sense that
correlated noisy inputs have been considered, are the two
papers by Kreuz et al.7,8 where it has been shown that an
intermediate noise intensity can evoke the most coherent
temporal output of a single neuron irrespective of the noise
correlation length. Double coherence resonance in terms of
an optimal combination of noise intensity and correlation
was reported as well. Notably, the effect of auto- and cross-
correlations of input spikes on the response of spiking neu-
rons has also been studied extensively.15 Additionally, noise
can also induce and/or enhance the synchronization in neu-
ronal systems.10,16 References 17 and 18 are two comprehen-
sive review papers, recommended to the readers who are
interested in the research of noise effects on nonlinear sys-
tems in general, including neuronal dynamics.
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In the cortex, a single interneuron can be connected with
tens of thousands of local circuit interneurons. Thus, the ac-
tivity of this single interneuron will provide correlated input
to many neurons in the local circuit.19 Furthermore, corre-
lated inputs might be stimulus driven and usually are ran-
dom. These random correlated inputs can be described by
means of correlated noise. In the past, noise correlations
have, apart from a few exceptions,7,8 usually been ignored.
But some researchers have found that noise correlations can
have many different effects on the neuronal population—the
amount of information encoded, the computational strategies
of networks of neurons, etc., as reviewed in Ref. 20. This
means that noise correlations should not be neglected in neu-
ronal systems. Adding to this conclusion is also the fact that
the conceptually related coupling via noise in
one-dimensional21 and two-dimensional22 systems has been
found to induce synchronization. Meanwhile, the question of
how a postsynaptic neuron is affected by the presynaptic
neuronal population is still not fully understood. There is an
ongoing debate on whether a cortical neuron is driven mainly
by the mean firing rate of presynaptic neurons or by corre-
lated firing activities.23–25 No matter what the outcome of the
debate, the mean firing rate and correlations of neuronal
groups are two important factors in investigating transmis-
sion of neuronal information. Therefore, we will investigate
the effects of correlated Gaussian noise �noise correlation� on
the mean firing rate and correlations of a neuronal population
in this paper. The obtained results may have important im-
plications for understanding the transmission of neuronal in-
formation.

The paper is organized as follows. Equations governing
the two-dimensional neuronal network are presented in Sec.
II. Measures used for quantifying the observed neuronal dy-
namics are introduced in Sec. III, while the results due to
correlated Gaussian noise are presented in Sec. IV. Finally,
the summary is given in Sec. V. We also provide an algorith-
mic description of noise generation in the Appendix.

II. EQUATIONS OF THE NETWORK

The Rulkov map26,27 is employed to model the dynami-
cal behavior of neurons constituting the examined neuronal
network. The model captures succinctly main dynamical
mechanisms in real neuronal ensembles, foremost showing
typical restructuring of collective behavior following sto-
chastic inputs. Specifically, we consider a network of N�N
electrically coupled Rulkov maps,

un+1�i, j� = �/�1 + un
2�i, j�� + vn�i, j� + D�un�i + 1, j�

+ un�i − 1, j� + un�i, j − 1� + un�i, j + 1�

− 4un�i, j�� + �n�i, j� ,

vn+1�i, j� = vn�i, j� − �un�i, j� − � ,

where un�i , j� is the membrane potential of neuron �i , j� and
vn�i , j� is the corresponding ion concentration at the discrete
time n. The system parameters are �, �, and �, whereby the
latter two determine the time scale associated with the dy-
namics of the slow variable vn�i , j� and � is the main bifur-
cation parameter. If not stated otherwise, we use �=1.99 and

�=�=0.001, for which each neuron is governed by a single
excitable steady state �u� ,v��= �−1,−1−� /2�. Each neuron
is coupled electrically with its four nearest neighbors with
periodic boundary conditions given by u�0, j�=u�N , j� ,u�N
+1, j�=u�1, j� ,u�i ,0�=u�i ,N� ,u�i ,N+1�=u�i ,1�. Finally, D
is the coupling strength between the neurons on the 128
�128 spatial grid.

The correlated Gaussian noise �n�i , j� is expressed as

�n�i, j� = �Ren + �1 − R�n�i, j� , �1�

where en is the Gaussian white noise and common to all
units, i.e., global noise, with the properties,

��en	 = 0,

�enem	 = 2�	m,n,

 �2�

and �n�i , j� is the local Gaussian noise, which is uncorrelated
from site to site. �n�i , j� is taken as Gaussian white noise with
the properties,

���n�i, j�	 = 0,

��n�i, j��m�i�, j��	 = 2�loc	i,i�	 j,j�	m,n,
 �3�

and Gaussian colored noise with the properties,

���n�i, j�	 = 0,

��n�i, j��m�i�, j��	 = �loc
 exp�− 
�n − m��	i,i�	 j,j�,
 �4�

respectively. Here � is the noise intensity of the global noise
en, �loc is the noise intensity of the local noise �n�i , j�, and

−1 is the correlation time of the local Gaussian colored
noise. Here we set �loc=� and 
=0.05. The parameter R
measures the noise correlation between a pair of neurons.
�n�i , j� is renewed at each iteration step n and for each unit
�i , j� in the iterated processing according to the algorithm
proposed in Ref. 28 �see Appendix for details�. In the follow-
ing discussions, we will take � and R as controlled param-
eters.

III. MEASURES OF NEURONAL DYNAMICS

Two measures for quantifying the observed neuronal dy-
namics due to the impact of noise are employed. One is the
mean firing rate �,29 and the other is the population coher-
ence �.30,31 The mean firing rate of the neuronal network is
defined as

� = �
�n�	T =� 1

N2

ij

��un�i, j� − uth��
T

, �5�

where uth=−0.2 is the firing threshold determined by the ac-
tion potential of the Rulkov neuron. Notably, ��x� is a Heavi-
side function with ��x�=1 if x�0 and �=0 if x�0. The
bracket � 	 indicates the average over the whole iteration
time T.

To quantify the correlations of firing events in the neu-
ronal network, we introduce the population coherence mea-
sure ����.30,31 ���� is defined as the average of the local
coherence �ij��� over all the pairs of neurons, namely,
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���� =
1

CN
2 


i,j=1;i�j

N

�ij��� =
1

N�N − 1�
2



i,j=1;i�j

N

�ij��� , �6�

where

�ij��� =

l=1

m Yi�l�Y j�l�
�
l=1

m Yi�l�
l=1
m Y j�l�

. �7�

The coherence �ij��� between any two neurons i and j is
measured by the cross-correlation of their spike trains at zero
time lag within a time interval �. More specifically, we di-
vide the full iteration time T into small bins of duration �
=70 and define the two spike trains as Yi�l�=0 or 1 and
Y j�l�=0 or 1 �l=1,2 , . . . ,m ; T /m=��, whereby Y�l�=1 if
the onset of a spike occurred at the lth time bin, otherwise
Y�l�=0. Sometimes, the population coherence measure ����
is also used to quantify the synchronization of neuronal fir-
ings in networks.30,32 Larger population coherence � corre-
sponds to higher correlations between neurons inside the net-
work.

IV. EFFECTS OF CORRELATED GAUSSIAN NOISE

In order to discern clearly the distinct effects of corre-
lated Gaussian noise on neuronal dynamics, we consider first
the effects of local Gaussian noise, i.e., R=0.0. Variations of
the mean firing rate � and the population coherence measure
� with respect to the noise intensity � for various coupling
strengths D are shown in Figs. 1 and 2. Importantly, local
Gaussian noise is white in Fig. 1 but colored in Fig. 2. From
these two figures, we can see that � and � can reach larger
values at an intermediate noise intensity than at smaller and
larger noise intensities, for both local Gaussian white and
colored noise. We caution, however, that for large noise in-
tensities the mean firing rate � may yield spurious results
because of the very noisy output of individual neurons form-
ing the neuronal network, due to which it is practically im-
possible to discern what is a firing event and what is not. In
accordance with this, the results depicted in this paper are
constrained to noise intensities for which the neuronal dy-
namics still plays a significant role, i.e., is not completely
overshadowed by noise.

The above-reported results can be interpreted as follows.
Small noise intensities are unable to evoke excitations, ac-

FIG. 1. �Color online� Stack lines by Y offsets of the mean firing rate � �a� and the population coherence measure � �b� in dependence on the noise intensity
� of additive local �we set R=0.0� Gaussian white noise for various coupling strength D. Note that the x-axis has a logarithmic scale.

FIG. 2. �Color online� Stack lines by Y offsets of the mean firing rate � �a� and the population coherence measure � �b� in dependence on the noise intensity
� of additive local �we set R=0.0� Gaussian colored noise for various coupling strength D. Note that the x-axis has a logarithmic scale.
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cordingly, the mean firing rate � becomes zero and the co-
herence of neurons inside the network is small �i.e., � is
small�. For intermediate noise intensities, typically only a
few neurons �at random� forming the lattice start firing. Due
to the diffusive coupling and the noisy support the excita-
tions can propagate regularly to the neighbors, which results
in well ordered circular waves �as shown in Ref. 13� that
ultimately result in high firing rate � and large coherence �.
While for large noise intensities, neurons inside the network
exhibit high-rate spiking behavior. When such spiking neu-
rons are coupled diffusively, they tend to suppress the inputs
coming from other neurons, which in turn decrease the num-
ber of firing events in a time span and destroy the spatial
order of the dynamics, finally leading to small � and a de-
crease of �. Therefore, for local Gaussian noise, the mean
firing rate and the correlations of the neuronal network can
be optimized by some intermediate noise intensities, as
shown in Figs. 1 and 2.

In what follows, we examine more closely the effects of
correlated Gaussian noise via controlling the noise correla-
tion R. Variations of the mean firing rate � and the popula-
tion coherence measure � with respect to the noise intensity
� for various noise correlations R are shown in Figs. 3 and 4.

The local Gaussian noise is taken as white in Fig. 3 and
colored in Fig. 4, respectively. Compared with the results
shown in Figs. 1�a� and 2�a�, we can see that variations of �
with respect to the noise intensity � under correlated Gauss-
ian noise are similar to the ones under local Gaussian noise.

For the population coherence �, however, we can see
that its variations versus the noise intensity � are strongly
dependent on the noise correlation R, as shown in Figs. 3�b�
and 4�b�. It is also worth pointing out that the occasional
nonsmoothness of the curves in the latter two figures is pre-
dominantly a consequence of the somewhat erratic switching
between the emergence of spatially ordered patterns and their
absence on the network. The latter introduces some nons-
moothness to the employed statistical quantifiers, yet we
found it impossible to eliminate this by means of more in-
tensive numerical investigations. The reader is also referred
to Ref. 13, where pattern formation due to correlated Gauss-
ian noise has been studied earlier. Through comparisons with
the corresponding results presented in Figs. 1�b� and 2�b�, we
find that the effects of correlated Gaussian noise on the popu-
lation coherence � look more complex than the ones of local
Gaussian noise. In the case of local Gaussian white noise, as
shown in Fig. 3�b�, a weak coherent behavior �there exists a

FIG. 3. �Color online� Stack lines by Y offsets of the mean firing rate � �a� and the population coherence measure � �b� in dependence on the noise intensity
� of additive correlated global noise ��i , j� with local Gaussian white noise for various noise correlations R. The coupling strength is constant, equaling
D=0.0025. Note that the x-axis has a logarithmic scale.

FIG. 4. �Color online� Stack lines by Y offsets of the mean firing rate � �a� and the population coherence measure � �b� in dependence on the noise intensity
� of additive correlated global noise ��i , j� with local Gaussian colored noise for various noise correlations R. The coupling strength is constant, equaling
D=0.0025. Note that the x-axis has a logarithmic scale.
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small peak at an intermediate �� can be observed for small R,
e.g., R=0.1,0.3. And for an intermediate R �R=0.5,0.7�, the
variations of � become irregular with changing of the noise
intensity. With further increase of R, a plateau region of �
emerges as the noise intensity � increases, as can be ob-
served from the line corresponding to R=0.9, for example.
For local Gaussian colored noise, variations of � with respect
to � are irregular at R=0.1, and exhibit plateau regions with
increase of � for large R, as presented in Fig. 4�b�.

Notably, the underlining mechanism regarding the ef-
fects of correlated Gaussian noise on the mean firing rate �
is similar as discussed above in the case of local Gaussian
noise. However, in order to clarify the effects of noise cor-
relation R on the complicated variations of � versus �, we
introduce the quantity

� =
2R�

�1 − R����i, j�	2 , �8�

which is the noise strength ratio between global and local
noise. �=R / �1−R� when local noise is taken as Gaussian
white noise, and �=2R / �1−R�
 when it is taken as Gaussian
colored noise. Thus, values of � can be controlled by the
noise correlation R and 
. We calculate the variations of �
with respect to � for different noise intensity ratios �, or
equivalently, different pairs of �R ,
�. The obtained results
are presented in Fig. 5�a�, where pairs of R and 
 are colored
black if the variation of � with respect to � shows a weak
coherence. At this point it is instructive to examine the cor-
responding curves for R=0.1 and 0.3 that are depicted in Fig.
3�b�. Conversely, pairs of R and 
 are colored gray if varia-
tions of � with respect to � are irregular, as can be observed
from the corresponding curves for R=0.5 and 0.7 in Fig. 3�b�
and from the curve depicted for R=0.1 in Fig. 4�b�. Finally,
�R ,
� pairs are colored white if there exists a plateau region
of � for large �, as can be observed in Fig. 3�b� for R=0.9
and in Fig. 4�b� for R=0.3, 0.5, 0.7, and 0.9. In order to now
appreciate the quantity � introduced in Eq. �8� as an impor-

tant driving force behind the variations � with respect to �,
we show in Fig. 5�b� how � varies for different pairs of R
and 
 in a systematic manner. In particular, from thus far
presented results it can be concluded that there exist three
intervals of �, i.e., �0,a� , �a ,b� , �b ,��, within which the
variations of � with respect to � are different from one an-
other. In Fig. 5�b� black is used for those combinations of R
and 
 for which 0.0���2.0, gray is used if 2.0���8.0,
while white is used if 8.0����. Compared to results pre-
sented in Fig. 5�a�, we can observe at a glance that by setting
a and b to be equal to 2.0 and 8.0, respectively, the color
patterns match nearly perfectly, from which we conclude that
� indeed has a decisive impact on variations of � with re-
spect to �.

From the analysis of the effects of correlated Gaussian
noise, we now thus know that noise correlations have no
notable effects on the variations of � versus �, while con-
versely, the noise correlation R plays a crucial role in how �
varies with respect to �, in particular by means of controlling
the noise strength ratio �.

V. SUMMARY

In this paper, we have studied the effects of correlated
Gaussian noise on neuronal firings, measured by the mean
firing rate and the population coherence, of a two-
dimensional network, which is locally modeled by the
Rulkov map. Based on our numerical simulations, we have
found that the mean firing rate of the network � can be
enhanced at some intermediate noise intensities by correlated
Gaussian noise for any noise correlation R. This phenom-
enon is similar to the coherence resonance, even though
there is not a well-defined optimal noise intensity. While for
population coherence measure �, we find that its variations
with respect to noise intensity are very complex. Further-
more, we reveal that it strongly depends on the ratio �. More-
over, through the measure for population coherence �, we
have been able to gain a deeper understanding of the inter-

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ

R

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ

R

(b)(a)

FIG. 5. �a� Variations of � with respect to � for different �R ,
� pairs. If the coherence of � with respect to � is weak then the corresponding �R ,
� pairs are
colored black. If the variations of � with respect to � are irregular the color is gray, while it is white if there exists a plateau region of � for large �. �b� The
dependence of � on different �R ,
� pairs. Color black is used for those combinations of R and 
 for which 0.0���2.0, gray is used if 2.0���8.0, while
white is used if 8.0����. See also the main text for further details.
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actions between global and local noise. In particular, we have
shown that an appropriately tuned global noise can be an
effective promoter of correlations of firing events in the neu-
ronal network.

As we have already stated in Sec. I, it is still debatable
whether a cortical neuron is driven mainly by the mean firing
rate of presynaptic neurons or by correlations between pairs
of neurons inside the neuronal network. Moreover, neurons
inside neuronal networks are not only affected by local ran-
dom fluctuations, but also stimulated by some common ran-
dom inputs. Thus, the results obtained for discussing the ef-
fects of correlated Gaussian noise on the mean firing rate and
correlations of the neuronal network may give some impor-
tant implications on investigating transmission of neuronal
information in neuronal networks.
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APPENDIX: NOISE GENERATION

Gaussian white noise en can be generated effectively for
map-based neuronal networks as follows. Let

a = random number,

b = random number,

en = �− 4� ln�a��1/2cos�2
b� , �A1�

where a and b are uniformly distributed on the unit interval.
When �n�i , j� is Gaussian white noise, en will be renewed
according to Eq. �A1� at each iteration step n and for each
unit �i , j�. When �n�i , j� is a Gaussian colored noise, how-
ever, it can be generated by means of

a = random number,

b = random number,

gw = �− 4��t ln�a��1/2cos�2
b� ,

�n+1 = �n − 
�n + 
gw, �A2�

with initial conditions

l = random number,

m = random number,

gc = �− 4�
 ln�l��1/2cos�2
m� , �A3�

where a, b, l, and m are uniformly distributed on the unit
interval. Subsequently, �n�i , j�=�Ren+�1−R�n�i , j� is re-
newed at each iteration step n and for each unit �i , j� by
repeating Eqs. �A2� and �A3�.
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