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In this paper, the transitions of burst synchronization are explored in a neuronal network consisting

of subnetworks. The studied network is composed of electrically coupled bursting Hindmarsh–Rose

neurons. Numerical results show that two types of burst synchronization transitions can be induced

not only by the variations of intra- and intercoupling strengths but also by changing the probability

of random links between different subnetworks and the number of subnetworks. Furthermore, we

find that the underlying mechanisms for these two bursting synchronization transitions are

different: one is due to the change of spike numbers per burst, while the other is caused by the

change of the bursting type. Considering that changes in the coupling strengths and neuronal

connections are closely interlaced with brain plasticity, the presented results could have important

implications for the role of the brain plasticity in some functional behavior that are associated with

synchronization. VC 2011 American Institute of Physics. [doi:10.1063/1.3559136]

Synchronization in complex networks has been discussed

extensively in the past years. In nature, many complex

networks (e.g., biological networks) are modular, i.e.,

composed of certain subgraphs with differential internal

and external connectivity. And some interesting results

about synchronization in modular networks have been

reported recently. Moreover, it is known that synchroni-

zation of complex dynamical networks results from the

interplay between the intrinsic properties of individual

dynamical system and the network topology. Therefore,

modeling each node by a neuronal system and discussing

synchronization in modular networks can extend the

works on the understanding of dynamics, especially syn-

chronization, in such networks. On the other hand, syn-

chronous activities are revealed to have close relationships

with pathological brain states and cognitive functions.

And the cortical network is a very complex network with

hierarchy and modular (or clustered) structures. Thus,

studying neuronal dynamics of a network of subnetworks

(modular network) is also very meaningful to neuro-

scientists. In this paper, we study synchronization of

bursting neurons in a modular neuronal network, which

contains several subnetworks. By means of numerical

simulations, we find that burst synchronization transi-

tions can be induced by several factors, such as the intra-

and intercoupling strengths, the number of links between

different subnetworks, as well as the number of subnet-

works. As is well known, plasticity is an important prop-

erty of the brain, and changes in the coupling strength

and the number of connections per neuron are two fac-

tors that affect this property. It is therefore suggested

that the presented results could facilitate our understand-

ing not only of synchronization in modular networks but

also of plasticity and its impact on synchronization in

neuronal networks.

I. INTRODUCTION

Synchronization phenomena are ubiquitous in nature.

Insightful findings regarding the synchronization in complex

networks were reported extensively in the past years1–8 and

comprehensively reviewed in Ref. 9 recently. Previous works

have found that small-world,1,2 scale-free,3 and weighted net-

works4,5 are generally more synchronizable than regular net-

works. In nature, many complex networks are modular, i.e.,

composed of certain subgraphs with differential internal and

external connectivity. More recently, synchronization in

complex modular (or clustered) networks has been investi-

gated.10–14 For example, synchronization of a clustered net-

work with random subnetworks can be suppressed if extra

links are added improperly.11 For a clustered network with

regular subnetworks, it has been revealed that the network

exhibits strong and weak synchronizability (complete syn-

chronization) in an alternating manner.13

As is well known, synchronization of complex dynami-

cal network systems results from the interplay between the

intrinsic properties of individual dynamical system and the
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network topology. Each property may play an important role

in shaping the emergence of synchronous behaviors. There-

fore, modeling each node by a neuronal system and discus-

sing synchronization in modular networks can extend the

interest of the work on the understanding of dynamics in

such networks.

Additionally, synchronous activity has been also ob-

served in neuronal systems15–17 and reported to be associated

not only with pathological brain states18–20 but also with var-

ious cognitive functions.21–23 Moreover, the cortical network

is revealed to be a hierarchical and modular (or clustered)

network with a complex connectivity.24–26 In order to better

understand the brain, it is necessary to study neuronal dy-

namics of networks at a mesoscopic level (if we classify an

individual network of interacting neurons as at the micro-

scopic level). Thus, investigating synchronization phenom-

ena of neuronal systems in modular networks is also very

meaningful to neuroscientists.

As mentioned above, synchronization has been widely

observed in neuronal systems. However, the underlying

mechanisms for the occurrence of synchronization and the

effects of many (internal and external) factors on synchroni-

zation in neuronal systems are far from being fully under-

stood. It is phenomenal that many studies reported in the

focus on synchronization phenomena of neuronal systems in

the last decade,27–37 among which most are about synchroni-

zation of spiking neurons. As the other basic firing activity,

bursting is reported to have many functional implications,

see the Ref. 38 for a detailed review. Therefore, more atten-

tion should also be paid on synchronization of bursting

neurons.

Synchronization of bursting neurons includes the syn-

chrony on the spiking time scale (spike synchronization) and

synchrony on the bursting time scale (burst synchronization).

Recently, some researchers have turned their attention to

study synchronization of bursting neurons and have obtained

interesting results.39–42 As revealed by Ref. 40, burst syn-

chronization could be a precursor to spike synchronization.

Moreover, it has been found that burst synchronization of

neuronal systems may be influenced strongly by many factors,

such as coupling strengths and types,43–45 time delays,46,47

and noise.48–50 Additionally, it has been reported that synchro-

nization among chaotically bursting neurons could lead to the

onset of regular bursting.51

More recently, a seemingly more interesting phenomena—

synchronization transition—has been reported in some neu-

ronal networks.52–56 It has been found that coupling strength

and time delays could induce synchronization transitions not

only in electrically coupled neuronal networks52,53 but also in

chemically coupled ones.54–56 To our knowledge, there are

still no corresponding works on studying synchronization tran-

sition of bursting neurons in modular networks. Therefore, in

this paper, we will take a first step on this topic by studying

burst synchronization transition in a network of subnetworks,

with each subnetwork being an independent one consisting of

a group of electrically coupled bursting Hindmarsh–Rose

neurons.57

In the following section, we introduce a mathematical

model of the system. Then, we present our numerical results

of the studied neuronal network. Finally, we give a short dis-

cussion and draw some conclusions.

II. MODEL AND MEASUREMENT

A. Model

As mentioned in the Introduction, we will study burst

synchronization in a network of subnetworks. The structure

of a network of subnetworks can be generated in the follow-

ing way. We assume that there are M subnetworks, with each

subnetwork consisting of nI (I¼1;…;M) nodes; we ran-

domly choose some pairs of nodes from the Ith and Jth sub-

networks (I¼1;…;M, J¼1;…;M, and I 6¼J) and then add

links between them. By doing so, a network of subnetworks

is generated. The subnetworks could be regular, small-world,

or scale-free networks. Moreover, they could have similar or

dissimilar network properties and the same number of nodes

or not. Clustered networks studied in Refs. 11 and 13 are two

typical samples of the network of subnetworks.

In this paper, we consider that each subnetwork contains

equal number of nodes, i.e., nI¼n is independent of the

index I. And nodes in each subnetwork are arranged on a

ring, with each node connected to its 2k nearest neighbors.

Especially, we assume that M subnetworks are also arranged

on a ring, and neurons in each subnetwork just connect to the

neurons from its two nearest subnetworks. The interconnec-

tions between different subnetworks exist randomly with the

probability p. In our case, the parameter p represents the

fraction of total links in the network devoted to the connec-

tions between different subnetworks. And if the network size

N is fixed, then the number of links between different subnet-

works can be expressed as ðp=MÞN2. Thus, changes of pa-

rameter p and M could induce changes of the number of

interlinks of the network.

An example of the considered network topology is

shown in Fig. 1. In Fig. 1, which serves illustrative purposes,

there are three subnetworks, each consisting of 25 neurons.

Neurons inside each subnetwork have six nearest neighbors,

and the number of links between neurons from different sub-

network is seven (here p � 0:004). In this paper, N and k are

taken as 240 and 5, respectively.

The Hindmarsh–Rose (HR) model was originally intro-

duced to give a bursting type with long interspike intervals

of real neurons.57 In this paper, we use it as the local model

for each node in the studied neuronal network of networks.

The equations of the neuronal network are as follows:

_xI;i ¼ yI;i � ax3
I;i þ bx2

I;i � zI;i þ Iext þ �intra

�
X

j

AIði; jÞðxI;j � xI;iÞ

þ �inter

X

J

X

j

BI;Jði; jÞðxJ;j � xI;iÞ;

_yI;i ¼ c� dx2
I;i � yI;i;

_zI;i ¼ r½sðxI;i � x0Þ � zI;i�;

(1)

where the variable x represents the membrane action poten-

tial, y represents the fast current, like currents of Naþ or Kþ,
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and z associates with the slow current, e.g., a current of

Ca2þ. The system parameters a; b; c; d; r; s; x0 are taken as

a¼1:0, b¼3:0, c¼1:0, d¼5:0, r¼0:006, s¼4:0,

x0 ¼ �1:6, and the external current Iext is taken as

Iext ¼ 3:0125, where an isolated neuron produces chaotic

bursting activity. Here, we should clarify that the chaotic

bursting state can be suppressed by coupling items of the net-

work (cf. Fig. 12). �intra is the coupling strength among neu-

rons inside each subnetwork, while �inter is the coupling

strength of neurons between different subnetworks. The sub-

script pairs ðI; iÞ represent the ith neuron in the Ith subnet-

work, i¼1;…; n and I¼1;…;M. The matrix AI¼ ðAIði; jÞÞ
is an intraconnectivity matrix for the Ith subnetwork:

AIði; jÞ¼AIðj; iÞ¼1 if neuron i is connected to neuron j
inside the Ith subnetwork, AIði; jÞ¼AIðj; iÞ¼0 otherwise,

and AIði; iÞ¼0. The matrix BI;J¼BI;Jði; jÞ is also a connec-

tivity matrix, but this matrix represents the interconnections

between neurons which belong to different subnetworks:

BI;Jði; jÞ¼BI;Jði; jÞ ¼ 1 if the ith neuron in the Ith subnet-

work is connected to the jth neuron in the Jth subnetwork,

BI;Jði; jÞ¼BI;Jði; jÞ ¼ 0 otherwise. The numerical integra-

tions of the model, Eq. (1), are performed by using Eular

integration with a time step size 0.001 ms. The results shown

below are averaged over ten independent realizations of the

network for any given values of p.

B. Measurement

In order to quantitatively characterize the synchroniza-

tion degree of the bursting neurons, we calculate the order

parameter R which is defined as58

R¼ 1

N

XN

j¼1

exp½i/jðtÞ�
�����

�����; (2)

where /jðtÞ is the burst phase for the jth neuron at the time t
and can be presented as41

/jðtÞ¼2p
t� Tj;k

Tj;kþ1 � Tj;k
; Tj;k � t � Tj;kþ1; (3)

where Tj;k is the moment at which the kth burst of the jth
neuron starts, j ¼ 1; :::;N. R is zero for weak correlation and

tends to unity for a full burst synchronization state. Larger R
means higher degree of burst synchronization of the neuronal

network.

III. RESULTS

A. Burst synchronization transition in a network of
subnetworks with M ¼ 2

For simplicity, we first study burst synchronization tran-

sition in a network with two subnetworks, namely, M¼2.

We will take the intercoupling strength �inter, the intracou-

pling strength �intra, and the probability p with which the ran-

dom links between different subnetworks exist, as control

parameters in the following.

First, we set �inter¼0:008 and �intra¼0:0052 such that

the clustered networks are burst synchronized when p¼0

(the corresponding spatiotemporal pattern is not shown

here); we take the probability p as control parameter. Figure

2 shows the spatiotemporal patterns observed on the network

for five different probabilities p. With the increasing of p,

three burst synchronized patterns can be observed, as shown

in Figs. 2(a), 2(c), and 2(e). The spatiotemporal patterns

shown in Figs. 2(b) and 2(d) are transition patterns between

two burst synchronization states Figs. 2(a) and 2(c), and 2(c)

and 2(e), respectively. Thus, for fixed �inter and �intra, the ran-

dom link probability p between subnetworks induces burst

synchronization transitions in a neuronal network, which has

two subnetworks.

Variation of the order parameter R with respect to the

probability p is plotted in Fig. 3, where �inter and �intra are

FIG. 1. (Color online) Schematic presentation of the considered network

architecture. The whole network consists of M ¼ 3 subnetworks, each con-

taining nI ¼ 25 neurons. Within each subnetwork, every neuron is connected

to its six nearest neighbors, and there are seven connections amongst neu-

rons from different subnetworks.

FIG. 2. Two burst synchronization transitions are induced by the random

link probability p. The spatiotemporal patterns shown in (a) p¼0:015, (c)

p¼0:065, and (e) p¼0:17 are burst synchronized patterns, while the spatio-

temporal patterns shown in (b) p¼0:045 and (d) p¼0:085 are the transition

ones. Here N¼240;M¼2, and �inter¼0:008; �intra¼0:0052. The vertical and

horizontal of the spatiotemporal patterns indicates time and neuron index,

respectively. The color profile is linear, black depicting xiðtÞ¼1:5 and white

xiðtÞ¼�1:6, i¼1;…;N.
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taken the same as in Fig. 2. From this figure, we can see that

R decreases to a minimal value when p approximately

increases to 0:045 at first. Then, with p increasing from

0:045, R increases and reaches a local maximum, marked as

C in the figure. Moreover, with p increasing further, R
increases again after reaching another point D. The five

points A–E labeled in Fig. 3 correspond to the spatiotemporal

patterns shown by Figs. 2(a)–2(e), respectively. Therefore,

using the order parameter R, burst synchronization transi-

tions from Figs. 2(a) to 2(c) and from Figs. 2(c) to 2(e) have

been clearly displayed.

Next, we take the probability p¼0:075, �intra¼0:0052,

and choose the intercoupling strength �inter as control param-

eter. The spatiotemporal patterns for different values of �inter

are depicted in Fig. 4. As shown in Fig. 4(a), the spatiotem-

poral pattern for �inter¼0:002 is burst synchronized. Its syn-

chrony is destroyed when �inter increases to 0:005 [Fig. 4(b)].

A burst synchronous pattern emerges again when

�inter¼0:007, see Fig. 4(c). With further increasing of �inter,

the burst synchronous pattern shown in Fig. 4(c) transfers to

another burst synchronous one [Fig. 4(e)] via a transition pat-

tern [Fig. 4(d)]. Thus, transitions of burst synchronization

can also be induced by the intercoupling strength �inter, as

quantitatively characterized by the variation of the order pa-

rameter R with respect to �inter exhibited in Fig. 5.

Finally, we fix p ¼ 0:045, �inter ¼ 0:008, and take the

intracoupling strength �intra as control parameter. The

numerically obtained spatiotemporal patterns for various

�intra are exhibited in Fig. 6, and a variation of the order pa-

rameter R vs �intra corresponding to Fig. 6 is presented in Fig.

7. As we see, the obtained results shown in Figs. 6 and 7 to-

gether indicate the occurrence of burst synchronization tran-

sitions, which are induced by the intracoupling strength.

In order to generalize the above obtained results, we

plot the value of R in a two-dimensional parameter space, as

shown in Fig. 8. Figure 8(a) exhibits the dependence of R on

the intercoupling strength �inter and the probability p with the

intracoupling strength �intra¼0:0052. While Fig. 8(b) shows

the dependence of R on the intercoupling strength �inter and

the intracoupling strength �intra with the probability

p¼0:045. Combined with the above analysis, we can see

that burst synchronization transitions are induced by the

probability p and the inter- and intracoupling strengths,

�inter and �intra, in much wider parameter regions.

B. Burst synchronization transition in a network of
subnetworks with M > 2

In this subsection, we aim to extend the obtained results

to a neuronal network, which contains more than two subnet-

works, say M ¼ 5. Variations of the order parameter R with

respect to p; �inter; and �intra are shown in Fig. 9, where

M ¼ 5. From this figure, we can see that the probability p,

the inter- and intracoupling strengths �inter and �intra can also

induce two burst synchronization transitions in such neuronal

networks.

Finally, we study the effect of the number of subnet-

works on the transition of burst synchronization when the

network size is fixed. We set the inter- and intracoupling

strengths as �inter ¼ 0:008; �intra¼0:0052, and the probabil-

ity p¼0:17. We consider all the possible values of the

FIG. 3. Variation of the order parameter R with respect to p for �inter¼0:008

and �intra ¼ 0:0052.

FIG. 4. Two burst synchronization transitions are induced by the intercou-

pling strength �inter. The spatiotemporal patterns shown in (a) �inter¼0:002,

(c) �inter¼0:007, and (e) �inter¼0:025 are burst synchronized patterns, while

the spatiotemporal patterns shown in (b) �inter¼0:005 and (d) �inter¼0:009 are

the transition ones. Here N¼240; M¼2, and �intra¼0:0052; p¼0:075.

FIG. 5. Variation of the order parameter R with respect to �inter for

p ¼ 0:075 and �intra ¼ 0:0052.
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subnetwork number M (note that the network size N is fixed

to 240). Variation of the order parameter R with respect to

all possible values of M is plotted in Fig. 10. The spatiotem-

poral patterns, corresponding to the marks A;B;C;D;E la-

beled in Fig. 10, are depicted in Fig. 11. The results

exhibited by these two figures indicate that number of sub-

networks in a fixed size network can also induce transitions

of burst synchronization.

The results obtained for M>2 indicate that, except for

the intercoupling strength, intracoupling strength, and the

probability of random links between different subnetworks,

the number of subnetworks can also elicit transitions of burst

synchronization.

C. Mechanisms of burst synchronization transitions

With the above observed phenomena, we can conclude

that the probability p, the inter- and intracoupling strengths

�inter; �intra, and the number of subnetworks are all able to

induce burst synchronization transitions in a neuronal net-

work, which contains several subnetworks. However, what

is the underlining mechanism of the observed burst syn-

chronization transition? In order to answer this question,

we turn back to the first equation of Eqs. (1) and rewrite

it as

_xI;i ¼ yI;i � ax3
I;i þ bx2

I;i � zI;i þ Iext

� ð2k�intra þ �interpnÞxI;i

þ �intra

X

j

AIði; jÞxI;j þ �inter

X

J

X

j

BI;Jði; jÞxJ;j: (4)

We find that, within the current considered parameter

regions, values of the last item �intra

P
j AIði; jÞxI;jþ

�inter

P
J

P
j BI;Jði; jÞxJ;j in Eq. (4) are mostly near zero for all

FIG. 6. Two burst synchronization transi-

tions are induced by the intracoupling

strength �intra. The spatiotemporal patterns

shown in (a) �intra¼0:0018, (c) �intra¼0:0072,

and (e) �intra¼0:019 are burst synchronized

patterns, while the spatiotemporal patterns

shown in (b) �intra¼0:0054 and (d)

�intra¼0:0096 are the transition ones. Here

N¼240;M¼2, and �inter¼0:008; p¼0:045.

FIG. 7. Variation of the order parameter R with respect to �intra for p¼0:045

and �inter¼0:008.

FIG. 8. Dependence of the order parameter R on (a) �inter and p with

�intra ¼ 0:0052, and (b) �inter and �intra with p ¼ 0:045. Burst synchronization

transitions induced by the intra- and intercoupling strengths �intra; �inter and

the probability p are clearly visible from these two figures.
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pairs of ðI; iÞ. So, this item can be ignored, and Eq. (4) can

be approximately written as

_xI;i � yI;i � ax3
I;i þ bx2

I;i � zI;i þ Iext�ð2k�intra þ 2�interpnÞxI;i:

(5)

Before revealing the mechanism of the observed burst

synchronization transition, we introduce some results about a

single HR neuron ( _x¼y�ax3þbx2�zþIext; _y¼c�dx2

�y; _z¼r½sðx�x0Þ�z�). Using fast–slow analysis, Shen et al.52

depicted the bifurcation geometry of the fast subsystem

( _x¼y�ax3þbx2�zþIext; _y¼c�dx2�y) by choosing the

slow variable z as a control parameter (with values of system

parameters taken the same as in this paper), cf. Fig. 2(d) of

Ref. 52. From their analysis, it is found that there exist two

homoclinic points Zhc1 and Zhc2, and a single HR neuron in

Eq. (1) exhibits fold-homoclinic (FHC) bursting activities

when it is isolated. Moreover, it is found that the two homo-

clinic points Zhc1 and Zhc2 could move toward each other

under some perturbations, such that both points still remain

separated but become closer or collide. Close movement

makes the number of spikes per burst increase, while colli-

sion elicits the bursting type changing from FHC bursting to

fold-Hopf (FH) bursting.52 As indicated in Ref. 52, a pertur-

bation axI;i (a¼2k�intraþ2�interpn) in Eq. (5) can play the

role making Zhc1 and Zhc2 move toward each other. Thus, we

FIG. 9. Variation of the order parameter

R with respect to (a) p for �intra ¼ �inter

¼ 0:0052; (b) �inter for �intra ¼ 0:0052;
p ¼ 0:05; and (c) �intra for �inter

¼ 0:0052; p ¼ 0:05. The network size

is N ¼ 240 and the number of subnet-

works is M ¼ 5.

FIG. 10. Variation of the order parameter R with respect to M for N¼240,

where �inter¼0:008; �intra¼0:0052; and p¼0:17.

FIG. 11. Two burst synchronization transitions are induced by the number

of subnetworks M. The spatiotemporal patterns shown by (a) M¼24, (c)

M¼10, and (e) M¼2 are burst synchronized patterns, while the spatiotem-

poral patterns shown by (b) M¼15 and (d) M¼8 are the transition ones.

Here N¼240, and �inter¼0:008; �intra¼0:0052; and p¼0:17.
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speculate that the two burst synchronization transitions

observed here may be caused by spike-adding and changes

of bursting type, respectively.

In order to test this hypothesis, we plot the spiking time

series and phase trajectories of a randomly chosen neuron

from the studied system [Eq. (1)] at three burst synchroniza-

tion states. Here, we take patterns shown in Figs. 2(a), 2(c),

and 2(e) as examples. The corresponding spiking time series

and phase trajectories are depicted in Fig. 12. From Fig. 12,

it can be clearly seen that the spike number in each burst

increases from five to six with the bursting type unchanged

as p increases from 0:015 to 0:065 [see Figs. 12(a)–12(d)];

and the bursting type changes from FHC to FH bursting with

further increasing of p from 0:065 to 0:17 [see Figs. 12(c)–

12(f)]. Therefore, the mechanisms of the two observed burst

synchronization transitions are clarified: (i) the first burst

synchronization transition [i.e., the transition from Fig. 2(a)

to 2(c)] occurs via spike-adding; (ii) the second burst syn-

chronization transition [i.e., the transition from Fig. 2(c) to

2(e)] occurs via changes of bursting type from FHC to FH

bursting.

FIG. 12. (Color online) (Left panels) Time series of

membrane potential for one typical neuron with

(a) p¼0:015, (c) p¼0:065, and (e) p¼0:17, respec-

tively. (Right panels) The corresponding trajectories

of the left panels for a randomly chosen neuron.

The other parameters are taken the same as in

Fig. 2.

FIG. 13. Burst synchronization transitions are induced by the intracoupling

strength in a chemically coupled neuronal network with M¼2. Burst syn-

chronization patterns transferring from (a) �intra¼0:001 to (c) �intra¼0:01 is

via spike-adding, while burst synchronization patterns transferring form (c)

�intra¼0:01 to (e) �intra¼0:02 is via change of bursting type. The spatiotem-

poral patterns shown by (b) �intra¼0:005 and (d) �intra¼0:013 are transition

ones. Here N¼240, and �inter¼0:001; p¼0:045.

FIG. 14. Burst synchronization transition is induced by the intercoupling

strength in a chemically coupled neuronal network with M¼2. (a)

�inter¼0:001, (b) �inter¼0:03, and (c) �inter¼0:08. This burst synchronization

transition happens through the change of bursting type. Here N¼240, and

�intra¼0:001; p¼0:045.
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IV. DISCUSSION

In the present work, we have only considered the neuro-

nal network with electrical couplings. Thus, what happens if

the neuronal network is coupled with chemical synapses? In

order to study this, we replace the first equation of Eqs. (1)

by

_xI;i ¼ yI;i � ax3
I;i þ bx2

I;i � zI;i þ Iext þ �intra

� ðVs � xI;iÞ
X

j

AIði; jÞHðxI;jÞ þ �interðVs � xI;iÞ

�
X

J

X

j

BI;Jði; jÞHðxJ;jÞ: (6)

Then, Eq. (1) is changed to

_xI;i ¼ yI;i � ax3
I;i þ bx2

I;i � zI;i þ Iext þ �intra

� ðVs � xI;iÞ
X

j

AIði; jÞHðxI;jÞ þ �interðVs � xI;iÞ

�
X

J

X

j

BI;Jði; jÞHðxJ;jÞ;

_yI;i ¼ c� dx2
I;i � yI;i;

_zI;i ¼ r½sðxI;i � x0Þ � zI;i�;

(7)

where Vs is the reversal potential and HðxÞ is the Heaviside

function, which is 1 for x > Hs and 0 otherwise. Here Vs and

H are taken as 0:0 and �1:0, respectively. The simulation

results of Eqs. (7) are shown by Figs. 13–17. We can see that

the two burst synchronization transitions observed in electri-

cally coupled case can only be induced by the intracoupling

strength. Nonetheless, the other factors, e.g., the intercou-

pling strength and the probability for random links between

different subnetworks, can also induce one of them. For

example, the intercoupling strength �inter can induce burst

synchronization transition by changing from FHC to FH

bursting [see Figs. 14 and Figs. 17(a) and 17(b)], and the

probability for random links between different subnetworks

p can induce burst synchronization transition through the

change of spiking number per burst [see Figs. 15 and 17(c)

and 17(d)].

Additionally, the present results are based on the simula-

tion of network dynamics with HR neurons set. In order to

see whether the results (the two burst synchronization transi-

tions when varying topological properties of the network)

reproduced using other models of bursting dynamics for the

nodes, we applied Morris–Lecar59 and Chay60 models. But

unfortunately, we do not observed similar results. Therefore,

the obtained results in this paper are the interplay between

network topology and the individual dynamics. They not

only depend on the properties of the network topology but

also on the intrinsic properties of each individual dynamical

system.

FIG. 15. Burst synchronization transition is induced by p in a chemically

coupled neuronal network with M¼2. (a) p¼0:045, (b) p¼0:3, and (c)

p¼0:5. This burst synchronization transition happens through the change of

spiking number per burst. Here N¼240, and �intra¼�inter¼0:001.

FIG. 16. (Color online) Phase portraits

of a single neuron for chemical synap-

ses. From (a) to (c), �intra¼0:001; 0:01,

and 0:02, respectively. Spike-adding

and transition to FH bursting are

both observed. Here N¼240, and

�intra¼0:001; p¼0:045.

016110-8 Sun et al. Chaos 21, 016110 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



V. CONCLUSIONS

In this paper, we mainly study burst synchronization

transitions in an electrically coupled neuronal network,

which consists of several subnetworks. With the obtained nu-

merical results, we show that several factors—the intra- and

intercoupling strength, the probability for random links between

different subnetworks and the number of subnetworks—can

induce transitions between different burst synchronized states.

In this paper, we have observed two types of burst synchroni-

zation transitions. We have shown that the underlining mech-

anisms of the observed burst synchronization transitions are

different: one is via spike-adding and the other one is via a

change of bursting type.

The brain’s plasticity refers to the brain’s ability to

change its structure and function during maturation, learning,

environmental challenges, or pathology. Brain plasticity is

expressed by modifying the strength or efficacy of synaptic

transmission at preexisting synapses, eliciting the growth of

new synaptic connections or the pruning away of existing

ones, or modulating the excitability properties of individual

neurons.61 In this paper, we study the effects of coupling

strength (intra- and intercoupling strength), number of con-

nections (probability of random links between different sub-

networks and number of subnetworks) on burst

synchronization of a neuronal network. Thus, our obtained

results might also give significant implications on the role of

brain plasticity in some functional behavior associated with

synchronization.
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No. 20090460337), Matjaž Perc acknowledges support from

the Slovenian Research Agency (Grant No. Z1-2032), Jürgen

Kurths acknowledges support from the BMBF (BCCN) and

EU (PHOCUS), and Guanrong Chen acknowledges support

from the Hong Kong Research Grants Council (Grant No.

CityU 117/10E).

APPENDIX: DEFINITIONS OF FHC AND FH BURSTING

The bursting is said to be of the (FHC) type if the resting

state disappears via a saddle-node (fold) bifurcation and the

spiking limit cycle disappears via saddle homoclinic orbit

bifurcation.62

The bursting is said to be of the (FH) type if the stable

equilibrium corresponding to the resting state disappears via

saddle-node (fold) bifurcation and the limit cycle attractor

corresponding to the spiking state shrinks to a point via

supercritical Andronov-Hopf bifurcation.62
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