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In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz

small-world neuronal networks. Our focus is on the impact of two parameters, namely the time

delay s and the probability of partial time delay pdelay, whereby the latter determines the probability

with which a connection between two neurons is delayed. Our research reveals that partial time

delays significantly affect phase synchronization in this system. In particular, partial time delays

can either enhance or decrease phase synchronization and induce synchronization transitions with

changes in the mean firing rate of neurons, as well as induce switching between synchronized neu-

rons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to

a neuronal network where all connections are delayed, we show that small partial time delay proba-

bilities have especially different influences on phase synchronization of neuronal networks.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4983838]

Time delay in nonlinear systems has been recognized as

an important factor affecting various phenomena, such

as synchronization, stochastic, and coherence resonance,

as well as information transmission in general. Neuronal

systems as typical nonlinear systems are excitable. In

nonlinear science, dynamics of excitable systems are an

interesting topic. Thus, in the past, firing dynamics of

neuronal systems have been discussed in a lot of litera-

tures. In most of the literatures, time delays are either

not considered or introduced by a single parameter,

which leads to all connections inside the neuronal system

having the same time delay. However, in real neuronal

systems, some connections are delayed, while others are

not. Inspired by this fact, a simple case is considered in

this paper, where we explicitly introduce a probability

that a connection will experience delay. Since synchroni-

zation is a universal phenomenon not just in nonlinear

sciences in general, but in particular, also in neuronal

networks, we focus on the emergence of phase synchroni-

zation in Watts-Strogatz (WS) small-world neuronal net-

works. We show that the consideration of more realistic

conditions, namely such that probabilistically only some

connections are subject to delay, leads to phenomena that

have not been observed before when all connections in

the network were subject to delay. From different effects

in favor or against phase synchronization to synchroniza-

tion transitions and switching between different

synchronized states, the consideration of partial time

delays adds another layer to bring mathematical model-

ing of neuronal dynamics closer to reality. And most

importantly, the presented results are significant for

exploring effects of time delays on nonlinear dynamics of

excitable systems.

I. INTRODUCTION

Neurons in the brain do not exist in isolation. They are

connected with each other through tens of thousands of

excitatory and inhibitory synapses and then form a huge and

complex network. However, compared with the number of

neurons in the brain, their connections are still sparse. This

huge, complex, and sparse connected neuronal network has

been revealed to have properties of small-world,1,2 scale-

free,3,4 modularity,5,6 etc. These properties make firing activ-

ities of neurons propagate within the cortex more economical

and efficient. Meanwhile, complex neuronal networks are

reported to exhibit various firing dynamics, which have a

close relationship with brain functions.7–12

Synchronization in neuronal networks is one of the basic

dynamic phenomena in neuroscience, and is a fundamental

neural mechanism of various brain functions.13,14 Because of

the important roles of synchronization in neuroscience, it has

been studied extensively in nonlinear science in the past few

decades. In particular, phase synchronization of neuronal

networks has been discussed computationally in many
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papers15–22 due to its significance in brain functions, such as

neural integration23 and working memory.24,25

As we know, spiking and bursting are two basic neuro-

nal firing activities. It was revealed that phase synchroniza-

tion of coupled spiking neurons could be induced15 or

enhanced16 by noise. For phase synchronization of burst

neurons, it has been found that at a certain noise intensity

the onsets of bursts in different neurons could become phase

synchronized.17 Moreover, some factors such as coupling

strength,26–28 coupling forms,29 diversity,30 noise,31 and

especially time delay32–35 could induce various phase syn-

chronization transitions in neuronal networks.

As mentioned above, time delay could have strong influ-

ence on phase synchronization of neuronal systems. In fact,

time delay, as one of the most important factors in neuronal

systems, not only has substantial influence on synchronization

but also on some other firing dynamics of neuronal systems.

For example, it was revealed that time delay could enhance

spatiotemporal order of coupled neuronal systems36,37 and

sustain pattern formation.38 Moreover, time delay was also

found to have great impact on the spike rate of neurons.39

More importantly, time delay could also induce coherence

resonance40,41 and stochastic resonance42,43 in neuronal sys-

tems. Except for these, time delay was also reported to facili-

tate signal transmission44,45 and weak signal detection.46

Notably, it has been reported that time delay could have

strong influence on firing dynamics of neuronal systems.

However, in most of the past studies, time delays are intro-

duced by a single parameter, which leads to all connections

inside the neuronal system having the same time delay. In real

neuronal systems, some connections are delays, while others

are not. Inspired by this fact, a simple case is considered in

this paper, where we explicitly introduce a probability that a

connection will experience delay. Namely, only a part of con-

nections inside neuronal networks are delayed, which is called

partial time delay in this paper. It is obviously, compared

with the full time delay case, considering part of connections

being delayed is closer to reality. Until now, studies about

effects of partial time delay on neuronal dynamics have been

very rare.47,48 At present, we will devote to discussing effects

of partial time delay on neuronal dynamics by studying phase

synchronization in Watts-Strogatz (WS) small-world neuronal

networks49 with applying the FitzHugh-Nagumo (FHN) neu-

ronal model50,51 as local blocks for simplicity. In Secs. II–V,

the obtained numerical results will show that partial time

delay could have strong and abundant effects on phase syn-

chronization of the studied neuronal network. Meanwhile,

compared with full time delay, partial time delay could have

different influences on phase synchronization when the proba-

bility of partial time delay takes small values. Detailed illus-

trations of these results will be presented one by one in the

following.

The rest of the paper is organized as follows: in Sec. II,

we present the mathematical model of Watts-Strogatz small-

world neuronal networks with FitzHugh-Nagumo neurons as

local blocks used in this paper. In Sec. III, a measure to char-

acterize phase synchronization of the neuronal systems is

introduced. Sec. IV exhibits the main results obtained in this

paper. The summary is given in Sec. V finally.

II. MATHEMATICAL MODELS

The FitzHugh-Nagumo (FHN) model,50,51 which has

been extensively used to investigate dynamics of single neu-

ron and spatiotemporal dynamics of neuronal networks, is

used in the present paper and described as follows,

e _xðtÞ ¼ xðtÞ � x3ðtÞ=3� yðtÞ;
_yðtÞ ¼ xðtÞ þ a:

(1)

Here, e > 0 is a small parameter which allows us to separate

the fast variable x and the slow variable y. The excitability

parameter a controls the local dynamics of a single FHN

neuron. All FHN neurons are excitable for jaj > 1 and

exhibit self-sustained periodic firing for jaj < 1.

In the present paper, FHN neuronal models are applied

as building blocks of Watts-Strogatz small-world neuronal

networks. The mathematical equations are presented by:

e _xiðtÞ ¼ xiðtÞ � x3
i ðtÞ=3� yiðtÞ þ g

XN

j¼1

Ai;jðxjðt� si;jÞ � xiðtÞÞ;

_yiðtÞ ¼ xiðtÞ þ aþDniðtÞ; (2)

where the subscript i represents the i–th neuron in the net-

work with i ¼ 1; 2;…;N. N denotes the total number of neu-

rons in the network. In Eq. (2), D is the intensity of the noise

ni(t) which is assumed to be Gaussian delta-correlated with

zero mean: hniðtÞi ¼ 0; hniðtÞniðt0Þi ¼ dðt� t0Þ and is inde-

pendent of each other. In this paper, we introduce a periodic

pacemaker IextðtÞ ¼ f cos ðxtÞ on the right side of the equa-

tion of the fast variable to an arbitrary chosen element with

f¼ 0.01 and x¼p. Here, we set a¼ 1.005, such that one iso-

lated FHN neuron is in an excitable state in the absence of

external stimulus.

Meanwhile, g
PN

j¼1 Ai;jðxjðt� si;jÞ � xiðtÞÞ is the cou-

pling term with g being the coupling strength and A¼ (Ai,j)

being the overall coupling matrix. For A¼ (Ai,j), Ai,j¼ 1 if

the i–th neuron is connected to the j–th neuron, otherwise

Ai,j¼ 0. In this paper, we consider the Watts-Strogatz small-

world network, which can be generated from a regular net-

work with N neurons and k nearest neighbors by rewiring

each connection randomly with probability p.49 Moreover,

in the coupling term, si,j indicates neuronal information

transmission delay between the i–th and the j–th neuron and

we assume si,j¼ sj,i. In this paper, we consider partial time

delays. si,j takes nonzero values s with a probability pdelay.

Namely, si,j takes zero with a probability 1 – pdelay.

sij ¼
s; with the probability pdelay;
0; with the probability 1� pdelay:

�

In this paper, we consider two crucial parameters of the sys-

tem, one is the time delay s and the other is the probability

of partial time delay pdelay. These two parameters s and pdelay

are taken as control parameters to study effects of partial

time delays on phase synchronization of WS small-world

neuronal networks. The other parameters in Eq. (2) are set

as: e¼ 0.01, g¼ 1.0, and D¼ 0.4. For the network topology,

the parameters p, N, and k are set as: p¼ 0.04, N¼ 100, and
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k¼ 4. In Secs. III–V, except the spatiotemporal patterns and

spike trains, other quantitative results are obtained by aver-

aging over 20 independent network realizations.

III. PHASE SYNCHRONIZATION MEASURE

To quantify the degree of phase synchronization, the

well-known order parameter R is used and is calculated as19

R ¼ 1

N

����
XN

j¼1

exp i/j tð Þ
� �����; (3)

where /jðtÞ is the phase for the j-th neuron at the time t and

can be presented as

/j tð Þ ¼ 2p
t� tj;k

tj;kþ1 � tj;k
; tj;k � t � tj;kþ1; (4)

where tj,k is the moment at which the k-th spike of the j-th
neuron starts, j¼ 1,…, N. R is zero for weak correlation and

tends to unity for the full phase synchronization state. Larger

R means a higher degree of phase synchronization of neuro-

nal networks.

IV. RESULTS

In what follows, effects of partial time delay on phase

synchronization of WS small-world neuronal networks are

presented. First, influences of s on phase synchronization for

different pdelay are studied. Especially, the dependence of

phase synchronization on s at pdelay< 1.0 and pdelay¼ 1.0

(all connections are delayed) is compared. Second, influen-

ces of pdelay on phase synchronization for different s are

investigated. Finally, the dependence of phase synchroniza-

tion on both s and pdelay is shown in Subsection IV C.

A. Dependence of phase synchronization on time
delay s at different probability of partial time delay
pdelay

The spatiotemporal patterns of spiking activity in WS

small-world neuronal networks at pdelay¼ 0.01 and pdelay ¼ 1.0

for different s are depicted in Figs. 1 and 2, respectively. As

shown in Fig. 1, s induces an exchange of ordered and disor-

dered states of spatiotemporal patterns alternately. In detail,

the spatiotemporal pattern is ordered when s¼ 0 (see panel

(a)), i.e., the studied neuronal network is phase synchronized

when all communications between two neurons inside the neu-

ronal network are instantaneous. When s increases to 1.0, the

ordered spatiotemporal pattern becomes rather disordered (see

panel (b)); thus, phase synchronization of neuronal networks

becomes weak. As s increases to moderate values, e.g.,

s¼ 2.5, the spatiotemporal pattern recovers to an ordered state

(see panel (c)) and phase synchronization of neuronal networks

becomes more expressed. With further increase of s, the order-

ness of the spatiotemporal patterns becomes worse but then

recovers again (see panel (d)–(e)). It indicates that phase syn-

chronization of neuronal networks could be enhanced or

decreased alternatively by pdelay. With the results shown in

Fig. 1, it is revealed that only a small part of delayed connec-

tion (e.g., pdelay¼ 0.01) could also have strong influences on

phase synchronization of neuronal networks.

For comparison with the above obtained result of pdelay,

the corresponding results for the case with all connections

being delayed, i.e., pdelay¼ 1.0, are presented in Fig. 2. Here,

we call this case as full time delay. As shown in Fig. 2, the

spatiotemporal patterns are ordered for most s (see panel (a)

and panels (c)–(f)) just except some smaller values, e.g.,

s¼ 0.1 (see panel (b)). It means that phase synchronization of

neuronal networks is always at a higher level except some

smaller s if all connections inside the neuronal networks are

FIG. 1. Spatiotemporal patterns of the

WS small-world neuronal networks

obtained from different time delay s with

pdelay¼ 0.01. (a) s¼ 0.0, (b) s¼ 1.0,

(c) s¼ 2.5, (d) s¼ 3.2, and (e) s¼ 5.0.
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delayed ones. If we look at these synchronized patterns in

detail, it is found that s could induce the neuronal network

transferring from one synchronized state with a low mean fir-

ing rate to another synchronized state with a high mean firing

rate and vice versa (see panel (a) to panel (c) and panel (c) to

panel (d)). Moreover, it can also induce the neuronal network

transferring from a synchronized state with neurons inside the

neuronal network generating period-1 firings to a synchro-

nized state with neurons inside the neuronal network generat-

ing period-2 firings, and vice versa (see panel (d) to panel (e)

and panel (e) to panel (f)). Spike trains of a randomly chosen

neuron of the neuronal network for s¼ 2.5, 3.2, and 5.0 are

shown in Fig. 3, respectively. From this figure, we can clearly

see the transitions between period-1 firings and period-2 fir-

ings induced by s. With the results shown in Figs. 1 and 2, we

can infer that the influences of s on phase synchronization of

the neuronal network for the case of partial time delay are

clearly different from the case of full time delay.

In order to quantify influences of partial time delay and

the differences between partial time delay and full time delay

FIG. 2. Spatiotemporal patterns of the

WS small-world neuronal networks

obtained from different time delay s
with pdelay¼ 1.0. (a) s¼ 0.0, (b) s¼ 0.1,

(c) s¼ 1.0, (d) s¼ 2.5, (e) s¼ 3.2,

(f) s¼ 5.0.

FIG. 3. Spike trains of a randomly cho-

sen neuron inside the network with

pdelay¼ 1.0 and (a) s¼ 2.5, (b) s¼ 3.2,

(c) s¼ 5.0.
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presented in Figs. 1 and 2, we calculate the dependence of

the order parameter R on s at pdelay¼ 0.01 and pdelay¼ 1.0,

respectively. The simulation results are shown in Fig. 4. As

shown in Fig. 4(a) with pdelay¼ 0.01, when s increases, R
increases and decreases alternately. If we only consider the

dependence of R in s 2 [0, 5], R can reach two local minima,

which indicates that phase synchronization of the considered

neuronal network will turn worse twice when s increases

from zero to five. While, as presented in Fig. 4(b) with

pdelay¼ 1.0, R drops down quickly when s just increases to

some smaller values, e.g., s¼ 0.1, and after that R returns to

high values which are nearly one immediately. Thus, except

some small s, phase synchronization of the considered neu-

ronal network always stays at a higher level in the full time

delay case. These results in Fig. 4 show again that influences

on phase synchronization are different between partial time

delay and full time delay.

Now we know that, compared to full time delay, partial

time delay could have different influences on phase synchro-

nization of WS small-world neuronal networks with pdelay

fixed. For further investigating influences of partial time delay

on phase synchronization, the dependence of R on s for differ-

ent values of pdelay is presented with stack lines by Y offsets

(The lines in Y-offsets figure have an associated x–axis, in

order to prevent these lines from overlapping and ensures that

each line can be viewed clearly, the lines are shifted in the

y–direction one by one.), shown in Fig. 5. In this figure, pdelay

is set to take small values as 0.01, 0.05, and 0.1, intermediate

values as 0.5, large values as 0.8, and also 1.0 for the full time

delay case. From this figure, it can be seen that compared

with the full time delay case, partial time delay could have

very different effects on phase synchronization in particular,

when pdelay takes small values. While, as the probability of

partial time delay pdelay increases to large values, e.g.,

pdelay¼ 0.8, the partial time delay could have similar influen-

ces on phase synchronization to the full time delay.

B. Dependence of phase synchronization
on probability of partial time delay pdelay

at different time delay s

Here, we will devote to studying the dependence of

phase synchronization on pdelay when s is fixed. At first, s

is set to be as small as 0.5. The corresponding spatiotempo-

ral patterns for different values of pdelay at s¼ 0.5 are

shown in Fig. 6. In this figure, panel (a) and panel (f) are

two extreme cases. Panel (a) corresponds to the case with-

out any time delays and panel (f) corresponds to the case

of full time delays. As shown in Fig. 6, the spatiotemporal

pattern becomes most complex when pdelay increases a lit-

tle, e.g., pdelay¼ 0.05 (see panel (b)) and pdelay¼ 0.2 (see

panel (c)). While, with pdelay increasing further, the spatio-

temporal patterns recover to ordered states. It indicates that

there exist some intermediate values of pdelay at which

phase synchronization of the neuronal network becomes

worse. This conclusion can also be made by calculating the

dependence of R on pdelay at s¼ 0.5. As shown in Fig. 9(a),

R takes small values at some intermediate pdelay, i.e., phase

synchronization becomes worse at these intermediate

pdelay. Meanwhile, with the observation of these spatiotem-

poral patterns, it can be revealed that the synchronized

state of the studied neuronal network transmits from the

one with a low mean firing rate to another one with a high

mean firing rate.

Then, s is set to be as large as 5.0. As shown in Fig. 7,

the spatiotemporal patterns for the six values of pdelay are

all well-ordered, including the two extreme cases with

pdelay¼ 0 (see panel (a)) and pdelay¼ 1.0 (see panel (f)).

And the dependence of R with respect to pdelay is corre-

spondingly shown in Fig. 9(b). In this figure, it can be

observed that R always takes values nearly one no matter

what the value of pdelay is. Namely, neurons inside the net-

work are always phase synchronized. Thus, the probability

of partial time delay pdelay has no impact on phase synchro-

nization when s is large.

Finally, s is set to be intermediate as 3.2. The correspond-

ing spatiotemporal patterns for different pdelay are presented in

Fig. 8. It can be seen that, similar to the case for small s (see

Fig. 6), there exists some intermediate pdelay at which the spa-

tiotemporal pattern of the neuronal network becomes disor-

dered (see panel (c)). Moreover, we found that with

increasing pdelay, the firing activities of the neurons inside the

network transfer from nearly period-1 (see Fig. 10(a)) to
FIG. 4. Dependence of the order parameter R on the time delay s with (a)

pdelay¼ 0.01 and (b) pdelay¼ 1.0.

FIG. 5. Dependence of the order parameter R on the time delay s for differ-

ent values of pdelay is exhibited with stack lines by Y offsets.
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nearly period-2 (see Fig. 10(b)). It means that pdelay could

induce a synchronization transition when s takes some inter-

mediate values. For the dependence of R with respect to pdelay

at s¼ 3.2, the synchronization transition is indicated by the

local minima of R for some intermediate pdelay, as shown in

Fig. 9(c). Thus, there exist some intermediate pdelay at which

phase synchronization of the neuronal network becomes

worse for both small s¼ 0.5 and intermediate s¼ 3.2, but

pdelay induces different synchronization transitions. For inter-

mediate s, it induces a synchronization transition from the

synchronization state with neurons inside the network gener-

ating period-1 firings to another synchronization state with

neurons inside the network generating period-2 firings. While,

for small s, as mentioned above, pdelay induces synchroniza-

tion transition from a synchronized state with low mean firing

rate to high mean firing rate.

FIG. 6. Spatiotemporal patterns of

the WS small-world neuronal net-

works obtained from different time

delay pdelay with s¼ 0.5. (a) pdelay

¼ 0.0, (b) pdelay¼ 0.05, (c) pdelay

¼ 0.2, (d) pdelay¼ 0.5, (e) pdelay¼ 0.8,

(f) pdelay¼ 1.0.

FIG. 7. Spatiotemporal patterns of the

WS small-world neuronal networks

obtained from different time delay pdelay

with s¼ 5.0. (a) pdelay¼ 0.0, (b) pdelay

¼ 0.05, (c) pdelay¼ 0.2, (d) pdelay¼ 0.5,

(e) pdelay¼ 0.8, and (f) pdelay¼ 1.0.
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C. Dependence of phase synchronization on both time
delay s and probability of partial time delay pdelay

With the above obtained results, we see the partial time

delay can generate great and abundant effects on phase syn-

chronization of the neuronal network when time delay s or the

probability of partial time delay pdelay is fixed. In this subsec-

tion, we extend the above obtained results in a much wider

parameter range with the aid of calculating the dependence of

R on both s and pdelay. The corresponding results are shown in

Fig. 11. At first, we view this figure from the vertical direction,

i.e., pdelay 2 [0, 1] is fixed. Obviously, for small probability

pdelay< 0.5, there exist two local minima of R with s increas-

ing from zero to five; While for large pdelay, R only takes small

values at some small s, except this, it takes values which are

close to one. Thus, s can have different effects on phase syn-

chronization when pdelay takes small values with compared to

the full time delay case where pdelay¼ 1.0. Then, we view this

figure from the horizontal direction, i.e., s 2 [0, 5] is fixed. We

see that variations of R with respect to pdelay are more complex

than with respect to s for fixed pdelay as discussed above. As

shown in Fig. 11, pdelay almost has no influences on phase syn-

chronization of neuronal networks for s approximately greater

than 1.6 and smaller than 2.9 or greater than 4.0 and smaller

than 5.0. While for other values of s, there exists some inter-

mediate pdelay at which phase synchronization of the neuronal

network becomes worse. However, as investigated in the above

subsection, pdelay has different influences on phase synchroni-

zation of neuronal network for small s (s< 1.6) and intermedi-

ate s (2.9< s< 4.0). For s approximately belonging to the

interval (2.9, 4.0), pdelay induces the neuronal network trans-

mitting from one synchronized state with neurons generating

period-1 firings to another synchronized state with neurons

generating period-2 firings, see the results shown in Fig. 8 for

example. While for s 2 (0, 1.6), pdelay induces the neuronal

network transmitting from one synchronized state to anther

synchronized state with the mean firing rate of neuronal net-

work increasing (see Fig. 12), while neurons inside the neuro-

nal network always generate period-1 firings no matter what

the value of pdelay is. In brief, the partial time delay can have

great and abundant influences on phase synchronization of the

studied WS small-world neuronal networks.

V. SUMMARY

In this paper, we mainly investigate effects of partial

time delay on phase synchronization of WS small-world neu-

ronal networks by controlling two parameters. One is the

FIG. 8. Spatiotemporal patterns of the

WS small-world neuronal networks

obtained from different time delay pdelay

with s¼ 3.2. (a) pdelay¼ 0.0, (b) pdelay

¼ 0.05, (c) pdelay¼ 0.2, (d) pdelay¼ 0.5,

(e) pdelay¼ 0.8, and (f) pdelay¼ 1.0.

FIG. 9. Dependence of the order parameter R of the WS small-world neuro-

nal networks with respect to pdelay for different time delay s. (a) s¼ 0.5, (b)

s¼ 5.0, and (c) s¼ 3.2.
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time delay s and the other is the probability of partial time

delay pdelay. Here, we call it partial time delay just because

connections between two neurons are not all delayed ones,

they are delayed with the probability pdelay. With the

obtained numerical results, we found that the time delay s
can have different and substantial influences on phase

synchronization when pdelay takes small values as compared

with the full time delay case. As shown in Figs. 1 and 2,

when pdelay takes small values, phase synchronization of a

neuronal network becomes worse and better alternatively

with increasing s. While, when pdelay¼ 1.0, except for some

small time delays, phase synchronization of the neuronal net-

work will stay at higher levels. Moreover, variations of phase

synchronization with respect to pdelay strongly depends on

the values of the time delay s. As exhibited, for some values

of s (1.6< s< 2.9 or 4.0< s< 5.0), pdelay has little influen-

ces on phase synchronization. While for s< 1.6, pdelay can

induce a synchronization transition with a changing firing

rate of the neuronal network. For 2.9< s< 4.0, pdelay can

also induce a synchronization transition but with firing states

of neurons changing inside the neuronal network. Therefore,

with these obtained results, we can clearly see that the partial

time delay can have different influences on phase synchroni-

zation of neuronal networks when pdelay takes smaller values

as compared to the full time delay case; meanwhile, partial

time delay could also have great and abundant effects on

phase synchronization of WS small-world neuronal

networks.

In this paper, in order to compare with the former results

obtained in the full time delay case, we mainly focus on dis-

cussing effects of partial time delays on dynamics of neuro-

nal networks. Through studying effects of partial time delay

on firing dynamics of the neuronal networks, we could make

clearer insights into the impact of partial time delay. In non-

linear dynamics, distributed delays have also been consid-

ered.52,53 Definitely, distributed delays are more realistic

than just setting time delay being two optional values–s and

zero. In the future, we will try to expand our works to con-

sider distributed delays in neuronal systems. Meanwhile, in

the current paper, all results are obtained numerically. In the

future, we will also try to apply some techniques, such as

phase reduction,54 to give some analytical results.
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FIG. 10. Spike trains of a randomly

chosen neuron inside the network

with s¼ 3.2 and (a) pdelay¼ 0.05, (b)

pdelay¼ 0.8.

FIG. 11. Dependence of the order parameter R on the time delay s and the

probability pdelay.

FIG. 12. Dependence of the mean firing rate of the neuronal network on the

time delay s and the probability pdelay.

053113-8 Sun, Perc, and Kurths Chaos 27, 053113 (2017)



APPENDIX: MEAN FIRING RATE OF THE NEURONAL
NETWORK

The mean firing rate of the neuronal network is calcu-

lated as

rate ¼ 1

1

N

X
i

hTi;ki
; (A1)

where Ti,k is defined similar as in calculating the phase syn-

chronization measure R. It indicates the k-th interspike inter-

vals of the i-th neuron of the neuronal network. The bracket

h i indicates the average of interspike intervals Ti,k of the i-th
neuron.
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