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We study the emergence of chimera states in a multilayer neuronal network, where one layer is

composed of coupled and the other layer of uncoupled neurons. Through the multilayer structure,

the layer with coupled neurons acts as the medium by means of which neurons in the uncoupled

layer share information in spite of the absence of physical connections among them. Neurons in the

coupled layer are connected with electrical synapses, while across the two layers, neurons are

connected through chemical synapses. In both layers, the dynamics of each neuron is described by

the Hindmarsh-Rose square wave bursting dynamics. We show that the presence of two different

types of connecting synapses within and between the two layers, together with the multilayer net-

work structure, plays a key role in the emergence of between-layer synchronous chimera states and

patterns of synchronous clusters. In particular, we find that these chimera states can emerge in the

coupled layer regardless of the range of electrical synapses. Even in all-to-all and nearest-neighbor

coupling within the coupled layer, we observe qualitatively identical between-layer chimera states.

Moreover, we show that the role of information transmission delay between the two layers must

not be neglected, and we obtain precise parameter bounds at which chimera states can be observed.

The expansion of the chimera region and annihilation of cluster and fully coherent states in the

parameter plane for increasing values of inter-layer chemical synaptic time delay are illustrated

using effective range measurements. These results are discussed in the light of neuronal evolution,

where the coexistence of coherent and incoherent dynamics during the developmental stage is par-

ticularly likely. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4993836]

Synchronization in neuronal networks is notably signifi-

cant for adequate processing and transmission of infor-

mation. The concurrence of synchronization and de-

synchronization, popularly known as the chimera state, is

associated with several neuronal functions as well.

Research shows that neuronal evolution can occur in

many areas of the brain simultaneously, thus affecting

coupled and uncoupled layers of neurons. Since the mul-

tilayer interaction structure of the neuronal network in

the brain, such as in the cortex or the thalamus, is crucial

and an integral part of the system, we here consider a

network consisting of two interacting layers of neurons,

one with coupled and another with uncoupled neurons.

We observe between-layer synchronous chimera and syn-

chronous cluster states, depending on the coaction of

both electrical and chemical synapses. We also show that

inter-layer chemical synaptic delay plays a crucial role,

which we elaborate in detail for all the examined asymp-

totic states.

I. INTRODUCTION

In a dynamical network of coupled oscillators, chimera

states1,2 correspond to the exceptional concurrence of spa-

tially separated synchronized (coherent) and desynchronized

(incoherent) domains whereas the splitting of coherence into

two or more domains of mutually synchronized oscillators

refers to the cluster state. Initiated with Kuramoto’s finding in

a nonlocally coupled system of identical phase oscillators,3

the enthralling chimera phenomenon has been extensively

studied during the past decade in a vast range of systems, e.g.,

in phase oscillators,3–7 neuronal models,8–15 chaotic sys-

tems,16,17 and Hopf normal forms.18–21 Concerning the cou-

pling topology, this unique state has been envisaged in

globally11,22 coupled as well as in locally connected11,13,14,23

oscillators’ network. Chimera states have also been realized in

networks having unconventional interactions.10,12,24–26

Besides numerical and theoretical studies,27 chimera patterns

have been widely inspected in experimental models28–30 as

well. As far as the emanation of cluster synchronization in

oscillatory networks is concerned, there are noteworthy con-

tributions,28,31–34 even under multilayer formalism35 of the

underlying network. Importantly enough, possibility in reali-

zation of such synchronous patterns under the multilayer

(multiplex) structure of the network is yet to be fully

explored and moreover their emergence in the network con-

sisting of coupled and uncoupled layers would be indeed

quite fascinating. Regarding this, Ghosh et al.36 examined

coupled identical chaotic maps with delayed interactions in

multiplex networks and found intra layer and layer chimera

states. Asynchronous and synchronous inter-layer chimera

states are confronted using nonlocally coupled phasea)Electronic mail: diba.ghosh@gmail.com
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oscillators and Hindmarsh-Rose (HR) neuron models (hav-

ing only the chemical synaptic interactions) in Ref. 37.

The study of multilayer networks38–50 has become

exceptionally popular in recent days from various prospects

due to their enormous relevancy in several complex systems

arising in almost every discipline of science. Among these,

multilayer structures in neural networks are certainly reason-

able and may be present based on several structural and func-

tional properties. Reference 51 suggests that the neural

network in the cortex is a multilayer one. Various precise

illustrations on how multilayer network approaches to neuro-

imaging data can contribute innovative insights into the brain

structure and evolving functions are provided in Refs. 52 and

53. Consequently allowing links of a specified single nature

between the nodes and disregarding the multiple structure of

a functional network like the human brain may have startling

consequences on our understanding of the fundamental prop-

erties of the network.54

Furthermore, there is a strong connection between the

existence of chimera patterns and activities of neuronal sys-

tems, e.g., in various types of brain diseases55,56 such as

Alzheimer’s disease, schizophrenia, and brain tumors.

Chimera states are also related to the real world phenomena

of unihemispheric slow-wave sleep57,58 of some aquatic ani-

mals (e.g., dolphins, eared seals) and some migrated birds.

At the time of slow-wave sleep in these species, half part of

the brain is in sleep and other half remains awake. This

strongly points out that in the awake part of the cerebral

hemisphere, the neurons are desynchronized whereas in the

sleepy part neurons are synchronized, which signifies the

chimera state. Therefore, organized studies on the observa-

tion of chimera patterns in neuronal systems deserve signifi-

cant attention.

As noted earlier, works on detection of chimera states in

neural networks include Refs. 8–15 and 37. But most of

these works contemplate with either only electrical synapses

(linear diffusive) or only chemical synapses (in terms of a

nonlinear function). The exceptions in this regard are Refs.

12 and 15, where the influence of both of these synapses has

been treated. In fact, in order to appropriately model a neuro-

nal network, one should not neglect one or the other type,

because a structural neuronal network comprises connections

from both electrical and chemical synapses.59 Thus, the neu-

rons may not be connected with each other with the same

type of synapses everywhere. On the other hand, the range

over which chemical synapses naturally operate is much

larger than that of electrical synapses, so it would be actually

feasible to connect the neurons across the layers through

chemical synapses while associating the neurons in the same

layer via electrical synapses.

While we ascertain non-local fashion of interaction in

one of the layers, we emphasize on the matter that this non-

local mode of interaction is really crucial to analyze because

it may appear through a variety of circumstances in neuro-

biology. For instance, the neuronal networks underlying the

beautiful shell patterns of mollusks,60,61 in the case of the

formation of ocular dominance stripes observed in layer IVc

of cat and monkey visual cortex,61,62 spatially localized

“bumps” of neuronal activity in network,63–65 to name only

few.

Moreover, diverse neuronal developments66–70 are

found not only among coupled neuron groups in the same

brain area but also among uncoupled neuron groups in the

same or different cortical areas. In the nervous system, activ-

ities are present not only between the coupled neurons but

also among the uncoupled neurons. Among other studies,

emergence of synchrony in uncoupled neurons is explored

under neuron’s membrane potential stimulation71 and also

based on the influence of a common noisy field.72 Motivated

by all these, in this work we focus on a neuronal network

with multilayer architecture having two layers, one consist-

ing of coupled and the other consisting of uncoupled neu-

rons. The coupled layer is inferred to have a non-local form

of interaction (through electrical synapses) while chemical

synapses have been presumed to interconnect the layers.

While treating such a multilayer network, we witness two

intriguing phenomena, namely, between layer synchronous

chimera and between layer synchronous cluster states. In

these states, groups of nodes in each layer have exactly the

same dynamical behavior with the same group of replica

nodes in the other layer, while the individual layers possess

chimera or cluster patterns, respectively. Furthermore, the

influence of time delay on these states due to information

transmission between the layers has also been examined by

plotting several parameter regions rigorously and using

effective range (ER) measurements.

The remaining part of this paper is organized as follows.

In Sec. II, we discuss the mathematical form of the network

and explain all the parameters used. Section III A deals with

the case when no inter-layer synaptic delay is present and

synchronous chimera and cluster states emerge between the

layers with non-local interaction in the coupled layer. In Sec.

III B, we report the impact of inter-layer synaptic delay on

the observed patterns in the network. Finally, we summarize

our results in Sec. IV.

II. MATHEMATICAL FORM OF THE NETWORK

We consider a multilayer network having two layers

with the same N number of nodes in which the upper layer

(layer I) consists of identical isolated neurons and the lower

layer (layer II) is composed of non-locally coupled (in gen-

eral) identical neurons. Each isolated neuron in layer I is

connected directly with one neuron (its replica) in layer II

(termed as “medium” here). The schematic diagram of the

network is shown in Fig. 1.

We assume that each node in both the layers has

Hindmarsh-Rose neuron dynamics. The neurons in the

medium are connected through electrical synapses and the

isolated neurons are connected with the common medium

through chemical synapses, keeping in mind the fact that the

width between presynaptic and postsynaptic neurons is

essentially larger at chemical synapses than electric synap-

ses. We find the co-action of these two types of synapses

playing a crucial role in the emergence of synchronous chi-

mera and cluster patterns in the layers.

073109-2 Majhi, Perc, and Ghosh Chaos 27, 073109 (2017)



Considering Hindmarsh-Rose (HR) models as the nodes

of the network where both types of synapses (electrical and

chemical) are present, the equations governing the dynamics

of layer I are the following:

_xi;1 ¼ ax2
i;1 � x3

i;1 � yi;1 � zi;1þKchðvs � xi;1ÞCðxi;2ðt� sÞÞ;
_yi;1 ¼ ðaþ aÞx2

i;1 � yi;1;

_zi;1 ¼ cðbxi;1 � zi;1 þ eÞ; (1)

and for layer II reads as

_xi;2 ¼ ax2
i;2 � x3

i;2 � yi;2 � zi;2þKchðvs � xi;2Þ

Cðxi;1ðt� sÞÞ þ Kel

XiþP

j¼i�P

ðxj;2 � xi;2Þ;

_yi;2 ¼ ðaþ aÞx2
i;2 � yi;2;

_zi;2 ¼ cðbxi;2 � zi;2 þ eÞ; (2)

where (xi,1, yi,1, zi,1) and (xi,2, yi,2, zi,2) represent the state vec-

tors for the neurons in layer I and layer II, respectively, i¼ 1,

2,…, N, with N being the number of neurons in each of the

layers of the network; Kel and Kch are the coupling strengths

associated with the electrical and chemical synapses, respec-

tively. As pointed earlier, layer II is having interaction of

nonlocal character. Each element of the ensemble is coupled

with P neighbors on both sides of a ring. The quantity Rð¼ P
N

or P
N�1
Þ depending on N (even or odd) is usually termed as

the coupling range. Here, s is the time-delay required to

propagate the information between the layers. This isolated

HR model is a phenomenological model that exhibits all

common dynamical features found in a number of biophysi-

cal modeling studies of bursting, where the variables xi,k rep-

resent the membrane potentials, and the variables yi,k and zi,k

refer to the transport of ions across the membrane through

the fast and slow channels, respectively, for layer I and II

with k¼ 1, 2. We assume the parameter c small enough so

that zi,k varies much slower than xi,k and yi,k (k¼ 1, 2). The

synapses are excitatory as long as the reversal potential

vs¼ 2> xi,k(t) for all xi,k(t) and all times t. The chemical syn-

aptic coupling function C(x) is modeled by the sigmoidal

nonlinear input-output function as

C xð Þ ¼ 1

1þ e�k x�Hsð Þ ; (3)

with k determining the slope of the function and Hs is the

synaptic threshold. We choose the threshold Hs¼�0.25 so

as to make every spike in the isolated neuron burst to reach

the threshold and fix the value k¼ 10 throughout the work.73

III. RESULTS

We investigate two different cases based on the inter-layer

interaction. In the first case, we consider the instantaneous

inter-layer chemical synaptic coupling and later the effect of

delay present in the inter-layer chemical synaptic coupling.

A. Instantaneous inter-layer interaction

Regular square-wave bursting dynamics of the individual

neurons is observed for the choice of the set of parameter val-

ues: a¼ 2.8, a¼ 1.6, c¼0.001, b¼ 9, and e¼ 5, as shown in

Fig. 2(a) (when Kel¼Kch¼ 0). We hereby start with non-zero

Kel with a fixed P and Kch¼ 0 and concentrate on a definite

dynamics of layer II before introducing the effect of the inter-

layer interaction. Whenever Kel¼ 0.005 with P¼ 30, layer II

shows incoherent dynamics, as can be noticed from a typical

snapshot [Fig. 2(b)] of the membrane potentials in layer II.

FIG. 1. Schematic diagram of a multilayer network with two layers where

upper layer (layer I) nodes are uncoupled and the lower layer (layer II) nodes

are coupled nonlocally. Nonlocal interaction in the lower layer is illustrated

for a single node only because of the clarity of the figure. All the other nodes

are connected to the neighboring nodes in a similar manner. Each node in

the upper layer is connected to its immediate bottom node in the lower layer.

FIG. 2. (a) Regular square-wave bursting dynamics of a particular isolated

50-th neuron of layer II, whenever no interaction among the neurons is pre-

sent (i.e., with Kel¼ 0 and Kch¼ 0). (b) Typical snapshot of the membrane

potentials resembling incoherent behavior of that layer with Kel¼ 0.005,

Kch¼ 0, and P¼ 30. Here, N¼ 100.
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Next, we switch the inter-layer chemical synaptic cou-

pling strength Kch on, and as a consequence, a transition of

both the layers from the disordered state to the coherent state

via chimera and cluster states is realized. We fix the coupling

radius R¼ 0.3 and electric synaptic coupling strength

Kel¼ 0.005 for which the neurons in layer II are in the disor-

dered state. At a lower value of Kch¼ 0.5, the neurons in

both the layers are in disordered states. The snapshots of

membrane potentials xi,1 and xi,2 are depicted in Figs. 3(a)

and 3(e). On increasing the coupling strength to Kch¼ 1.1,

we find the emergence of the chimera state as in Figs. 3(b)

and 3(f). At this point, it is considerably interesting to note

the appearance of synchronous chimera patterns between the

layers. Here, both the layers show chimera patterns with the

property that the same group of replica nodes (x1,1, x2,1,…,

x44,1) and (x1,2, x2,2,…, x44,2) forms incoherent domains

whereas the same group of neurons (x45,1, x46,1,…, x100,1)

and (x45,2, x46,2,…, x100,2) exhibits coherent dynamics. On

further increasing the coupling strength to Kch¼ 2.0, the two

layers tend to form synchronous cluster patterns, and snap-

shots are given in Figs. 3(c) and 3(g). Here, the layers break

into the same four coherent neuron groups, namely,

ðx1;k;x2;k;…;x13;kÞ; ðx14;k;x15;k;…;x40;kÞ; ðx41;k;x42;k;…;x63;kÞ,
and (x64,k, x65,k,…, x100,k) for k¼1, 2. A bit more increment

in Kch leads the two layers to fully coherent dynamical states,

as can be seen from the snapshots in Figs. 3(d) and 3(h) for

Kch¼3.0.

We confirm the existence of these complex patterns by

calculating instantaneous angular frequency of the i-th neu-

ron of the two layers as

xi;k ¼ _/i;k ¼
xi;k _yi;k � _xi;kyi;k

x2
i;k þ y2

i;k

;

where /i;k ¼ arctanðyi;k=xi;kÞ is the geometric phase for the

fast variables xi,k and yi,k of the i-th neuron, which is consid-

ered as a good approximation when c is small (�1), for

k¼ 1, 2. The instantaneous angular frequencies reflecting

incoherent, chimera, cluster, and coherent states for layer I

are shown in Figs. 4(a), 4(b), 4(c), and 4(d), respectively.

The angular frequencies corresponding to the neurons in the

incoherent domain are randomly scattered, whereas for

coherent domains, they are exactly the same. These angular

frequency profiles perfectly distinguished different dynami-

cal behaviors of layer I. Similar frequency profiles for layer

II are obtained (not shown here).

To make sure that the network behaves exactly the way

we claimed, we further characterize these dynamical states

by using a statistical measure that uses a local standard devi-

ation analysis, termed as strength of incoherence and defined

as

SIk ¼ 1�

XM

m¼1

sm;k

M
; sm;k ¼ H d� rk mð Þð Þ;

(4)

where rk(m) is the local standard deviation in each of the

bins (we divided the total number of neurons of both the

layers into M bins of equal length n¼N/M) as follows:

rk mð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xmn

j¼n m�1ð Þþ1

½fj;k � hfki�2
vuut

* +
t

; (5)

with hfki ¼ 1
N

PN
i¼1 fi;kðtÞ; m ¼ 1; 2;…;M, where fi;k ¼ xi;k

�xiþ1;k; i ¼ 1; 2;…;N, and k¼ 1, 2. Here, H(�) is the

Heaviside step function and d is a predefined threshold. The

values SIk¼ 1, SIk¼ 0, and 0<SIk< 1 correspond to the

incoherent, coherent, and chimera or cluster states, respec-

tively, for the k-th layer with k¼ 1, 2. Here, we note that one

is unable to distinguish between chimera and cluster states

FIG. 3. Left and right panels, respectively, stand for the dynamical behavior

of layers I and II depicting (a) and (e) incoherent state for Kch¼ 0.5, (b) and

(f) chimera state for Kch¼ 1.1, (c) and (g) cluster state for Kch¼ 2.0, and (d)

and (h) coherent state for Kch¼ 3.0. Here, Kel¼ 0.005.

FIG. 4. Instantaneous angular frequency of layer I neurons characterizing

(a) incoherent state for Kch¼ 0.5, (b) chimera state for Kch¼ 1.1, (c) cluster

state for Kch¼ 2.0, and (d) coherent states for Kch¼ 3.0. Other parameters

are the same as in previous figures.
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using this SIk because in both these cases, SIk will take simi-

lar non-zero non-unit values. In the cluster state, the profile

of the coherent state breaks up into two or more parts, and at

this point, the profile of fi,k maintains a smooth profile except

some discontinuity at the break up points. We follow the

arguments provided in Ref. 74 and calculate modified

strength of incoherence Sk based on the process of removable

discontinuities. The existence of disordered, chimera, cluster,

and coherent states are characterized by SIk and Sk. As men-

tioned above, (SIk, Sk)¼ (1, 1) represents a disordered state,

while (SIk, Sk)¼ (0, 0) represents a coherent state. Further,

0< SIk< 1, 0<Sk< 1 and 0<SIk< 1, Sk¼ 0 represent chi-

mera and cluster states, respectively.

Figure 5 depicts the variation of SI of both the layers with

respect to inter-layer chemical synaptic coupling strength Kch.

We choose d¼ 0.05 to calculate SI throughout the work. As

in Figs. 5(a) and 5(b), in the region I¼ {Kch: 0.0�Kch< 1.0},

the values of SIk and Sk (k¼ 1, 2) remain unity characterizing

the incoherent (disordered) nature of the neurons in both the

layers but as we increase Kch beyond Kch¼ 1.0, we observe

the chimera state characterized by the values 0<SIk, Sk< 1

in the region II¼ {Kch: 1.0�Kch� 1.75}. With further incre-

ment in the value of Kch, cluster states in the region

III¼ {Kch: 1.75�Kch� 2.9} characterized by 0<SIk< 1

together with Sk¼ 0 are realized. Finally, as Kch passes the

value Kch¼ 2.9, different clusters are observed to evolve as a

single one and the layers admit coherent dynamics as the val-

ues of SIk become zero in the region IV¼ {Kch: Kch> 2.9}. In

the region II, both the values of SI1 and SI2 lie in the interval

(0, 1) which means that both the layers are in chimera states

for a wide range of Kch. In order to identify the relation

between the chimera states in the two layers, we calculate the

difference between the strength of incoherences in each layer

as DSI¼SI1 � SI2. The non-zero values of DSI indicate asyn-

chrony between the two layers, and DSI¼ 0 represents syn-

chronous patterns between the layers and accordingly defined

as synchronous chimera state and synchronous cluster state.

The inset of Fig. 5(b) shows the variation of DSI with Kch.

The zero value of DSI throughout all the values of Kch (in

fact, the two layers maintain bounded difference between the

amplitudes, i.e., the membrane potentials) together with the

snapshots depicted in Fig. 3 makes the synchrony in the chi-

mera as well as in the cluster patterns of the two layers

conspicuous.

In order to make the influence of both Kch and Kel on the

observed patterns clearer, we plot Kel against Kch in Fig. 6.

Here, yellow, blue, black, and red colors, respectively,

denote incoherent, synchronous chimera, synchronous clus-

ter, and coherent states. For almost all the values of Kel in

the interval [0.0, 0.015],75 a transition from the disordered

state to the ordered one through chimera patterns followed

by cluster states can be observed. This suggests that the

observation of such complex patterns as natural links

between incoherence and coherence is not limited to

specified values of intra layer electrical synaptic coupling

strength Kel.

To figure out the effect of the coupling range R and the

inter-layer interaction strength Kch on the dynamics of the

network, we move on to the idea of formation of such

intriguing patterns for every possible value of coupling

radius R and rigorously plot the R � Kch plane in Fig. 7. For

smaller values of R, the interactional framework in layer II

approaches to nearest neighbor coupling topology.

According to the figure, synchronous chimera and cluster

states arise between the layers for wide intervals of Kch,

whatever be the values of R. We can convert the nonlocal

interaction into local and global by considering P¼ 1 and

P ¼ N�1
2

for odd values of N. Now for P¼ 1, all the neurons

FIG. 5. Strength of incoherence SI together with modified strength of inco-

herence S is plotted against inter-layer chemical synaptic coupling strength

Kch for (a) layer I and (b) layer II. Here, M¼ 20 and Kel¼ 0.005. Black line

with dots and red line, respectively, correspond to SI and S in (a); Blue line

with dots and red line, respectively, denote SI and S in (b). The inset of (b)

depicts the variation in the SI between the layers with respect to Kch, defined

as DSI¼ SI1 � SI2.

FIG. 6. Different dynamical states in two parameters phase diagram of

Kch–Kel plane where strength of incoherence and its modified form are used

to distinguish different states, namely, disordered, synchronous chimera,

synchronous cluster, and coherent states. Here, P¼ 30.
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in layer II are coupled with its nearest neighbor neurons

only, and on the other hand, for P ¼ N�1
2

, all the neurons are

globally coupled via electrical synapses. Here, it is important

to note that in accordance with the results present in the liter-

ature of chimera, observation of the chimera state has not

been possible in the sole presence of electrical synapses (lin-

ear diffusive coupling) for both of these two limiting values

of P. However, Ref. 11 revealed that the chimera pattern

may arise for these limiting values of P whenever the neu-

rons are connected through chemical synapses only. Here, in

our work, the inter-layer chemical synaptic coupling function

together with the underlying network structure plays an

important role for the emergence of the chimera state in

locally and globally coupled neurons in layer II. Thus, it is

clear that not only for the intermediate values of P but also

for its two limiting values (corresponding to local and global

coupling) the intriguing synchronous chimera with synchro-

nous cluster states shows up.

B. Delayed inter-layer interaction

In neuronal networks, the effect of delay in signal trans-

mission between different units is certain and it may genu-

inely arise because of the reaction times at chemical

synapses. In this connection, earlier works15,76 explained the

impacts of information transmission delay in the presence of

both electrical and chemical synapses. So, in this subsection

we investigate the development of diverse patterns of the

two-layer dynamical network in response to the presence of

inter-layer information transmission delay. First, we consider

a smaller value of the delay s¼ 0.5 and study the dynamics

of the network for the fixed P¼ 30. Here, again the two

layers go through an evolution from incoherent to coherent

dynamics (via synchronous chimera and cluster states) due

to an increase in the values of inter-layer interaction strength

Kch and this phenomenon sustains for almost every value of

intra-layer coupling strength Kel, see Fig. 8(a). But the fact

to be noted is that the values of Kch for which synchronous

chimera and cluster patterns take place are now different

from that of the previous instantaneous interaction case (cf.

Sec. III A, Fig. 6). As the observed chimera and cluster pat-

terns between the layers are throughout synchronous, from

here on we use simply “chimera” and “cluster” to indicate

“synchronous chimera” and “synchronous cluster,” respec-

tively. In fact, here the chimera region in the Kel–Kch plane

gets significantly enlarged whereas the cluster region in the

plane gets compressed due to the introduction of the delay in

the information transmission between the layers.

FIG. 7. Two parameter phase diagram by simultaneously varying the inter-

layer chemical synaptic coupling strength Kch and coupling range R. Here,

yellow, blue, black, and red colors stand for incoherent, synchronous chi-

mera, synchronous cluster, and coherent states with Kel¼ 0.005, N¼ 105,

and M¼ 21.

FIG. 8. Two parameter phase diagram

in the kch–kel plane for (a) s¼ 0.5, (b)

s¼ 2.4, and (c) s¼ 4.0 where yellow,

blue, black, and red colors, respec-

tively, correspond to incoherent, syn-

chronous chimera, synchronous

cluster, and coherent states.
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But notably, when we add more delay in the transmis-

sion, for instance with s¼ 2.4, the cluster states in both the

layers die out and chimera states come out in their arena in

the parameter plane. Even some locations of the plane

reflecting coherent patterns (in the absence of delay) turn

into spaces demonstrating chimera states now, as in Fig.

8(b). Finally, we boost the value of the delay further to

s¼ 4.0 while plotting Fig. 8(c) keeping the same bounds of

Kel and Kch as in the earlier cases. In this case, for the pre-

scribed ranges of these two coupling parameters, no coherent

dynamics is identified. Beside this, a much larger chunk of

the plane is now illustrating chimera states compared to all

the past cases.

The Kel–Kch parameter plane plots in Fig. 8 establish that

sufficient inter-layer delay can bring chimera in the two layers

even for the values of Kch that was unable to do so for the

instantaneous inter-layer interaction case. So, we plot some

exemplary snapshots of the neurons’ membrane potentials

together with the angular frequencies of layer II neurons this

time, without and with time delay s in Fig. 9. We fix P¼ 30

and Kel¼ 0.005 with Kch¼ 2.3 for which cluster states were

observed in the network for s¼ 0 [cf. Fig. 5(b)]. Left and right

panels in Fig. 9 depict the snapshots for xi,1, xi,2, and xi,2 for

the delay s¼ 0 and s¼ 2.4, from which a transformation from

the cluster pattern to the chimera state by virtue of the usher-

ing of inter-layer time delay is discernible.

While plotting Fig. 8, we only considered some particu-

lar values of the delay s. But, we now concentrate on under-

standing how the inter-layer delay can affect the dynamics of

the network in a broader appearance and deliberately plot the

s–Kch plane (with s 2 [0, 5] and Kch 2 [0, 4]) while keeping

P¼ 30 and Kel¼ 0.005 fixed, in Fig. 10. Here, the black

color region standing for cluster states comes up in a very

small section of the plane, in fact existing only for s lying in

[0, 1.1]. Consequently, as s increases, the province of Kch for

which chimera arises (in blue) remarkably develops. In fact,

an increase in the value of s may cause the cluster patterns

and the coherent states to get transformed into chimera pat-

terns in the parameter plane. Similar to the two-parameter

phase diagrams discussed above, here also incoherent and

coherent regions are shown in yellow and red colors,

respectively.

For better perception about the impact of delay s on

inducing chimera pattern and eradicating cluster and coher-

ent states in the Kel–Kch parameter plane, we calculate the

effective range of all these states with increasing values of s.

We integrate the system equations (1) and (2) for T number

of parameter points from the range {(Kel, Kch): Kel 2 [0,

0.015], Kch 2 [0, 4.0]} and count the number E of points that

reach one of these states, e.g., incoherent, chimera, cluster,

and coherent states. The effective range (ER) of these states

is then defined to be E
T. The value of ER lies between 0 and 1.

The ER¼ 0 means there are no points in the prescribed range

of parameters in the Kel–Kch plane for which that particular

state emerges. Basically, ER represents a sort of probability

of finding a particular state in the prescribed parameter

plane. Figure 11 shows the variation of ER of all the states

against the time delay s in which yellow, blue, black, and red

color curves, respectively, correspond to incoherent, chi-

mera, cluster, and coherent states. It is clearly observed in

this plot that after a certain threshold of s¼ 1.10, there are

no points in the parameter range for which the cluster state

appears. Similarly for s� 3.5, the coherent states are dimin-

ished for all the values of Kel and Kch in the prescribed

region. The ER of chimera states in the Kel – Kch plane

increases with the increasing values of s, which is also illus-

trated in Fig. 8. Thus, this figure perfectly demonstrates how

the time-delay s in the inter-layer interaction affects the dif-

ferent dynamical states.

FIG. 9. Snapshots of membrane potentials resembling cluster and chimera

state in (a) and (d) layer I and (b) and (e) layer II with corresponding instan-

taneous angular frequency xi,2 of layer II in (c) and (f), respectively. Left

and right panels, respectively, correspond to two different values of inter-

layer delay s¼ 0 and s¼ 2.4. Here, Kel¼ 0.005 with Kch¼ 2.3 fixed.

FIG. 10. Inter-layer chemical synaptic delay s versus the inter-layer chemi-

cal synaptic coupling strength Kch where yellow, blue, and black, and red

colors, respectively, correspond to incoherent, synchronous chimera, syn-

chronous cluster, and coherent states for P¼ 30 and Kel¼ 0.005.
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Finally, we move on to the plot R–Kch plane in Fig. 12

in the presence of different values of the chemical synaptic

delay s. For a smaller value of s¼ 0.5, Fig. 12(a) shows that

the chimera region in the plane gets augmented due to the

delay while the cluster zone becomes narrower (compared to

the regions in Fig. 7, for the case without delay). With a

higher value of s¼ 2.4, the cluster state does not exist any-

more, as in Fig. 12(b) and the chimera pattern dominates in

the R–Kch plane. As the delay s in information transmission

increases to s¼ 4.0, the region indicating coherence disap-

pears as well and the incoherent state followed by the chi-

mera pattern comes up as Kch increases for any value of the

coupling range R.

In this way, the inevitable information transmission delay

associated with the chemical synapses enlarges the synchro-

nous chimera domains while slowing the advancement of

cluster states in the above defined neural network model of

coupled and uncoupled neuron layers.

IV. DISCUSSION AND CONCLUSION

To summarize, we have put forward the notion of two

synchronous complex patterns, like synchronous chimera

and synchronous cluster states, by considering a network of

interacting layers of coupled and uncoupled neurons. In this

work, we have investigated these states while treating differ-

ent aspects of neural networks together, as the raised dynam-

ical appearances have ample importance in the context of

several neuronal developments. On the one hand, various

works have confirmed that multilayer frameworks in neural

networks are quite likely. On the other hand, activities in the

network may be present not only among coupled neurons but

also between uncoupled neurons as well, so we specifically

look on a structure of the network comprising coupled and

uncoupled layers of neurons. The coexistence of electrical

and chemical synaptic interactions between neurons must

not be neglected, and hence, these connections have been

formed within and between the layers, respectively, as chem-

ical synapses function in a longer range compared to electri-

cal synapses. Bursting dynamics arising from Hindmarsh-

Rose neuron models is used to cast the nodes in the network

while keeping the coupling topology of the connected layer

in non-local format (in general).

Exceptionally, such a network structure comprising

hybrid synapses has been noticed to generate synchronous

chimera and synchronous cluster patterns between the layers

even when the neurons in the coupled layer are interacting

locally and globally where emergence of chimera is not pos-

sible in the sole presence of electrical synaptic coupling.

These states are characterized by plotting angular frequency

FIG. 11. Variation in the effective range (ER) of incoherent, synchronous

chimera, synchronous cluster, and coherent states with respect to inter-layer

chemical synaptic delay s. Here, P¼ 30 and T¼ 10 000.

FIG. 12. Simultaneous variation in

coupling range R and the inter-layer

chemical synaptic coupling strength

Kch representing incoherent, synchro-

nous chimera, synchronous cluster,

and coherent regions in yellow, blue,

black, and red colors, respectively, for

Kel¼ 0.005 with (a) s¼ 0.5, (b)

s¼ 2.4, and (c) s¼ 4.0. Here, N¼ 105.
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profiles and also using the strength of incoherence for broad

ranges of the parameters comprehensively. Further, the indis-

pensable information transmission delay s between the layers

is incorporated in the network and appropriate delay has

been found to induce the chimera state even where the

instantaneous interaction between the layers is unable to do

so. We observe that the cluster and coherent profiles in the

parameter planes are completely eliminated once s exceeds

certain thresholds. Thus, the delay may break the cluster and

coherent patterns and remarkably broaden the range of chi-

mera in the parameter space. The evidence of augmentation

of the synchronous chimera region in the parameter space

due to the addition of that delay has been appended in sev-

eral ways, by plotting all possible parameter spaces and the

effective range of all the states as well. On the grounds of

the obtained results, the present work may be expected to

provide crucial understanding and fundamentally deepen the

perception of neuronal evolution where coexistence of

coherent and incoherent dynamics of the neurons appears.
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