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The tumor-immune interactive dynamics is an evergreen subject that continues to draw attention
from applied mathematicians and oncologists, especially so due to the unpredictable growth of tumor
cells. In this respect, mathematical modeling promises insights that might help us to better understand
this harmful aspect of our biology. With this goal, we here present and study a mathematical model
that describes how tumor cells evolve and survive the brief encounter with the immune system,
mediated by effector cells and host cells. We focus on the distribution of eigenvalues of the resulting
ordinary differential equations, the local stability of the biologically feasible singular points, and
the existence of Hopf bifurcations, whereby the time lag is used as the bifurcation parameter. We
estimate analytically the length of the time delay to preserve the stability of the period-1 limit cycle,
which arises at the Hopf bifurcation point. We also perform numerical simulations, which reveal the
rich dynamics of the studied system. We show that the delayed model exhibits periodic oscillations
as well as chaotic behavior, which are often indicators of long-term tumor relapse. Published by AIP
Publishing. https://doi.org/10.1063/1.5052496

Understanding how immune system reacts to the emer-
gence of tumors and their growth is of the outmost impor-
tance in oncology and medical research. Typically, the
innate and adaptive immune cells suppress the progres-
sion of tumor proliferation by either eliminating tumor
cells or by attempting to regulate their outgrowth. We here
propose and analyze a tumor-immune interaction model
that consists of three nonlinear differential equations with
a single time-delayed interaction, whereby the time delay
describes the time that is necessary for the differentiation
and the transportation of cells. We perform detailed anal-
ysis of the existence and stability of biologically feasible
singular points and the occurrence of Hopf bifurcations in
our model. We show that the stability of nonnegative sin-
gular points is possible only when the delay is restricted
in a particular interval, while Hopf bifurcation towards
oscillatory behavior occurs only if the delay is above a crit-
ical value. Moreover, our computer simulations demon-
strate that in addition to time delay interactions, the model
also exhibits deterministic chaos via a typical period-
doubling route. Such complex oscillatory solutions may be
indicative of long-term tumor relapse, and they also indi-
cate clearly that the incorporation of realistic time delays
in cancer models significantly increase the dynamical com-
plexity of the tumor-immune competitive system.

I. INTRODUCTION

Cancer is one of the greatest threats to public health in
the world today. Many forms of cancer have reached epidemic
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scales, and the unchecked proliferation as well as failures to
control increasing numbers of those that affect are highly wor-
rying. Cancer is caused by the abnormal growth of normal
tissue that invades surrounding parts of our body.1 The prolif-
eration of tumor cells is a complex process, which depends on
different types of mutant (tumor) cells, immune-effector cells
(activated cytotoxic-T-lymphocytes, Macrophages, natural-
killer cells), host cells, and endothelial cells, to name just a
few. In order to understand such complex biological phenom-
ena in terms of crucial parameters which control the system
dynamics, theoretical model analysis is required (Gatenby and
Maini2). Mathematical models give realistic and quantitative
characterizations of complicated biological scenarios, and the
results provide the understanding of the state of tumor under
various conditions.3 This complexity has attracted the atten-
tion of many mathematicians as well as oncologists.3–6 The
concept of using mathematical modeling for tumor dynamics
was first established in 1955 by Thomlinson and Gray.7

The tumor and anti-tumor dynamical responses in vivo
are complicated,8–13 and the quantifications of these states
are almost impossible in vivo dynamics. The proliferation of
tumor cells is not always very fast and at a primary stage
the tumor could stay of a detectable size (1–3 mm in diam-
eter). Below the threshold level by routine imaging for a long
period of time, this phenomenon is designated by “tumor
dormancy.”14 The diversity levels of the cancer system (gene,
molecular, gene, cellular, etc.), self organization of the system,
tumor-microenvironment, and tumor-immune interaction15,16

make difficult to treat. Theoretically, such complexity induces
various types of attractors (singular point, periodic behav-
ior, strange attractor, etc.).6,11,17 The existence of limit cycle
and strange attractor result in a complex dynamics of the
tumor-immune system.18,19 Such strange behavior of tumor
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cells could be described based on the fundamental mecha-
nisms of chaos,12,20 which is sensitive dependence on the
initial values. Sensitive dependence of initial values builds the
proliferation of cancer patterns case specific, that is, evolution
of tumor varies from patient to patient due to different initial
values. This is fairly a challenging problem for the clinicians
and oncologists and a very fascinating theme in the field of
tumor dynamics. Due to these grounds, chaotic scenario in
tumor dynamics could provide an advanced knowledge of this
complex interactive process.11,12

The patient’s immune state with cancer cells often shows
rather asymmetrical and is unpredictable due to the com-
plex interaction with cancer cells. How the immune state
responses to the establishment and proliferation of tumors is
a fascinating and indispensable question in tumor dynamics
and immunology. It is well-known to the researchers that the
adaptive and cellular immune systems not only suppress the
proliferation of tumor but also stimulate the progression and
development of tumor.21–25 The theoretical investigation of
tumor and immune interactive dynamics has a long history
and a good precis can be observed in Adam and Bellomo.3

The delayed responses26,27 cannot be neglected for the
cancer and immune system interplay, just as Villasana and
Radunskaya,19 Moghtadaei et al.,28 Khajanchi,29 and Bi et
al.10 revealed that discrete time lags should be considered to
narrate the times required for the development of molecules,
progression, differentiation of cell populations, transport, etc.
In fact, dynamic relationships between cancer-immune system
interplay with time lag have been investigated extensively; see
Refs. 10, 11, 19, and 28–35, and the references cited therein.

Villasana and Radunskaya19 developed a mathematical
model to study the tumor-immune competitive system and
introduce time lag to investigate the phases for cell-cycle pro-
cess. Bi et al.10 considered a mathematical model of cancer-
immune interplays with three distinct time lags, namely, the
growth of cancer cells, proliferation of immune cells acti-
vated by cancerous cells, and the differentiation of immune
cell population. The authors investigated that three distinct
time lags are asymptotically stable if the time lags are less
than their critical values and Hopf bifurcation occurs if any
one of these time lags crosses its critical value. Khajanchi
and Banerjee11 proposed a delayed cancer model to study
the growth of immune cells by cancer cells. In their arti-
cle, the authors investigated the two-dimensional bifurcation
region to clearly understand the intricate behavior of cancer-
immune system interplays. Forys and Piotrowska32 studied a
system of angiogenesis models with time delays to describe
the angiogenesis process. They introduced external treatment
in their tumor model and proved that the external treat-
ment not only decreases the cancer size but also increases
the region of stability. Moghtadaei et al.28 investigated the
well-known Kuznetsov et al.6 tumor model in a discretized
version by introducing Mickens rules for the nonstandard
finite difference scheme. The authors investigated the chaotic
dynamics, regular and irregular periodic behaviors that exhibit
the phenomena for long run tumor relapse.

In the present article, we investigate a mathematical
model introduced by Pillis and Radunskaya,36 which inves-
tigate the interactive dynamics between three cells, namely,

immune cells, host cells, and tumor cells. The set of param-
eters were taken to match with biological evidences.12,36

Therefore, the model could be appraised as qualitatively
authenticated with experimental data. The main reason for
choosing this model is due to its chaotic behavior37 which has
various similarities to clinical evidences.12,13,38 In our study,
we added a discrete time lag to interplay between cancer and
immune effector cells to obtain a better compatibility with
real life as the interaction among the cells is not an instan-
taneous procedure. So it is realistic to introduce a delay in the
interaction among tumor and immune effector cells and inves-
tigate how the resulting dynamics effects by the delay time.
There are medical confirmations that anti-tumor or activity by
immunotherapeutic drug is investigated not instant but from 2
to 10 weeks after the initiation of treatments.39

The rest of this article is organized as follows: Sec. II
is devoted to a short description of the delayed model and
its normalization. Section III deals with the qualitative study
of the model including solution’s positivity and boundedness,
local stability analysis of the biologically feasible singular
points, occurrence of Hopf bifurcation and estimate the length
of time lag to preserve the stability of periodic limit cycle.
We numerically studied how this tumor-immune interactive
dynamics is influenced by time delay in Sec. IV. One and two
parameter bifurcation analysis are investigated in the same
section. Section V provides a brief discussion about the main
findings of our model.

II. THE MATHEMATICAL MODEL

Over the last three decades, mathematical mod-
els have been developed in different aspects of can-
cer dynamics5,15,40,41 with different types of interactions.
Effector-immune cells are the important elements in the
immune system that destroy the tumor cells through a kinetic
process by which the tumor cells come in contact with
effector cells and making them functionally inactive. Also,
the tumor cells secrete immunosuppressive cytokine TGF-β,
prostaglandin E2, IL-10, etc. which are able to stimulate the
proliferation of tumor cells. Thus, instantaneously, the effec-
tor cells are unable to destroy the tumor cells so there is a time
lag between the deactivation of tumor cells by immune effec-
tor cells. This time lag can be regarded as an interaction delay.
To keep this in mind, the model of de Pillis and Radunskaya36

is thus modified in the delayed system as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dE(T1)

dT1
= ρT(T1)E(T1)

g + T(T1)
− β1T(T1 − τ)

× E(T1 − τ) − δE(T1),

dH(T1)

dT1
= αH(T1)

(

1 − H(T1)

k1

)

− γ1T(T1)H(T1),

dT(T1)

dT1
= aT(T1)

(

1 − T(T1)

k2

)

− β2T(T1 − τ)

× E(T1 − τ) − γ2T(T1)H(T1),

(1)

where E(T1), H(T1), and T(T1) represent the number of
immune effector cells, healthy tissue cells or host cells, and
tumor cells at time T1, respectively. The first term in the



103101-3 Khajanchi, Perc, and Ghosh Chaos 28, 103101 (2018)

first equation of (1) designates the growth of cancer-specific
immune cells and is modeled via Michaelis-Menten saturation
dynamics to take into account for the self-limiting produc-
tion of effector immune cells, with ρ being the proliferation
rate and g represents the steepness coefficient. The second
term β1T(T1 − τ)E(T1 − τ) describes the clearance of effec-
tor immune cells by tumor cells at the rate β1. Also, at the
same time, the clearance of cancer cells by immune cells occur
at the rate β2 in the third equation. Here, τ is the discrete time
lag factor that has been added due to interaction delay. The
last term designates the natural decay of immune cells at the
rate δ. Second equation represents the dynamics of healthy
cells or host cells, the first term represents the host cells that
can proliferate logistically with the growth rate α and k1 is the
carrying capacity. Second term designates the decay of host
cells due to interplay with cancer cells with a rate γ1. The
third equation designates the rate of change of tumor cells
in which the tumor cells can grow logistically without any
immune intervention, with a being the proliferation rate and
k2 being an environmental carrying capacity. The final term
represents the elimination of cancer cells due to interplay with
healthy tissue cells at a rate γ2.

For the simplicity of (1), we normalize the state variables
using the following scaling:

[x(t), y(t), z(t)] =
(

E

g
,

H

k1
,

T

k2

)

, with t = aT1,

and we obtain the new parameter set as

ρ = ρ

a
, g = g

k2
, β1 = β1k2

a
, δ = δ

a
,

α = α

a
, γ1 = γ1k2

a
, β2 = β2g

a
, γ2 = γ2k1

a
.

Now, system (1) leads to (E, H , T) �→ (x, y, z), where x(t)
designates normalized immune cells, y(t) and z(t) are the
population of host and cancer cells, respectively, as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= ρxz

g + z
− β1x(t − τ)z(t − τ) − δx,

dy

dt
= αy(1 − y) − γ1yz,

dz

dt
= z(1 − z) − β2x(t − τ)z(t − τ) − γ2yz,

(2)

with initial history functions as

x(θ) = ϕ1(θ), y(θ) = ϕ2(θ), z(θ) = ϕ3(θ), (3)

with ϕi(θ) ≥ 0, i = 1, 2, 3 for θ ∈ [−τ , 0], where ϕi(θ) ∈ R
3
+

are the continuous functions on [−τ , 0) that may display
jumps at θ = 0.

III. BASIC PROPERTIES OF THE MODEL

In the following lemma, we shall investigate the positive
invariance of the delay differential system (2).

Lemma 3.1. For the nonnegative initial conditions
(ϕi, i = 1, 2, 3), defined on [0, +∞), there exists nonnegative
solution of system (2). Moreover, the solution of system (2) is
bounded for all t ≥ 0.

Proof 3.1. System (2) can be stated into the vector form as

Ẋ (t) = M(X ) with X = [x(t), y(t), z(t)]T ∈ R
3
+,0

and

M(X ) =

⎛

⎜
⎝

ρxz

g + z
− β1x(t − τ)z(t − τ) − δx

αy(1 − y) − γ1yz
z(1 − z) − β2x(t − τ)z(t − τ) − γ2yz

⎞

⎟
⎠

=
⎛

⎝
M1(X )

M2(X )

M3(X )

⎞

⎠ ,

where the function M : R
3
+ �→ R

3 for M ∈ C∞(R3
+) defined

in the nonnegative octant R
3
+. The right side of the above

system is locally Lipschitz and satisfy the conditions

Mi(X ) |Xi(t), X ∈ R
3
+ = Mi(0) ≥ 0 for i = 1, 2, 3.

According to the lemma by Yang et al., every solution of
system (2) with initial values (3), ϕi(t) ∈ R

3
+, say, X (t) =

X [t; X (0)], for all t > 0, that is, it remains positive throughout
the region R

3
+, ∀ t > 0.

From the positivity of solutions yields the right side of (2)
is given by

dx

dt
≤ ρxz

g + z
− δx.

Hence, x(t) ≤ max{0, ϕ1(0)}if ρ

δ
< 1. Second equation of (2),

the positive of solutions yields the right side is bounded due
to the proliferation term αy(t)[1 − y(t)]. Hence,

y(t) ≤ max[ϕ2(0), 1].

The last equation of (2) leads to

z(t) ≤ max[ϕ3(0), 1].

Therefore, the solutions of (2) are nonnegative and bounded
for all finite times.

A. Equilibria

The tumor model (2) has six biologically meaningful
singular points:

1. the no “living cell” singular point E0(0, 0, 0).
2. The tumor-free fixed point E1(0, ŷ, 0) with ŷ = 1.
3. The fixed point E2(0, 0, z̃) with z̃ = 1, in which only

tumor cells are present.
4. The fixed point

E3(x̆, 0, z̆) =

⎧
⎪⎪⎨

⎪⎪⎩

x̆ = 1 − z̆

β2
,

y̆ = 0,

z̆,

in which tumor cells and immune effector cells exist
together. The third coordinate z̆ is the non-negative
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root(s) of

β1z̆2 + z̆(δ + gβ1 − ρ) + gδ = 0, (4)

which can be written as

z̆ = (ρ − δ − gβ1) +
√

(ρ − δ − gβ1)2 − 4gδβ1

2β1
.

The singular point E3 is feasible if
{
ρ > δ + gβ1,
z̆ < 1,

that is, effector cells resist against tumor attacks and the
death rate of effector cells. In the case of z̆ = 1, the
boundary equilibrium E3 reduces to E2 which means
the tumor cells always persist in the patients’ body.

5. The singular point

E4(0, ȳ, z̄) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̄ = 0,

ȳ = γ1 − α

γ1γ2 − α
,

z̄ = α(γ2 − 1)

γ1γ2 − α

corresponds to a situation in which cancer cells and host
cells coexist. The effector cell free singular point is bio-
logically meaningful if γ2 > 1, γ1 > α, and γ1γ2 > α,
which implies that (i) the decay rate of tumor popula-
tion by host population is greater than unity and (ii) the
suppression rate of host population by cancer population
is more efficient than the proliferation rate of host cells.
For γ2 = 1, the singular point E4 coincide with tumor free
equilibrium point E1.

6. The interior fixed point

E∗(x∗, y∗, z∗) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x∗ = α(1 − γ2) + z∗(γ1γ2 − α)

αβ2
,

y∗ = α − γ1z∗

α
,

z∗,

where z∗ is the nonnegative solution of the quadratic
Eq. (4). At this singular point, the three cells, namely,
cancer, effector, and host cells exist together. The inte-
rior fixed point E∗ is positive if the conditions hold:
ρ > δ + gβ1, γ2 < 1, γ1γ2 > α, and z∗ < α

γ1
. Using the

existence conditions of E∗, it is obvious that the immune
cell free singular point E4 will never persist as for the
inactivation rate γ2 of tumor cells violates the existence
of effector free singular point E4.

B. Local asymptotic stability of the singular point

In this subsection, we study the local asymptotic stability
of the biologically feasible fixed points of (2) around each of
the equilibrium points. In order to do this, we calculate the fol-
lowing Jacobian matrix corresponding to each of the singular
points is given by

JE =
⎛

⎝
j11 0 j13

0 j22 j23

j31 j32 j33

⎞

⎠ .

where j11 = ρz
g+z − δ − β1ze−λτ , j13 = gρx

(g+z)2 − β1xe−λτ ,

j22 = α(1 − 2y) − γ1z, j23 = −γ1y, j31 = −β2ze−λτ , j32 =
−γ2z, and j33 = 1 − 2z − γ2y − β2xe−λτ .

The eigenvalues corresponding to the fixed point E0 are
λ0

1 = −δ(< 0), λ0
2 = −α(< 0), and λ0

3 = 1(> 0). Therefore,
E0 is a saddle point in the 2-dimensional stable manifold
and 1-dimensional unstable manifold. Thus, there is no path
emanating in the nonnegative octant which can converge to
E0.

The eigenvalues corresponding to E1 are λ1
1 = −δ(<

0), λ1
2 = −α(< 0), and λ1

3 = 1 − γ2. The tumor-free singu-
lar point E1 is locally asymptotically stable if λ1

3 < 0, that is,
if γ2 > 1. Otherwise, the system will be unstable. It can be
observed that if E1 is stable, the singular point E4 and the
interior fixed point E∗ do not exist. Furthermore, for the set
of parameters, the cancer-free state leads to a point attrac-
tor, there no longer persists a possibility of a sustained cancer
proliferation, the micro-environment is not conducive to the
proliferation of cancer cells.

At E2(0, 0, 1), the eigenvalues are λ2
1 = ρ

g+1 − β1 − δ,

λ2
2 = α − γ1, and λ2

3 = −1. Therefore, E2 is locally asymp-
totically stable for ρ < (β1 + δ)(g + 1) with γ1 > α. These
conditions describe that the effector and healthy cells are not
growing properly in surviving for colonize tumor, cancer cells
remain as single cells in the site. Otherwise, when prolifera-
tion rate of immune effector cells and the healthy cells are
sufficiently strong to control the growth of cancer cells, this
equilibrium point E2 is unstable in nature, which is thus an
non-viable state to reach. The cancer cells cannot proliferate
rapidly since the cancer cells remain in competition with the
micro-environment.

At E3(x̆, 0, z̆), the characteristic values of JE3 are λ3
1 =

α − γ1z̆ and the other two eigenvalues λ3
2,3 are the roots of the

following characteristics equation λ2 + D1λ + D2 = 0, where

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D1 = δ + β1z̆ + β2x̆ + 2z̆ − 1 − ρ z̆

g + z̆
;

D2 =
(

ρ z̆

g + z̆
− β1z̆ − δ

)

(1 − β2x̆ − 2z̆)

+ β2z̆

(
gρx̆

(g + z̆)2
− β1x̆

)

.

The boundary equilibrium point E3 will be asymptotically
stable if D1 > 0, D2 > 0, and z̆ > α

γ1
, otherwise unstable.

At E4(0, ȳ, z̄), the characteristic values of JE4 are λ4
1 =

ρ z̄
g+z̄ − β1z̄ − δ and other two eigenvalues λ4

2,3 are the roots

of the following characteristics equation λ2 + C1λ + C2 = 0,
where

{
C1 = 2z̄ + γ2ȳ + αȳ − 1;
C2 = αȳ(2z̄ + γ2ȳ − 1) − γ1γ2ȳz̄.

The equilibrium point E4 will be asymptotically stable if
C1 > 0, C2 > 0, and λ4

1 < 0. Thus, the effector cell free
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singular point E4(0, ȳ, z̄) is stable asymptotically for

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρα(γ2 − 1)(γ1γ2 − α) < α(β1g + δ)(γ2 − 1)(γ1γ2 − α)

+ α2β1(γ2 − 1)1 + δg(γ1γ2 − α)2,

α + γ2

1 + γ1
> 1,

γ2(α + γ1) > (α + γ1γ
2
2 ).

Now, our aim is to explore the influence of discrete time lag
when all the three cells coexist, that is, the dynamical behavior
of system (2) around the interior fixed point E∗(x∗, y∗, z∗). For
the case of discrete time lag τ , the characteristic polynomial
of the linearized system around E∗(x∗, y∗, z∗) can be written
as

A(λ) + B(λ)e−λτ = 0, (5)

where

{
A(λ) = λ3 + a1λ

2 + a2λ + a3,
B(λ) = b1λ

2 + b2λ + b3,

with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = δ + (α + γ2)y∗ + 2z∗ − 1 − ρz∗

g + z∗ ,

a2 = αy∗(γ2y∗ + 2z∗ − 1) − γ1γ2y∗z∗

+ {(α + γ2)y∗ + 2z∗ − 1}
(

δ − ρz∗

g + z∗

)

,

a3 =
(

δ − ρz∗

g + z∗

)

[αy∗(γ2y∗ + 2z∗ − 1) − γ1γ2y∗z∗],

b1 = β2x∗ + β1z∗,

b2 = αβ2x∗y∗ + (αy∗ + γ2y∗ + 2z∗ − 1)β1z∗

+ β2x∗
(

δ − ρz∗

g + z∗

)

+ β2z∗ gρx∗

(g + z∗)2
,

b3 = αy∗(γ2y∗ + 2z∗ − 1)β1z∗ − γ1γ2y∗(z∗)2

+ αβ2x∗y∗z∗ gρ

(g + z∗)2
+

(

δ − ρz∗

g + z∗

)

αβ2x∗y∗.

Without any loss of generality, in the case of interior sin-
gular point E∗, that is, in the absence of time lag (τ = 0),
characteristic Eq. (5) becomes

λ3 + (a1 + b1)λ
2 + (a2 + b2)λ + (a3 + b3) = 0. (6)

Using Routh-Hurwitz criterion, the roots of (6) have non-
positive real parts, that is, E∗ is asymptotically stable
for a1 + b1 > 0, S1 = a3 + b3 > 0, and S2 = (a1 + b1)(a2 +

b2) − (a3 + b3) > 0. Then,

a1 + b1 = δ + (α + γ2)y
∗ + z∗(2 + β1) + β2x∗

− 1 − ρz∗

g + z∗ > 0,

a3 + b3 = αy∗(γ2y∗ + 2z∗ − 1)

(

β1z∗ + δ − ρz∗

g + z∗

)

+ y∗(αβ2x∗ − γ1γ2z∗)
(

δ − ρz∗

g + z∗

)

+ y∗z∗
(

αβ2x∗ gρ

(g + z∗)2
− γ1γ2β1z∗

)

> 0,

S2 =
[

δ + (α + γ2)y
∗ + z∗(2 + β1)

+ β2x∗ − 1 − ρz∗

g + z∗

]

×
[

(γ2y∗ + 2z∗ − 1)

(

αy∗ + β1z∗ + δ − ρz∗

g + z∗

)

+ (αy∗ + β1x∗)
(

δ − ρz∗

g + z∗

)

+ y∗z∗(αβ1 − γ1γ2)

+β2x∗
(

αy∗ + gρz∗

(g + z∗)2

)]

− S1 > 0. (7)

From these expressions, it is difficult to find the explicit para-
metric criteria which is essential for asymptotic stability of
the interior fixed point E∗. We will display this results with
the help of numerical simulations.

In the foregoing sections, we studied the dynamics of
system (2) without the delay parameter τ . Now onwards, we
shall analyze how the stability is influenced by discrete time
lag τ and, hence, we examine τ as the bifurcation parame-
ter. To study the delay induced instability, we assume a purely
imaginary root of (5).

Now, we are looking for periodic solutions which has
a biological relevance in the tumor and immune interactive
dynamics (Jeff’s phenomenon).42 To obtain the periodic solu-
tions of (2), we substitute λ = iσ(σ > 0) into (5) and by
extracting the real and imaginary parts, we get the following
transcendental equations:

a1σ
2 − a3 = (b3 − b1σ

2)cos(στ) + b2σ sin(στ),

σ 3 − a2σ = b2σcos(στ) − (b3 − b1σ
2)sin(στ). (8)

By squaring and adding both sides of (8), we get

σ 6 + u1σ
4 + u2σ

2 + u3 = 0, (9)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = a2
1 − 2a2 − b2

1

=
[

δ + (α + γ2)y∗ + 2z∗ − 1 − ρz∗

g + z∗

]2

− (β2x∗ + β1z∗)2 − 2[αy∗(γ2y∗ + 2z∗ − 1)

− γ1γ2y∗z∗] + 2{(α + γ2)y∗ + 2z∗ − 1}
(

δ − ρz∗

g + z∗

)

,

u2 = a2
2 − 2a1a3 + 2b1b3 − b2

2, u3 = a2
3 − b2

3.
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The simplest assumption that Eq. (9) will have a positive root
if u1 > 0 and u3 = (a2

3 − b2
3) = (a3 + b3)(a3 − b3) < 0.

From the above conditions, it is obvious that there is a
unique non-negative root σ0 satisfying Eq. (9), i.e., the char-
acteristic polynomial (5) has a pair of purely complex roots in
the form ±iσ0. Solving both the equations of (8), we have

tan(στ) = b2σ(a1σ
2 − a3) − (σ 3 − a2σ)(b3 − b1σ

2)

(a1σ 2 − a3)(b3 − b1σ 2) + b2σ(σ 3 − a2σ)
.

Then, τc corresponding to σ0 is given by

τc = 1

σ0
arctan

[
b2σ0(a1σ

2
0 − a3) − (σ 3

0 − a2σ0)(b3 − b1σ
2
0 )

(a1σ
2
0 − a3)(b3 − b1σ

2
0 ) + b2σ0(σ

3
0 − a2σ0)

]

+ 2cπ

σ0
, c = 0, 1, 2, 3, . . . . (10)

For τc = 0, the three-cell equilibrium point E∗ is locally
asymptotically stable, provided condition (7) holds. Hence,
by well-known Butler’s lemma,43 E∗ will remain stable for
τc < τ0, where τc = τ ∗ at c = 0. This implies that with a
time lag beyond a given critical value, the interaction between
cancer cells and their micro-environment begins to lose their
stability and, hence, the growth of cancer cells is no longer
sustained, making possible fast proliferation of cancer cells.

C. Analysis of Hopf bifurcation

We now establish the onset of a Hopf bifurcation11 of
(2) at τ = τc when there is a pair of purely imaginary roots,

and for which we want to prove the transversality condi-
tions d(Reλ)

dτ
|τ=τc> 0. This implies that there exists at least

one characteristic value with a positive real part satisfying
τ > τc. At first, we are looking for purely complex roots of
the form λ = iσ0 of (5) implying that | P(iσ0) | = | Q(iσ0) |,
which determines the possible values for τc.44 Now, our objec-
tive is to establish the direction of motion of λ when τc is
increased, for that we need to investigate


 = sign

[
d(Reλ)

dτc

]

λ=iσ0

= sign

[

Re

(
dλ

dτc

)−1
]

λ=iσ0

.

Differentiation of (5) with respect to τ leads to

[(3λ2 + 2a1λ + a2) + e−λτc(2b1λ + b2) − τe−λτc(b1λ
2

+ b2λ + b3)]
dλ

dτc
= λe−λτc(b1λ

2 + b2λ + b3),

which implies
(

dλ

dτc

)−1

= 2λ3 + a1λ
2 − a3

−λ2(λ3 + a1λ2 + a2λ + a3)

+ b1λ
2 − b3

λ2(b1λ2 + b2λ + b3)
− τc

λ
.

Thus,


 = sign

[

Re

(
2λ3 + a1λ

2 − a3

−λ2(λ3 + a1λ2 + a2λ + a3)
+ b1λ

2 − b3

λ2(b1λ2 + b2λ + b3)
− τc

λ

)]

λ=iσ0

= 1

σ 2
0

sign

[
(a1σ

2
0 + a3)(a1σ

2
0 − a3) + 2σ 3

0 (σ 3
0 − a2σ0) + (b1σ

2
0 + b3)(b3 − b1σ

2
0 )

b2
2σ

2
0 + (b3 − b1σ

2
0 )2

]

= 1

σ 2
0

sign

[
2σ 6

0 + σ 4
0 (a2

1 − 2a2 − b2
1) + (b2

3 − a2
3)

b2
2σ

2
0 + (b3 − b1σ

2
0 )2

]

.

Therefore, the transversality condition d(Reλ)

dτ
|σ=σ0,τ=τc

> 0 holds as a2
1 − 2a2 − b2

1 > 0 and b2
3 − a2

3 > 0 by virtue of
u1 > 0 and u3 > 0. The delay induced cancer and immune
system model exhibits periodic behavior with small ampli-
tude and bifurcates from three cells singular point E∗ when the
time delay τc as the bifurcation parameter crosses through the
threshold value τ = τc. The above outcomes can be precised
in the form of the following proposition.

Proposition 3.1. The existence of three cell singular
point E∗ with initial conditions (3) are satisfied system (2).
Then,

(i) if τ lying between [0, τc), then E∗ is asymptotically stable,
(ii) if τ > τc, then the three-cells singular point E∗ is

unstable,
(iii) at τ = τc, then system (2) experiences Hopf bifurcation

around E∗.

D. Stability of limit cycle: Length of time lag estimation

In this subsection, we explore the stability of bifurcating
periodic solutions and estimate the length of time lag preserv-
ing the stability of period-1 limit cycle. Consider the tumor
model (2) and the space of all continuous real-valued function
defined on [−τ , +∞), which satisfies the initial history (3) on
the interval [−τ , 0). First, we linearize the tumor model (2)
around the interior fixed point E∗(x∗, y∗, z∗), which gives us

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = ρz∗

g + z∗ x − δx − β1z∗x(t − τ)

+ gρx∗

(g + z∗)2
z − β1x∗z(t − τ),

ẏ = −αy∗y − γ1y∗z,

ż = −β2z∗x(t − τ) − γ2z∗y + (1 − 2z∗ − γ2y∗)z

−β2x∗z(t − τ).

(11)
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By using Laplace transformation of (11), leading to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(η + δ − ρz∗

g + z∗ + β1z∗e−ητ )Lx(η)

= gρx∗

(g + z∗)2
Lz(η) − β1z∗e−ητ Kx(η) − β1x∗e−ητ Lz(η)

−β1x∗e−ητ Kz(η) + x̄(0),

(η + αy∗)Ly(η) = −γ1y∗Lz(η) + ȳ(0),

(η + 1 − 2z∗ − γ2y∗ + β2x∗e−ητ )Lz(η)

= −β2z∗e−ητ Lx(η) − β2z∗e−ητ Kx(η) − γ2z∗Ly(η)

−β2x∗e−ητ Kz(η) + z̄(0),
(12)

with

Kx(η) =
∫ 0

−τ

e−ηtx(t)dt, Kz(η) =
∫ 0

−τ

e−ηtz(t)dt,

where Lx(η), Ly(η), and Lz(η) are the respective Laplace trans-
formations of x(t), y(t), and z(t). According to the well-known
theory by Freedman et al.43 and using classical Nyquist
criteria, three-cells fixed point E∗ is asymptotically stable, for

ReB(iξ0) = 0, (13)

ImB(iξ0) > 0, (14)

with

B(η) = η3 + a1η
2 + a2η + a3 + e−ητ (b1η

2 + b2η + b3)

and the minimal nonnegative root of the above expressions
(13) and (14) is ξ0 > 0.

Expressions (13) and (14) can be explicitly written as

− a1ξ
2
0 + a3 = −b2ξ0sin(ξ0τ) − (b3 − b1ξ

2
0 )cos(ξ0τ),

(15)

− ξ 3
0 + a2ξ0 > (b3 − b1ξ

2
0 )sin(ξ0τ) − b2ξ0cos(ξ0τ), (16)

which gives sufficient conditions for the stability of interior
fixed point E∗. To calculate time lag τ , we employ both con-
ditions (15) and (16). Now, our aim is to investigate an upper
bound ξ+ on ξ0 that is not dependent on τ , and so to calculate
the length of τ , we assume that (16) satisfies ∀ values of ξ ,
0 ≤ ξ ≤ ξ+ at ξ = ξ0.

Rewriting expression (15) leads to

a1ξ
2
0 = a3 + b2ξ0sin(ξ0τ) + b3cos(ξ0τ) − b1ξ

2
0 cos(ξ0τ).

(17)

To estimate the value of delay, we maximize the right side of
(17) as

a3 + b2ξ0sin(ξ0τ) + b3cos(ξ0τ) − b1ξ
2
0 cos(ξ0τ),

subject to the conditions,

| cos(ξ0τ) |≤ 1, | sin(ξ0τ) |≤ 1.

Therefore, we obtain that

| a1 | ξ 2
0 ≤| a3 | + | b2 | ξ0+ | b3 | + | b1 | ξ 2

0 .

Hence, it can be expressed as

ξ+ ≤ 1

2(| a1 | − | b1 |)
[

| b2 | +
√

b2
2 + 4(| a1 | − | b1 |)(| a3 | + | b3 |)

]

, (18)

then it is obvious from (18) that ξ0 ≤ ξ+.
Also, from the inequality (16), we have

ξ 2
0 < a2 + b2cos(ξ0τ) + b1ξ0sin(ξ0τ) − b3sin(ξ0τ)

ξ0
. (19)

For the case of τ = 0, the above inequality becomes
ξ 2

0 < a2 + b2 and from (17); a1ξ
2
0 = a3 + b3 − b1ξ

2
0 , that is,

ξ 2
0 = (a3 + b3)/(a1 + b1). Therefore, we can assert that at

τ = 0, the singular point E∗ is asymptotically stable if (a3 +
b3) < (a1 + b1)(a2 + b2) holds. Now, for small τ > 0, (19)
will continue to hold.

Putting (17) into (19) and rearranging the expressions, we
get

(b3 − b1ξ
2
0 − a1b2)[cos(ξ0τ) − 1]

+
[

(b2 − a1b1)ξ0 + a1b3

ξ0

]

sin(ξ0τ) < a1a2 − a3

+ a1b2 − b3 + b1ξ
2
0 ,

⇒ (b3 − b1ξ
2
0 − a1b2)[cos(ξ0τ) − 1]

+
[

(b2 − a1b1)ξ0 + a1b3

ξ0

]

sin(ξ0τ)

< (a1 + b1)(a2 + b2) − (a3 + b3). (20)

Using the bounds, we obtain

(b3 − b1ξ
2
0 − a1b2)[cos(ξ0τ) − 1]

= 2(b1ξ
2
0 + a1b2 − b3)sin2

(
ξ0τ

2

)

≤ 1

2
ξ 2
+ | (b1ξ

2
+ + a1b2 − b3) | τ 2

and
[

(b2 − a1b1)ξ0 + a1b3

ξ0

]

sin(ξ0τ)

≤
[

| (b2 − a1b1) | ξ 2
++ | a1 || b3 |

]

τM .

From (20), we obtain that D1τ
2 + D2τ ≤ D3, with

D1 = 1

2
| (b1ξ

2
+ + a1b2 − b3) | ξ 2

+,

D2 =
[

| (b2 − a1b1) | ξ 2
++ | a1 || b3 |

]

,

D3 = (a1 + b1)(a2 + b2) − (a3 + b3).

Now, it follows that τ+ = 1
2D1

[

−D2 +
√

D2
2 + 4D1D3

]

also

for 0 ≤ τ ≤ τ+, the Nyquist criteria holds, and the maximum
length of time lag τ+ preserves the stability of period-1 limit
cycle.
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TABLE I. Explanation of the system parameters.

Name Definition of parameters Values

ρ Maximum recruitment of effector cells 4.5
g Steepness coefficient of immune cells 1.0
β1 Fractional immune cell kill by tumor cells 0.2
δ Decay rate of immune effector cells 0.5
α Proliferation rate of host cells 0.5
γ1 Fractional host cell kill by tumor cells 1.5
β2 Tumor cells inactivation rate 2.5
γ2 Deactivation rate of tumor cells 1.0

IV. RESULTS AND BIOLOGICAL INTERPRETATIONS

In this section, we represent some numerical computa-
tions of our tumor model and provide plausible explanations
based on the theoretical outcomes. Parameters and units are
arbitrary and we choose those used in Refs. 12 and 33. To see
how discrete time delay affects the dynamics of system (2), we
choose the parameter set as reported in Table I. For these set
of parameters, there are five biologically relevant equilibrium
points:

E0 =
∣
∣
∣
∣
∣
∣

x0 = 0
y0 = 0
z0 = 0,

E1 =
∣
∣
∣
∣
∣
∣

x̂ = 0
ŷ = 1
ẑ = 0,

E2 =
∣
∣
∣
∣
∣
∣

x̃ = 0
ỹ = 0
z̃ = 1,

E3 =
∣
∣
∣
∣
∣
∣

x̆ = 0.346999
y̆ = 0
z̆ = 0.132503,

E∗ =
∣
∣
∣
∣
∣
∣

x∗ = 0.106002
y∗ = 0.602491
z∗ = 0.132503.

The stabilities of the these equilibrium points with bio-
logical interpretations are as follows:

• the corresponding eigenvalues of E0 are −0.5, 0.5, 1.0,
then, the critical point is saddle type.

• The tumor free singular point E1 has eigenvalues
−0.5, −0.5, 0.0; this indicates a marginally stable node.
For x = z = 0, that is, only healthy cells exist, the sys-
tem dynamics dominated by a logistic growth function and
host cells converge to its largest value (y = 1) [see phase
diagram Fig. 1(c)].

• The tumor cells singular point E2 has eigenvalues
−1.0, −1.0, 1.55, thus corresponding to a saddle point. In
this case, only cancer cells are controlled by a logistic
growth equation and the tumor population converges to its
largest value (z = 1) [see phase diagram Fig. 1(c)].

• The critical point E3 is a state where immune effector
cells and tumor cells coexist. The eigenvalues of E3 are
0.301246, −0.0662518 ± 0.613124 i, which correspond to
a saddle focus.

• The interior equilibrium point E∗ has eigenvalues—
0.500742, 0.033497 ± 0.262241 i, which correspond to a
saddle point. The singular point E3 is 1-dimensional unsta-
ble manifold, in this regard, the fixed point E3 differs from
the fixed point E∗ which has a 2-dimensional unstable
manifold.

To visualize the stability of the fixed points for system
(2), we computed the stability region for the recruitment of
immune effector cells ρ against the inactivation rate of host
cells γ1 (see Fig. 2). The blue region represents the stability for
the boundary fixed point E3, magenta shaded region indicates
the stability of E2, red shaded region represents the stability of
E∗, whereas the white portion indicates the unstable region.

For the specified parameters in Table I, interior
singular point E∗ is such that u1 = 0.263528 > 0 and
u3 = −0.0003919 < 0, which implies that Eq. (9) has exactly
one positive real root σ0 = 0.197656 and τ0 ≈ 0.23425. Using
Proposition 3.1, we obtained that model (2) experiences a

FIG. 1. (a) and (b) depict time evolution of healthy cells and cancer cells for the singular point E∗ of the delayed system (2), with time delay τ = 0.12(< τ =
0.2342). (c) Represents the 2-dimensional phase portrait diagram for τ = 0.12(< τ = 0.2342). Parameter values as reported in Table I.
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FIG. 2. Stability region for the model (2) for the singular points E2, E3, and
E∗. The recruitment of immune effector cells ρ versus the host cells inacti-
vation rate γ1 is plotted. Parameter values as specified in Table I with τ = 0.
The blue shaded region represents the stability for E3, magenta shaded region
indicates the stability for E2, red shaded region represents the stability for E∗,
whereas the white portion indicates the unstable region.

Hopf bifurcation at τ0 = 0.23. We also verified the transver-
sality condition for Hopf bifurcation d(Reλ)

dτ
|σ=σ0,τ=τ0=

0.678596 > 0. According to the well-known Theorem by
Cooke and Van den Driessche,44 it is obvious that system (2)
experiences Hopf bifurcation for the increased value of τ , and
at τ0 ≈ 0.23425. The stability of (2) changes at τ0 ≈ 0.23425,
beyond the threshold value of τ0, the tumor model reaches to
a stable equilibrium state and below the critical value of τ0 the
system exhibits irregular periodic oscillations (chaotic behav-
ior). We also compute the length of time lag τ to preserve the
stability of bifurcating limit cycle until the time lag τ reaches
a maximum value of τ+ ≈ 0.24562.

Figures 1(a) and 1(b) represent the dynamics of time evo-
lution of the host and tumor cells for the three cells fixed point
E∗ for τ0 = 0.2342 > τ = 0.12. For the lower threshold value
of τ0, model (2) demonstrates irregular long periodic oscilla-
tions. It is worthy to assume that a patient in stable situations
would represent the parameters constant in time. Thus, it is
possible to visualize different scenarios, only depending on
patient situations, that is, on its set of parameters. We consider
a patient with time delay τ0 > τ = 0.12, other parameters as
reported in Table I. Assume that the patient has a single can-
cer site with few cancerous cells with initial values x0 = 0.1,
y0 = 0.55, and z0 = 0.12. The cycle-to-cycle variability of
cancer populations is decreased by increasing the proliferation
rate of host cells for τ0 > τ = 0.12, which means that the pop-
ulations of host cells remain near its maximum value (≈1) for

FIG. 3. Bifurcation diagram of the delayed tumor model (2) by changing
the time lag τ . This figure shows that low and high values of τ the dynam-
ics becomes regular and for τ > 0.24562 the system becomes unbounded.
Parameter values as specified in Table I.

FIG. 4. The figure represents the smooth unimodal first-return map using
Poincaré section of the chaotic attractor observed which shows period dou-
bling route to chaos. The parameter values as specified in Table I with
τ = 0.1.

a small period of time and it is decreased quickly to zero [see
Figs. 1(a) and 1(b)]. Consequently, the cancer cells remain
near its lowest value (≈0) and very quickly tumor cells pro-
liferate and increased for a short period and then decreased.
During this period of time, all the cells start to oscillate. If
we look carefully, it can be observed that for the time delay
τ0 > τ = 0.12, the oscillations are very small and asymmet-
rical (healthy cells remain at their highest value for a small
period compared to cancer cells). Thus, for the fixed time
delay τ0 > τ = 0.12, the host cells become strong enough to
control the cancer cells. Unfortunately, the cancer cells grow
very quickly for a small period and they destroy almost all
healthy cells that assist to a detritus effect of cancer cells.

To investigate different patient situations, we decided to
explore the parameter values, namely, the delay parameter τ

and we noticed that it obeys to switch from a common to
metastatic tumor, and the other parameters ρ, β1, γ1, and α.
Bifurcation diagram against one of these parameters are plot-
ted by using maxima and minima of the given variables to
find its range of changeability. This has been established by a
first-return map (see Fig. 4) to the Poincaré surface of section
defined as

P = [
(zn, z̈n) ∈ R

2|żn = 0, z̈n > 0
]

.

The tumor model (2) demonstrates regular and asym-
metrical periodic behaviors (chaotic dynamics) that has been
plotted in Fig. 3 by changing the time lag τ . The bifurca-
tion figure (see Fig. 3) begins with high periodic or chaotic
behaviors.

For 0.0082 < τ < 0.1931, the tumor model (2) shows
chaotic or high periodic nature that implies that the patients’
situation is dependent on the time lag τ . For the lower critical
level of τ = 0.1391, the cancer population shows malignancy
or invasive behavior and the model behavior is entirely depen-
dent on τ . For 0.0082 < τ < 0.047, the tumor model (2)
exhibits chaotic or regular periodic behavior (see Fig. 3); for
0.047 < τ < 0.051, a narrow periodic window emerges in
which the chaotic behavior reverts to periodic behavior and
a small periodic window disappears via a cascade of period-
doubling behaviors. If we further increased the value of time
lag τ , for 0.051 < τ < 0.1085, the tumor model (2) indicates
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FIG. 5. Bifurcation diagram of the delayed system (2) with respect to the
inhibition rate of the effector cells by tumor cells β1 (0.0 < β1 < 0.8) with
τ = 0.12. It is noted from this figure that the dynamics of cancer cells
becomes more regular by higher inhibition rate β1. Parameter values as
specified in Table I.

chaotic behavior and again a large periodic window emerges
for 0.1085 < τ < 0.1531 and a new periodic window dis-
appears via a cascade of period-doubling behavior and this
behavior persevere nearly at τ ≈ 0.1931. Moreover, for an
increased magnitude of τ , the tumor model (2) becomes an
attractor of period-8, an attractor of period-4, an attractor of
period-2 and the tumor model eventually experiences a peri-
odic limit cycle. For further increased value of τ , the tumor
model (2) gains a fixed point which is stable in the equilib-
rium state, which implies that the cancer cells are dominated
by the immune system. For lower threshold value of τ , the
cancer cells become invasive and show malignant behavior,
i.e., the patients’ situations are controlled by the tumor cells
but for a small increased value of τ , cancer cells stay under
control and undergo the “dormant state.” The first-return map
to the Poincaré section P of this chaotic behavior is assem-
bled by utilizing the variable zn has been plotted in Fig. 4,
which is a smooth unimodal map as awaited after the period-
doubling cascade: certainly, a period-doubling bifurcation is
necessarily connected with such a map.33

Similar conclusions can be addressed when the inhibi-
tion rate β1 of effector cells is increased and we obtained
the similar kind of bifurcation diagram (see Fig. 5) which
we have already seen for the time lag τ . For the range of
β1 ∈ (0, 0.3352), the tumor model (2) exhibits chaotic sce-
narios or high periodic behavior and the cancer cells are in
the metastatic state. Many periodic windows appear in the
range of β1 ∈ (0, 0.3352). In Fig. 5, the system is chaotic in
the range β1 ∈ (0, 0.0416), and a narrow window appear in
the range β1 ∈ (0.0416, 0.0512). In the range of the parameter
β1 ∈ (0, 0.3352), model (2) has different periodic and chaotic
attractors with many narrow windows. The highly periodic or
chaotic region disappears at the threshold value β1 ≈ 0.3352
and the cancer proliferation is dominated by our immune
system in the region of β1 ∈ (0.64, 0.8). Similar bifurcation
figures (see Figs. 6 and 7) can be observed with reference to
the parameter δ, γ1, the natural decay rate of immune cells and
the inhibition rate of host cells, respectively.

A model system is called chaotic if the trajectory cre-
ated by its equations satisfy the property known as sensitive
dependence on initial conditions.28 Such property can also be
noticed in the tumor growth dynamics,11,12,28,29,33 and is pre-
sumed to be a sign of the existence of chaotic scenario in
this system.28 The most important indicator of chaotic dynam-
ics that exhibits this property is the maximum Lyapunov

FIG. 6. Bifurcation diagram of the delayed system (2) by changing the nat-
ural death rate of effector cells δ (0.4 < δ < 0.65). This figure signifies that
the regular behavior of cancer cell is observed for higher values of natural
death rate of effector cells. Other parameter values are given in Table I with
τ = 0.12.

Characteristic Exponent(LCE). If the maximum LCE of the
trajectory created by a model is nonnegative, the model is
chaotic in nature. A similarity among the stable, periodic, or
chaotic phenomena can be achieved using bifurcation figures
in Ref. 29. The bifurcation plot and maximum LCE spec-
trum for tumor system (2) with reference to the growth rate
ρ of effector cells are demonstrated in Figs. 8(a) and 8(b),
with parameter values as specified in Table I. There are dif-
ferent regions for the bifurcation plot [see Fig. 8(a)] and LCE
[see Fig. 8(b)] for different ranges of the parameter ρ. This is
summarized in Table II.

To understand the dynamics of cancer-immune compet-
itive system, we compute two-dimensional bifurcation dia-
gram as shown in Fig. 9. The 2-dimensional bifurcation plot
is shown by the activation of immune cells due to cancer cells
ρ ∈ (3.5, 6.0) and discrete time delay τ ∈ (0, 0.25) (Fig. 9).
For fixed value of time delay τ = 0.12, increasing the value
of ρ develops the dynamics, i.e., new stable periodic orbits
are generated up to have a chaotic region (in the blue col-
ored region). For fixed value of ρ = 4.5, for increasing value
of τ , reverse bifurcation can be observed with unstable peri-
odic solutions are pruned. From the oncological viewpoint,
this would indicate that for an increasing value of τ with
which the effector cells destroy cancer cells tends to decrease
the resistance of the environment to cancer proliferation and
thus would induce a poor prognostic. The 2-dimensional
bifurcation figure helps us to indicate the regions where we
minimize the oscillations for cancerous cells by managing the
model parameters. Once the periodic behaviors, oscillations,

FIG. 7. Bifurcation diagram of tumor cell (z) in the delayed system (2)
with respect to the host cell deactivation rate by tumor cells γ1 (0.8 < γ1 <

2.0) with τ = 0.12. Inverse period doubling route to chaos is observed by
increasing the value of γ1. Parameter values as specified in Table I.
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FIG. 8. The figures depict (a) the bifurcation diagram of the delayed model
(2) versus the proliferation rate ρ of effector cells, and (b) variation of cor-
responding maximum Lyapunov Characteristics Exponent. Other parameter
values are taken from Table I with τ = 0.12.

or periods are observed, the schedule for next remedy can be
chalked out.

In order to study different patients’ conditions, we var-
ied two parameters, namely, the recruitment rate ρ of immune
cells and the discrete time lag τ since we noticed that it allows
to switch from normal to metastasis system and metastasis to
dormant state. Now, we study the dynamics of the parame-
ters α (proliferation rate of host cells), β1 (rate of inhibition of
immune cells), γ1 (rate of inhibition of host cells), and δ (death
rate of immune cells). The dynamics of the system (2), for
the range α ∈ (0.4, 0.8) is well demonstrated using bifurcation
diagram (see Fig. 10). In this range of α ∈ (0.4, 0.4898), the
proliferation of cancer cell is well dominated by our immune
system, and the cancer is in benign or non-malignant state. For
α ∈ (0.4, 0.4616), the delayed model (2) has an exponential
time dominating situation, reaching a stable equilibrium state.
This is similar to spheroid cancer proliferation in an avascular
stage that is exponential and at the end reaches the singular

TABLE II. Lyapunov characteristic exponent (LCE) for the tumor model (2)
and system dynamics for different values of ρ.

Range of α Sign of LCE Attractor of the system

(3.500–3.995) − Fixed point
(3.995–4.265) − Period-1 limit cycle
(4.265–4.330) − Limit cycle of period-2
(4.330–4.350) − Limit cycle of period-4
(4.350–4.355) − Limit cycle of period-8
(4.355–4.490) + Chaotic (except periodic windows)
(4.490–4.505) − Limit cycle
(4.505–4.665) + Chaotic (except periodic windows)
(4.665–4.685) − Limit cycle
(4.685–4.855) + Chaotic (except periodic windows)
(4.855–4.882) − Limit cycle
(4.882–4.965) + Chaotic (except periodic windows)
(4.965–5.005) − Limit cycle
(5.005–5.435) + Chaotic (except periodic windows)
(5.435–5.565) − Limit cycle
(5.565–5.725) + Chaotic (except periodic windows)
(5.725–5.815) − Limit cycle
(5.815–6.000) + Chaotic (except periodic windows)

FIG. 9. The figure represents the two-dimensional bifurcation diagram for
time delay τ ∈ (0, 0.25) versus the growth rate ρ ∈ (3.5, 6.0) of effector cells
for the model system (2). The color legends are used to represent different
regions: red, limit cycle of period-1; cyan, limit cycle of period-2; magenta,
limit cycle of period-3; yellow, limit cycle of period-4; black, limit cycle of
period-5; blue, limit cycle of period ≥ 6 or chaotic attractor; brown, stable
fixed point region; green, unbounded region. Parameter values as specified in
Table I.

point. For α ∈ (0.4616, 0.4838), the interplay between can-
cer and immune system shows a periodic oscillation with
limit cycle of period-1. For α ∈ (0.4838, 0.4885), the can-
cer and immune system interplay shows a periodic oscillation
with limit cycle of period-2, and for α ∈ (0.4885, 0.4898), the
tumor-immune system interaction leads to periodic behavior
with limit cycle of period-4. For slightly increased value of
α shows a high cancer burden in the system. It is known as
the period-doubling cascade. Chaotic attractor noticed after
the accumulation point (where the orbit 2∞ happens) must
therefore be characterized by a smooth unimodal map since
a period-doubling cascade is the universal route to chaos in
such a map.45 At the proliferation rate α = 0.4898 of host
cells, a chaotic attractor or high periodic phenomena appears.
Next, for the range of α ∈ (0.4898, 0.5108), the dynamics
of the system is chaotic in nature, but in the chaotic region
several narrow/large periodic scenarios can be noticed. The
chaotic region converts to periodic behavior, similar to what
occurs in the range of α ∈ (0.5108, 0.527). These narrow peri-
odic window breaks down and disappears via the cascade
of period-doubling bifurcations as the proliferation rate α of
host cells is further increased. The period-doubling behavior
is similar to the same mechanism which occurs in the range of
α ∈ (0.527, 0.8), except that in the periodic windows.

FIG. 10. Bifurcation diagram of the delayed system (2) by changing the pro-
liferation rate α of the host cells with τ = 0.12. Higher values of proliferation
rate α influence the chaotic tumor dynamics. Other parameter values are given
in Table I.
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V. DISCUSSION

The interplay between cancer and immune system in the
dynamics of cancer growth model is very intricated, which
leads to various cancer growth pattern.6,8,17,28 The model
studied here is obviously a simplification of a complicated
biological reality. In this manuscript, we studied a very sim-
ple and interesting mathematical model envisioned in de Pillis
and Radunskaya.36 The model investigates how cancerous
cells evolve and survive the brief encounter with our immune
system mediated by immune effector cells and host cells, with
discrete time lag τ . Due to simple mathematical model some
questions may arise that our tumor-immune model does not
take into account the complicated immunological phenomena
of tumor-immune interaction (cell types, genomic instability,
expression of suppressive factors, etc.), but emphasizes on
the generic interaction among different cells. Also, it is nec-
essary to keep in mind that not all intricated mathematical
models provide good dynamics and all information regard-
ing cell interactions, and it simply complicates the model. An
ideal model can give better insight into the dynamic relation-
ship between cancer and immune responses and may play a
vital role in understanding the dynamics of a cancer-immune
interactions and designing preferable treatment policy. But,
it is very difficult to develop realistic mathematical models
to investigate such complicated immunological phenomenon.
Certainly, mathematical model for the dynamic relationship
between the cancer-immune responses are very idealized.
Thus, it is important to design a simple mathematical model
which allows ample complexities, that can capture most of the
important immunological phenomenon.

In our delayed system (2), we provide detailed analysis of
the positivity for the systems, boundedness of the solutions,
and the local stability for the biologically realistic singular
points. By using time lag as a bifurcation parameter, we per-
formed Hopf bifurcation analysis. We calculate the length of
time delay τ to maintain the stability of limit cycle of period-
1 arising from Hopf bifurcation. The newness of the tumor
model is to incorporate a time lag to well understand the com-
plicated biological phenomenon. Using normal form theorem
and the theory of center manifold, precise aspect for the
direction of Hopf bifurcation and the stability of bifurcating
periodic solutions are acquired. We explored some numerical
integrations of the system to validate our theoretical obser-
vations. Roughly speaking, the nonnegative fixed point E∗

is asymptotically stable when the discrete time lag τ is less
than their corresponding threshold value. The nonnegative
singular point E∗ becomes unstable and the tumor model (2)
undergoes Hopf bifurcation if the time lag τ crosses through
its threshold value. Our analytical findings and numerical
integrations exhibit that the nonlinear interplay of the cancer-
immune competitive system with single discrete time lag is
very complicated and difficult to explore even for the simple
case when there is only one nonnegative singular point. The
significance of Hopf bifurcation subject to the tumor-immune
interaction is that, at the bifurcation state a limit cycle appears
around the singular point, therefore, resulting in a stable peri-
odic oscillation. Furthermore, the stability of bifurcating limit
cycle of period-1 persists up to τ+ = 0.24562. The appearance

of periodic behaviors has a medical confirmation in cancer
dynamics, as it is verified that the cancer levels may swing sur-
rounding the singular point even in exclusion of any therapy.
Such type of scenario is called as “Jeff’s phenomena.”42

Our delayed model (2) exhibits more complex dynam-
ical behavior which has been observed in the numerical
section by varying the discrete time lag τ as well as the
model parameters, namely, ρ, β1, α, δ, γ1, and γ2. The math-
ematical model under consideration has a very interesting
dynamics which demonstrate stable symmetrical and asym-
metrical long periodic behaviors (high periodic or chaotic
scenarios) for the different set of system parameters. The most
interesting thing of this article is to explore the bifurcation
figure for single parameter and the two parameter bifurca-
tions and stability region. Through 2-dimensional bifurcation
diagrams, we recognize the region of singular points, limit
cycles, periodic oscillations, and highly periodic or chaotic
attractors.

The models have the ability to exhibit the existence
of chaotic behaviors in the cancer-immune competitive
system (delayed as well as non-delayed system), some
examples10,12,29,37 are in continuous models. Our model sys-
tem (2) exhibits chaotic dynamics which has been verified
by the most important indicator for chaotic dynamics is the
maximum Lyapunov Characteristic Exponent(LCE). If the
maximum LCE of the trajectory created by a tumor model
is nonnegative, the system shows chaotic behavior. The bifur-
cation plot and the LCE spectrum for the tumor model (2)
with reference to the proliferation rate ρ of immune cells are
demonstrated in Figs. 8(a) and 8(b), with parameter values are
reported in Table I. The appearance of regular and asymmetric
periodic oscillations, chaotic behavior in the cancer-immune
competitive system demonstrates the scenario of long-term
cancer relapse which has been investigated in some related
cancer-immune interaction models.10,12,28,37

Using the numerical simulations, the unforeseeable pro-
liferation of cancer populations in vivo and the experimental
investigations can be interpreted. Our mathematical model
exhibits for both the large and small cancer burden which
have oscillatory dynamics. By changing the system param-
eters in a broad range, the interplay among tumor-immune
interplay demonstrates more complicated dynamics like regu-
lar and irregular periodic behaviors and random like chaotic
or high periodic scenarios. The regular periodic behaviors
indicate the equilibrium process (expansion of transformed
cells) of tumor immunoediting in the dual host-protective and
cancer-promoting actions of immunity and support the clinical
investigations by Koebel et al.24 The occurrence of asymmet-
ric long periodic behavior indicates that with temporal delay
in the immune response tumor may develop to a more hos-
tile situation. It would be fascinating to find oncological or
immunological data on cancer-immune competitive system
and see if our modeling outcomes and simulations verify to
the data. Like other analogous kind of mathematical models,
our tumor model also does not take into account to investi-
gate the particular type of cancer. Also, our tumor model is
very elementary contrast to real tumor evolution. Therefore,
the tumor model must be modified by utilizing the outcomes
of experimental observations and adding some particular cells



103101-13 Khajanchi, Perc, and Ghosh Chaos 28, 103101 (2018)

like NK cells, macrophages, stem cells, myeloid cells, and
cytokines like IL-10, IL-21, and IFN-γ , etc.
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