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In this paper, we consider two clustered neuronal networks with dense intra-synaptic links within
each cluster and sparse inter-synaptic links between them. We focus on the effects of intra- and
inter-time delays on the spiking regularity and timing in both clusters. With the aid of simulation
results, we show that intermediate intra- and inter-time delays are able to separately induce fast
regular firing−spiking activity with a high firing rate as well as a high spiking regularity. Moreover,
when both intra- and inter-time delays are present, we find that fast regular firings are induced much
more frequently than if only a single type of delay is present in the system. Our results indicate
that appropriately adjusted intra- and inter-time delays can significantly facilitate fast regular firing
in neuronal networks. Based on a detailed analysis, we conjecture that this is most likely when the
largest value of common divisors of the intra- and inter-time delays falls into a range where fast
regular firings are induced by suitable intra- or inter-time delays alone. Published by AIP Publishing.
https://doi.org/10.1063/1.5037142

In neuronal systems, time delays are inherently present
due to the finite propagation speeds and time lapses occur-
ring by dendritic and synaptic processes. Time delays
depend on many factors, including the length of the axon,
the conduction velocity of the action potential, and cumu-
lative interactions from synapses, to name but a few. These
factors may lead to different time lags between connected
neurons. Since regular spiking activity is important and
has been observed in many cortical areas, we here there-
fore consider two different time delays, namely, intra-time
delay and inter-time delay, in a clustered neuronal net-
work. The presented results indicate that appropriately
adjusted intra- and inter-time delays can significantly
facilitate fast regular firing in the considered neuronal
network.

I. INTRODUCTION

In biological neuronal systems, neuronal information is
transferred among different neurons relying on their den-
drites and axons. Dendrites bring information to the cell
body and axons take information away from the cell body.
So, what is the information in neuronal systems? As is
well known, neuronal information is embodied in electrical
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impulses generated by neurons. Thus, analyzing the statistical
properties of electrical impulses’ trains, which are also called
spike trains, is the basis for understanding the working mech-
anisms of complex neuronal systems.

In neuronal systems, the regularity of the interspike inter-
vals (ISIs) is one of the important statistical properties of
the spike trains. This is because of its close relationship with
one of the neuronal coding strategies, the spike-time coding.
There, the fine temporal structure of a spike train sparsely
encodes information about the temporal structure of the stim-
ulus. For simplicity, we call the regularity of the interspike
intervals as spiking regularity in this paper.

Due to the importance of the spiking regularity in neu-
ronal systems, lots of literature studies are presented to
discuss it not only experimentally1–4 but also theoretically
and numerically.5–13 Cortical neurons are thought to gener-
ate action potentials with irregular interspike intervals. In
recent experimental studies, it has been revealed that regular
spiking activity appears in the suprachiasmatic nucleus,1 the
association and motor-like parietal regions,2 and the inferior
colliculus.3 Moreover, regularly firing neurons in the infe-
rior colliculus are reported to have a weak interaural intensity
difference sensitivity.4 In theoretical and numerical studies,
researchers are mostly interested in investigating influences
of different factors on the spiking regularity of neuronal sys-
tems, such as noise, time delay, heterogeneity, etc. Noise has
great influences on firing dynamics of neuronal system.14–24

According to the different sources of randomness, noise in
neuronal systems can be classified as synaptic noise25 and
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channel noise.26 For spiking regularity, Gong et al.5 revealed
that non-Gaussian colored synaptic noise could optimize the
spiking regularity of random neuronal networks when neurons
are connected with each other with a smaller probability. For
channel noise, it has been found that different channel noises
have different effects on the spiking regularity of neuronal
systems.6–12 Sodium channel noise enhances spiking regular-
ity of neuronal systems, while in contrast, potassium channel
noise decreases it.

The occurrence of time delay is due to the time for sig-
nals to transmit in the neural pathways, and it is pervasive
in neural information processing. Time delay also has great
influences on firing dynamics of neuronal systems.27–33 For
spiking regularity, it is revealed that a moderate time delay
can make the electrically coupled neuronal network reach to
higher spiking regularity.34 In the chemical coupling case, it
is found that appropriately tuned delays in inhibitory synapses
could prompt the spiking regularity of the neuronal networks
frequently.35 Moreover, it was also revealed that time delay
could not only induce both spiking synchronization36 and
burst synchronization37 but also enhance synchronization.38

Meanwhile, it is known that it could induce various syn-
chronization transitions39–47 in different kinds of neuronal
systems. For stochastic or coherence resonance, it was
found that time delay also has important effects on these
dynamical behaviors.35,48,49 Except for synchronization and
stochastic resonance or coherence resonance, time delay can
have great influences on firing patterns of neuronal systems
as well.50–52

In the cortex, neurons are connected to each other through
millions of synapses and then form a complex network. It has
been revealed that neuronal networks have clustered structure
properties.53,54 It means that the complex neuronal network
is composed of certain subnetworks with internal and exter-
nal connectivity. In the language of complex network, neurons
inside a subnetwork are connected to the neurons within the
same subnetwork through internal connections (called intra-
links) but also to some from the other different subnetworks
through external connections (called inter-links). According
to the above contents, we see that time delays exist in the prop-
agation of neuronal information not only inside a subnetwork
but also between different subnetworks. Hence, the intra- and
inter-time delays will both influence the firing dynamics of
neuronal systems. However, how these two types of time
delays interplay with each other to affect firing dynamics of
neuronal systems has not been studied.

In this paper, we will devote to investigate combined
effects of intra- and inter-time delays on the spiking regular-
ity of a clustered neuronal network with regular subnetworks.
The local dynamics of the considered network is simply mod-
eled by FitzHugh-Nagumo (FHN) neuronal models,55,56 and
all neurons are subjected to a subthreshold signal and to
external noise. The remainder of this paper is organized as
follows. The mathematical model of the neuronal network
is constructed by means of FHN neurons in Sec. II. Mea-
sures to quantify the spiking regularity of neuronal network
are introduced in Sec. III, and our main results are presented
in Sec. IV. Finally, discussions and summary are given in
Secs. V and VI.

II. MATHEMATICAL MODEL

We apply here the FitzHugh-Nagumo (FHN) neuronal
models as the basic blocks in the studied clustered neu-
ronal network. The mathematical equations are described as
follows:

εẋI,i(t) = xI,i(t) − x3
I,i(t)/3 − yI,i(t) + Iext(t)

+ gintra

∑

j

AI(i, j)[xI,j(τ1) − xI,i(t)]

+ ginter

∑

J

∑

j

BI,J (i, j)[xJ ,j(τ2) − xI,i(t)], (1)

ẏI,i(t) = xI,i(t) + a + DξI,i(t),

where the subscript pairs (I, i) represent the i-th neuron in the
I-th cluster. x is the action potential and is a fast variable, and
y represents the slow recovery variable. The parameter ε is
a small parameter which allows us to separate the fast and
slow variables. The parameter a controls the local dynamics
of a single FHN neuron. In the absence of the external current
Iext and the noisy term DξI,i(t), the single FHN neuron is in
the excitable state for |a| > 1 and it generates firing spikes
for |a| < 1. Here, we set a = 1.005, such that an isolated
FHN neuron is in an excitable state in the absence of exter-
nal current Iext and noisy external force DξI,i(t). In Eq. (1),
D is the intensity of ξI,i(t) which is assumed to be Gaussian
delta-correlated with zero mean: 〈ξI,i(t)〉 = 0, 〈ξI,i(t)ξI,i(t′)〉 =
δ(t − t′) and are independent from each other.

Meanwhile, gintra and ginter are the coupling strengths for
neurons inside the cluster and neurons between the two clus-
ters, respectively. The matrix AI = [AI(i, j)] is a connectivity
matrix for the I-th cluster, AI(i, j) = 1 if neuron i is connected
to neuron j inside the I-th cluster, AI(i, j) = 0 otherwise, and
AI(i, i) = 0. The matrix BI,J = BI,J (i, j) is also a connectiv-
ity matrix, but this matrix represents the connections between
neurons which belong to different clusters: BI,J (i, j) = 1 if the
i-th neuron in the I-th cluster is connected to the j-th neuron in
the J-th cluster, BI,J (i, j) = 0 otherwise. In the two coupling
items, the parameters τ1 and τ2 represent time delay for neu-
rons inside a cluster and neurons between the two clusters,
respectively. In the following, we call τ1 and τ2 as intra- and
inter-time delay.

Finally, we give an illustration of the network struc-
ture used in this paper. It consists of N = 300 neurons,
which are grouped into M = 2 clusters, i.e., each cluster con-
tains n = 150 neurons.57,58 For each cluster, the neurons are
arranged on a ring with each neuron connecting to its 2k
nearest neighbors. Thus, each cluster is regular and has the
same coupling matrix AI . Additionally, links between neu-
rons from different clusters exist with probability p, i.e.,
BI,J (i, j) = 1 with probability p and BI,J (i, j) = 0 with prob-
ability 1 − p. Here, we just consider bidirectional coupling
cases, i.e., AI(i, j) = AI(j, i), BI,J (i, j) = BI,J (j, i) for i �= j and
assume that AI(i, i) = 0, BI,J (i, i) = 0. An example of the
considered network topology is shown in Fig. 1.

The other parameters in Eq. (1) are set as: ε = 0.01,
gintra = ginter = 1.0, D = 0.4, k = 2, and p = 0.04. The exter-
nal current Iext(t) is taken as f cos(ωt) with f = 0.01 and
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FIG. 1. Schematic presentation of the considered network architecture. The
whole network contains 50 neurons, which are grouped into 2 subnetworks.
Within each subnetwork, each neuron connects to its four nearest neighbors.
The neurons between two different subnetworks are connected with each
other with probability p = 0.005.

ω = π . When the parameters take these values, the firing
activity of the neuronal network is regular without time
delays. Next, the intra-time delay τ1 and inter-time delay τ2

are taken as the control parameters to investigate their effects
on the spiking regularity of the considered neuronal network.

III. SPIKING REGULARITY AND TIMING

The measure R is introduced to characterize the spiking
regularity and is expressed as

R = 1
1
N

∑N
i=1 Ri

. (2)

Here, N is the total number of neurons in the neuronal net-
work. Ri is the inverse of the coefficient of variation which
quantifies the regularity of spike timing in a neuron. Ri is
defined as

Ri = 〈Ti,k〉√
〈T2

i,k〉 − 〈Ti,k〉2
, (3)

where Ti,k = ti,k+1 − ti,k represents the inter-spike interval
with ti,k denoting the time of the occurring of the k-th spike of
the i-th neuron; 〈Ti,k〉 and 〈T2

i,k〉 denote the mean and the mean
squared inter-spike intervals, respectively. Spiking times are
defined by the upward crossing of the membrane potential
x past a certain value xth (here, xth is taken as 0 mV). For a

FIG. 2. Spatiotemporal patterns of the neuronal network with τ2 = 0 for various values of τ1. The colorbar of values of the membrane potential xI,i is shown
at the bottom. (a) τ1 = 0, where the neuronal network shows regular ISIs. (b) τ1 = 0.25, the spiking regularity is lower. The patterns become ordered again
when τ1 increases further as shown in (c) τ1 = 0.5, (d) τ1 = 1.0, (e) τ1 = 2.0, (f) τ1 = 3.0, (g) τ1 = 4.0. While for τ1 = 5.0, the spatiotemporal pattern shows
non-equivalent interspike intervals (h).
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FIG. 3. Dependence of spiking regularity R (a) and the mean firing rate fr
(b) with respect to the intra-time delay τ1 when τ2 = 0. Values of the other
parameters are not changed. The line is just a guide to the eye. The obtained
results indicate that there exist some intermediate intra-time delays, at which
the clustered neuronal networks exhibit fast regular firing activity.

single FHN neuron studied here, its membrane potential is
nearly from −2.0 to 2.0. When its membrane potential is
approximately larger than −1.0 (refer to Ref. 59), a spike is
generated instantaneously. Thus, the corresponding spiking
time can be determined by setting a threshold value of the
membrane potential in a wide range (−1.0, 2.0) without alter-
ing the results. As mentioned previously, spiking regularity
of a single neuron characterizes the regularity of the neuron’s
inter-spike intervals. If the inter-spike intervals of a neuron
are more consistent, then we argue that the neuron has higher
spiking regularity. Thus, for the neuronal network’s spiking
regularity as quantified by Eq. (2), we see that higher spik-
ing regularity of the whole neuronal network corresponds to
a smaller value of R. Meanwhile, if the neuronal network has
higher spiking regularity, then each neuron inside the neuronal
network has more equivalent inter-spike intervals, which then
results in much ordered spatiotemporal patterns.

In order to quantify the fast and slow firings of neuronal
systems, we need to introduce another measure, the mean
firing rate fr as

fr =
〈

1

N

∑

I

∑

i

θ [xI,i(t) − xth]

〉

t

, (4)

where xth = 0.0 is the firing threshold determined by the
action potential of the FHN neuron. Notably, θ(x) is the Heav-
iside function with θ(x) = 1 if x ≥ 0 and θ = 0 if x < 0.
The bracket 〈〉 indicates the average over the whole iteration
time T .

IV. NUMERICAL SIMULATIONS

In this section, we will discuss effects of the intra- and
inter-time delay on the spiking regularity numerically. We use
the first-order Euler method to integrate Eq. (1). In order to
avoid inaccurate simulations and numerical instability of the

simulations, a small time step 0.0005 is applied in our stimu-
lations. There is noise in the studied system, and the neuronal
network is also generated with some randomness (connections
between neurons from different subnetworks exist with prob-
ability p.). So, the numerical results exhibited in the following
are averaged over 20 independent realizations.

We investigate effects of intra- or inter-time delays on
the spiking regularity of the two clustered neuronal networks
separately in Secs. IV A and IV B. Then, we turn to study
their interactional effects. With the obtained results, we get
some insights on the combined effects of intra- and inter-time
delay on the clustered neuronal network’s spiking regularity.

A. Effects of intra-time delay on spiking regularity

Firstly, we consider the effect of intra-time delay τ1 on the
spiking regularity of the studied neuronal network [expressed
by Eq. (1)], i.e., τ2 = 0. The spatiotemporal patterns for eight
different values of τ1 are presented in Fig. 2. In this figure,
τ1 increases from 0.0 to 5.0. When τ1 = 0, the spatiotemporal
pattern is ordered and the interspike intervals of each neuron
are almost the same [Fig. 2(a)]. Thus, the spiking regularity
of the neuronal network is at a high level for τ1 = 0. If we
increase τ1 from 0.0 to 0.25, the obtained results are shown
in Fig. 2(b). Even though the interspike intervals are almost
equidistant, they become narrower than the ones for τ1 = 0.
This means that intra-time delays could increase the neuronal
network’s mean firing rate without decreasing its spiking reg-
ularity. It shows that τ1 could increase the mean firing rate
without destroying the spiking regularity of the neuronal net-
work. What happens if τ1 increases further? Can the mean
firing rate of the neuronal network increase further without
destroying the spiking regularity?

In order to find answers to these questions, we give the
results for much larger values of τ1 as 0.5, 1.0, 2.0, 3.0,
and 4.0, as exhibited in Figs. 2(c)–2(g). From them, we can
see that the interspike intervals are still almost equivalent,
but become broader and broader when τ1 increases. This
indicates that the neuronal network’s spiking regularity main-
tains at a high level but the mean firing rate of the neuronal
network decreases by increasing τ1. Therefore, the intra-time
delay can be controlled not only to excite the neuronal fir-
ing but also to suppress it but without destroying the spiking
regularity.

At this moment, we may wonder whether the mean fir-
ing rate of the neuronal network will decrease further, and
the firing activity will be still regular for much larger intra-
time delays. For seeking answers to this question, we increase
the intra-time delay further. As shown in Fig. 2(h), where
τ1 = 5.0, the interspike intervals for each neuron are not
always the same as in the above cases. It indicates that spik-
ing regularity of the neuronal network for τ1 = 5.0 decreases.
Thus, R of the neuronal network does not always stay at a high
level by introducing intra-time delays. While for the mean fir-
ing rate, we cannot clearly see if it decreases or increases with
the spatiotemporal pattern. By introducing a measure for the
mean firing rate fr, we find that it does not change much when
τ1 takes large values, as shown by Fig. 3, which will be stated
in detail in the followings.
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FIG. 4. Spatiotemporal patterns of the neuronal network with τ1 = 0 for various values of τ2. The colorbar of values of the membrane potential xI,i is shown
at the bottom. (a) τ2 = 0, where the neuronal network shows regular ISI intervals. (b) τ2 = 0.25, the spiking regularity is lower. The patterns become ordered
again when τ2 increases further as shown in (c) τ2 = 0.5, (d) τ2 = 1.0, (e) τ2 = 2.0, (f) τ2 = 3.0, (g) τ2 = 4.0. While for τ2 = 5.0, the spatiotemporal pattern
shows non-equivalent interspike intervals (h).

Up to now, we just get a glancing acknowledgment
of effects of the intra-time delay on spiking regularity. In
order to get a relationship between spiking regularity and the
intra-time delay τ1 more clearly, we calculate variations of the
measures R and fr with changing of τ1. The obtained results
are presented in Fig. 3. As shown there, with the increas-
ing of τ1, R is small when τ1 is nearly smaller than 3.5 and
increases to some large value when τ1 becomes larger; For the
mean firing rate fr, it increases to a very high level for τ1 just
increasing a little to nearly 0.25, then begins to decrease grad-
ually, and finally, it nearly saturates when τ1 is much larger.
Combining the numerical simulation results shown by the two
curves in Figs. 3(a) and 3(b), we find that with τ1 increasing
from 0.0 to 5.0, the neuronal network changes from a slow
regular firing state to a fast regular state, then via a slow reg-
ular state, and finally to a slow irregular state. This indicates
that there exist some intermediate intra-time delays, at which
the clustered neuronal networks exhibit fast regular firing
activity.

B. Effects of inter-time delay on spiking regularity

In this subsection, we will move to discuss effects of
the inter-time delay τ2 on the spiking regularity of the two
clustered neuronal networks by setting τ1 = 0. Similar as dis-
cussed in Sec. IV A, some spatiotemporal patterns for differ-
ent values of τ2 are presented in Fig. 4. Comparing the results
shown in Fig. 4 with the ones in Fig. 2, we find that they have a
high degree of similarity. In details, the spatiotemporal pattern
changes from an ordered one [Fig. 4(a)] to another ordered
one [Fig. 4(b)] with interspike intervals becoming narrower,
similar as observed in Figs. 2(a) and 2(b). It indicates that
using appropriate inter-time delays (τ2 = 0.25) could make
the neuronal networks more excited but without losing their
firing regularity. When we increase τ2 from 0.25 to larger
values 0.5, 1.0, 2.0, 3.0, and 4.0, we find that the interspike
intervals for each neuron inside the neuronal network are
almost equivalent but become wider and wider as τ2 increases.
The corresponding spatiotemporal patterns for these values
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FIG. 5. Dependence of spiking regularity R (a) and the mean firing rate fr
(b) with respect to the inter-time delay τ2 when τ1 = 0. Values of the other
parameters are not changed. The line is just a guide to the eye. The obtained
results indicate that there exists some intermediate inter-time delays, at which
the clustered neuronal networks exhibit fast regular firing activity.

of τ2 are exhibited by Figs. 4(c)–4(g), respectively. Namely,
introducing a proper smaller τ2 could make the neuronal net-
work’s mean firing rate increasing greatly, and then the fast
firing activity could also be suppressed by tuning the inter-
time delay to larger values. Thus, we see that the mean firing
rate of the neuronal network can also be tuned by the inter-
time delay without destroying the spiking regularity. If we
increase τ2 further, for example, to 5.0 as shown in Fig. 4(h),
we find that the interspiking intervals for each neuron are not
equivalent yet. This means that the spiking regularity could be
disturbed when τ2 is large enough.

Figure 5 presents the dependence of R and fr on the
controlled parameter τ2. From this figure, we see that there
exist some intermediate τ2 (around 0.25) at which the neu-
ronal network’s spiking regularity is high and its mean firing
rate increases distinguishably. While for larger τ2, the spik-
ing regularity of the neuronal network becomes fluctuating,
but the mean firing rate stays at some smaller value. In other
words, the neuronal network exhibits slow and less regular
firing activity when τ2 is large enough.

With the results obtained in Sec. IV A and the cur-
rent subsection, we infer that the inter-time delay has similar
influences as the intra-time delay that we have discussed in
Sec. IV A. Then, we reveal that the inter-time delay also
has substantial effects on the spiking regularity of the two
clustered neuronal networks. Thus, the neuronal network’s
spiking regularity can be controlled not only by the intra-time
delay but also by the inter-time delay.

C. Combined effects of intra- and inter-time delays on
spiking regularity

The most interesting topic is to investigate interactional
effects between the intra- and inter-time delays on the spiking
regularity. Therefore, we will next focus on discussing the
interplay of both.

FIG. 6. (a) Dependence of R on the intra-time delay τ1 and the inter-time
delay τ2 is shown; colorbar of values of R is shown at the right side with
blue color indicates regular firings and red color indicates irregular firings.
(b) Dependence of fr on the intra-time delay τ1 and the inter-time delay τ2

is shown; colorbar of values of fr is shown at the right side with blue color
indicates slow firings and red color indicates fast firings.

The dependence of the measures R and fr on the intra-
time delay τ1 and the inter-time delay τ2 are given in a
2-dimensional parameter space. As exhibited in Figs. 6(a)
and 6(b), two beautiful symmetric patterns (colored online)
are generated. In this paper, we refer fast regular firings to
be the firing activity, which have high spiking regularity and
large mean firing rate. Here, we think the firing activity has
high spiking regularity if R < 0.2 and large mean firing rate
if fr > 3.5. Through overlapping by the blue-colored areas
(R < 0.2) in Fig. 6(a) and the red-colored areas (fr > 3.5)
in Fig. 6(b), we see that fast regular firings arise in several
regions in the τ1 − τ2 parameter plane.

By comparing the current results and the results obtained
in the former two subsections where τ2 = 0 (in Sec. IV A)
or τ1 = 0 (in Sec. IV B), we can further get a very important
discovery. Here, we take the case where τ2 = 0, for example,
to illustrate this important discovery. As shown in Sec. IV A,
fast regular firings can just arise when τ1 falls into a narrow
internal belonging to (0, 0.3). However, as exhibited in Fig. 6,
if τ2 > 0 and takes some appropriate values, fast regular fir-
ings could arise in much wider regions of τ1. For example,
when τ2 = 0.25, the two clustered neuronal networks exhibit
fast regular firings from τ1 = 0.0 to 5.0. It is much wider than
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in the case where τ2 = 0 [see the overlapping of blue-colored
area in Fig. 6(a) and red-colored area in Fig. 6(b)]. This indi-
cates that introducing proper inter-time delay could strongly
promote the intra-time delay’s ability to induce fast regular
spiking activity of the two clustered neuronal networks. In
the same way, if we compare the current results with the one
shown in Sec. IV B, we find that introducing proper intra-
time delay could also promote the inter-time delay’s ability
to induce fast regular firings. Therefore, with the interplay
of the intra- and inter-time delays, the two clustered neuronal
networks could exhibit fast regular firings frequently.

V. DISCUSSION

With the results shown in Sec. IV, we learn that intra-
or inter-time delay could separately induce two clustered
neuronal networks to generate fast regular firings, and inter-
actions between these two time delays could further make
fast regular firings occurring frequently. In this section, we
will try to give some illustrations on the occurrence of
time-delay-induced fast regular firings. Note that fast regu-
lar firings are referred to the firing activity with the spiking
regularity R < 0.2 and the mean firing rate fr < 3.5 in this
paper.

We firstly start from the simple cases where the intra-time
delay τ1 = 0 or the inter-time delay τ2 = 0. In order to illus-
trate the occurrence of fast regular firings, we give the inter-
spike interval bifurcation diagram with respect to τ1 for τ2 = 0
and τ2 for τ1 = 0, respectively, shown in Fig. 7. As exhibited
in Fig. 7(a), for much smaller τ1(nearly smaller than 0.25),
the interspike intervals take either multiple values or no value
(see the inset figure in Fig. 7 for details). The reason why
the interspike intervals take no value is that time delay could
make an oscillation death happen in neuronal systems.60–62

Here, we pay attention to clarify the occurrence of fast regular
firing and do not talk much about oscillation death. Accord-
ing to the definition of the spiking regularity measure R, the
clustered neuronal network’s spiking regularity is worse if the
interspike intervals take multiple values.

From Fig. 7(a), it can be seen that the clustered neuronal
networks exhibit less regular firing activity for both larger
τ1(nearly larger than 3.5) and smaller τ1 (nearly smaller than
0.25). While for intermediate τ1(larger than 0.25 and smaller
than 3.5), the interspike intervals are almost equivalent, which
indicate the emergence of higher regular firings. Meanwhile,
for intermediate τ1, we find that values of the interspike inter-
vals are nearly equal to it. Therefore, the firing periods of the
neurons inside the two clustered neuronal networks are nearly
equal to the intra-time delay τ1 when it takes intermediate
values. Then, the mean firing rate of the clustered neuronal
network is nearly equal to its reciprocal value. Thereby, the
smaller the intra-time delay τ1 is, the higher the mean firing
rate of the clustered neuronal networks is. Because oscillation
death could occur in clustered neuronal networks for much
smaller τ1, the mean firing rate could take largest values when
τ1 is around 0.25. Thus, fast regular firings are observed
around τ2 = 0.25 as exhibited by Fig. 3 in the former contents.
Thereby, we can also understand the emergence of fast regular

FIG. 7. (a) Interspike interval bifurcation diagram with respect to τ1 for τ2 =
0; (b) interspike interval bifurcation diagram with respect to τ2 for τ1 = 0.
The blue line in each figure indicates the line with x = y.

firings induced by the inter-time delay τ2 by analyzing the
interspike intervals’ bifurcation diagram shown in Fig. 7(b).

Next, we turn our attention to illustrate why introducing
proper intra-(inter-) time delays could promote the inter-
(intra-) time delay’s ability for inducing fast regular firings.
For this aim, we set τ2 as 0.25, 0.5, 0.75, 1.0, 1.25, and 1.5,
respectively. Then, we investigate variations of R and fr with
respect to τ1 for these different values of τ2. The simulation
results are presented in Fig. 8.

As shown in Fig. 8, when τ2 = 0.25 is introduced into
the neuronal network, the intra-time delay τ1 could induce fast
regular firings for all multiple values of τ2 = 0.25. When τ2 =
0.5 (or τ2 = 0.75, 1.25), it is found that fast regular firings
could emerge when τ1 is multiples of 0.25 and not multiples
of τ2 = 0.5 (or τ2 = 0.75, 1.25). For example, when τ = 0.75,
as shown in Fig. 8, fast regular firings can be induced by τ1

just for τ1 = 0.25, 0.5, 1.0, 1.25, 1.75, 2, 2.5, 2.75, 3.25, 3.5,
4, 4.25, 4.75, and 5.0; fast regular firings cannot be induced
by τ1 for τ1 = 0.75, 1.5, 2.25, 3, 3.75, and 4.5. Namely, when
τ2 = 0.75, fast regular firings occur for τ1 being multiples of
0.25 and not multiples of τ2 = 0.75. While when τ2 = 1.0,
fast regular firings just occur when τ1 is multiples of 0.25 and
not multiples of 0.5 and τ2 = 1.0. Finally, for τ2 = 1.5, fast
regular firings could emerge when τ1 is multiples of 0.25 and
not multiples of 0.5, 0.75, and τ2 = 1.5. With these observa-
tions, we can surprisingly find that fast regular firings could
occur when the largest value of common divisors of τ1 and
τ2 is 0.25, at which fast regular firings can be induced by
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FIG. 8. Dependence of the spiking reg-
ularity R and the mean firing rate fr
with respect to τ1 for different values of
τ2. The line is just a guide to the eye.
The obtained results indicate that when
the largest value of common divisors of
intra- and inter-time delays is equal to
0.25 at which fast regular firings could
be induced by intra- or inter-time delays
separately, then fast regular firings could
occur.

τ1 or τ2 separately. This discovery inspires us to formulate
the following conjecture: fast regular firings may occur fre-
quently when the largest value of common divisors of τ1, τ2 is
equal to a value at which fast regular firings could be induced
by intra- or inter-time delays separately. In order to check
this conjecture, we set τ2 as 0.28, 0.56, 0.84, 1.12, 1.4, and
1.68 to investigate variations of spiking regularity R and the
mean firing rate fr with respect to τ1; the simulation results
are shown in Fig. 9. From this figure, we also get the conclu-
sion that fast regular firings could be induced by the interplay
of the intra-time delay τ1 and the inter-time delay τ2 when
their largest value of common divisors is 0.28, at which fast
regular firings could be induced by intra- or inter-time delays
separately.

VI. SUMMARY

Summarizing, in this paper, we have studied effects of
intra- and inter-time delays on dynamical characteristics of
neuronal firings measured by the spiking regularity and the
mean firing rate in two clustered neuronal networks which are

locally modelled by FHN neuronal models. Based on our sim-
ulation results, we have found that fast regular firings could be
separately induced not only by the intra-time delay but also by
the inter-time delay. Meanwhile, by introducing appropriate
inter-(or intra-) time delays could greatly enhance the ability
of intra-(or inter-) time delay to induce fast regular firings.
With detailed analyses, we have got deep understanding on
effects of intra- and inter-time delays on the spiking regu-
larity and the mean firing rate of the two clustered neuronal
networks, especially the interplay effects of intra- and inter-
time delays on these firing characteristics. We have found that
when the largest value of common divisors of intra- and inter-
time delays are equal to a value at which fast regular firings
could be induced by intra- or inter-time delays separately, then
fast regular firings could occur.

In real neuronal systems, delayed coupling terms between
two connected neurons could be described in different mathe-
matical forms. For different synaptic types, such as electrical
and chemical synapses, delayed coupling terms could be
different.63 If we consider the cumulative interactions (the
coupling is integrated over a time interval τ ), an integrative
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FIG. 9. Dependence of the spiking reg-
ularity R and the mean firing rate fr
with respect to τ1 for different values of
τ2. The line is just a guide to the eye.
The obtained results indicate that when
the largest value of common divisors of
intra- and inter-time delays is equal to
0.28 at which fast regular firings could
be induced by intra- or inter-time delays
separately, then fast regular firings could
occur.

time-delay coupling should be considered.64 Sometimes, time
delay is also changing with time.65 No matter what math-
ematical forms time delay appears with, time delay always
has great influences on the system’s dynamical behaviors.66

Even though effects of time delay on neuronal dynamics
have been discussed in many literature studies, its influences
on neuronal firings of clustered neuronal networks are not
widely studied. Therefore, different from the former works
about effects of time delay on neuronal dynamics, we con-
sider intra- and inter-time delays in the clustered neuronal
network in this paper and reveal that fast regular firings could
be induced frequently through the interplay of these two time
delays.
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