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ABSTRACT

We investigate the impact of a stochastic forcing, comprised of a sum of time-lagged copies of a single source of noise, on the system dynamics.
This type of stochastic forcing could be made artificially, or it could be the result of shared upstream inputs to a system through different
channel lengths. By means of a rigorous mathematical framework, we show that such a system is, in fact, equivalent to the classical case of
a stochastically-driven dynamical system with time-delayed intrinsic dynamics but without a time lag in the input noise. We also observe a
resonancelike effect between the intrinsic period of the oscillation and the time lag of the stochastic forcing, which may be used to determine
the intrinsic period of oscillations or the inherent time delay in dynamical systems with oscillatory behavior or delays. As another useful
application of imposing time-lagged stochastic forcing, we show that the dynamics of a system can be controlled by changing the time lag of
this stochastic forcing, in a fashion similar to the classical case of Pyragas control via delayed feedback. To confirm these results experimentally,
we set up a laser diode system with such stochastic inputs, which effectively behaves as a Langevin system. As in the theory, a peak emerged
in the autocorrelation function of the output signal that could be tuned by the lag of the stochastic input. Our findings, thus, indicate a new
approach for controlling useful instabilities in dynamical systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5139464

Many man made and natural systems are composed of a
large number of interacting dynamical elements that are linked
together as a network. The connections among such elements
are often subject to weights and delays that affect the emergent
behavior of the system. This gives rise to complexities that make
it difficult to control the dynamical behavior of such systems. It
has to do with the emergence of discontinuous transitions and
sudden bifurcations that can be near-impossible to anticipate
in advance. Nevertheless, controlling the dynamics of such sys-
tems is of course strongly desirable in many circumstances, which
thus creates the need to devise theoretical approaches toward this
goal. Many studies have been dealing with control problems of
dynamical systems, among which controlling chaos has attracted
particularly great interest. Indeed, a rich variety of control tech-
niques has been developed, among them the delayed feedback

control method proposed by Pyragas in 1992, which has since
received much recognition as well as many extensions. Here, we
introduce a new mathematical framework to investigate dynam-
ical systems that are driven by a sum of arbitrary time-lagged
stochastic inputs, which can be used to control system dynam-
ics in a fashion similar to time delay feedback control. We also
show when and how such a system can be equivalent to a differ-
ent time-delayed system but with specific dynamical parameters.
We report several examples to illustrate our approach, and we
also demonstrate the possibility of resonancelike behavior that
occurs between the intrinsic oscillation period of the oscillatory
system and the lag of the stochastic forcing. We confirm our the-
oretical results also experimentally on a laser diode setup, thus
further corroborating their validity and high degree of potential
applicability.
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I. INTRODUCTION

Time delays are an important and often inseparable part of
interacting dynamical systems, occurring at different levels of orga-
nization in biology, neurodynamics, climate modeling, and system
control.1–14 Diverse effects in dynamical systems have been reported
due to time delays, including synchronization,15–19 periodic oscilla-
tions, oscillation death,20–24 unstable attraction,25 as well as stochastic
resonance,26–28 to name but a few examples. In general, time delays
enrich the complexity of solutions in dynamical systems, and they
give rise to many different applications across diverse branches of
statistical physics and nonlinear sciences.29,30 For example, delayed
interactions between cancer cells and the environment affect tumor
growth.37 Also, in control theory, time delays are exploited to yield
desired behavior by means of feedback loops with an appropriately
tuned strength and delay.31–33 As it is related to the current research,
we explain it in brief.

The idea of controlling chaos has been introduced by Ott and
Spano, in 1990 for the first time34 and widely attracted great inter-
est among physicists. Afterward, many researchers developed a rich
variety of new techniques among which the delayed feedback control
(DFC) proposed by Pyragas is more well-known.35 He considered
a chaotic dynamical system described by an ordinary differential
equation

ẋ(t) = f(x, p, t), (1)

where vector x ∈ Rm describes the state of the system and p is a
scalar parameter which can be adjusted externally. He imagined that
the scalar variable z(t), which is a function of dynamical variable
x(t), can be measured as the output of the system. Without loss of
generality, he supposed that, at p = p0 = 0, the system has an unsta-
ble periodic orbit (UPO), described by x0(t) = x0(t + T), where T
is the period of the UPO. By considering the delayed output sig-
nal z(t − T) as a reference signal, in the DFC method, he imposes a
continuous feedback p(t), by adjusting the system parameter as

p(t) = K[z(t − T)− z(t)]. (2)

Here, K is the control gain which can be tuned manipulatory as
well as time delay T. When stabilization is successful, the feedback
parameter p(t) vanishes automatically. Time-delayed feedback con-
trol has been widely used as a practical technique for controlling the
chaotic dynamics in electronic chaos oscillatory systems, mechanical
pendulums, laser systems, electrochemical systems, and so on. An
extended delayed feedback control (EDFC) technique is an impor-
tant improvement of DFC proposed by Socolar et al.36 It can stabilize
the systems with a greater degree of instability. EDFC uses a sum of
states by integer multiples of T in the past, as the reference signal for
p(t),

p(t) = K

[

(1 − R)

∞
∑

n=1

Rn−1z(t − nT)− z(t)

]

. (3)

In addition to time delays, stochastic inputs and the presence
of noise in general are likewise important and virtually omnipresent
in a broad myriad of different systems.38–41 The presence of noise
can be due to many body effects,42 or due to the complexity of
dynamical elements,43 or, most commonly, due to physical stochas-
tic processes.44 Although the presence of noise makes the analysis,

especially in terms of analytical results, more demanding and often
impossible, advanced approaches often do lead to fascinating dis-
coveries that are due to the impact of noise, especially in nonlinear
dynamical systems.45–47 The interplay of noise and time delay in the
intrinsic dynamics of a system has been extensively investigated in
many studies, but the simultaneous effects of time-lagged common
stochastic inputs which can be artificially generated for a desired
purpose, or due to the finite signal transmission speeds of shared
upstream dynamical inputs to a system, through different channel
lengths, are poorly studied.47

Here, we consider some dynamical systems driven by externally
time-lagged stochastic forcing in a fashion similar to DFC and EDFC
Pyragas delayed input. We focus on externally tunable noise param-
eters, and study how and when such input’s stochastic forcing yield
manipulable effects on the dynamical structure of the system. We
introduce a general theoretical framework to reduce such systems to
a time-delayed system with different intrinsic dynamics but stimu-
lated by a single source of the same noise. In cases with manipulable
noise pathways such as neuronal networks, or in systems driven by
artificial time-lagged noise, this method can be used to control the
dynamics in a fashion similar to Pyragas controlling with the aim of
useful applications. We present results of simulations for the linear
and nonlinear Langevin equations and some models with delayed
dynamics.

We show, in particular, that in a bistable system governed by
delayed dynamical equations, the time lagged stochastic input con-
trols the stability and transition between the states. By applying our
mathematical framework, we show that this result is due to reso-
nancelike behavior between the intrinsic delay and time lag of the
stochastic input. It could be used to detect unknown inherent time
delay in such systems. By a similar approach, we show that in a lin-
ear system with time-dependent coefficient, a resonancelike effect
can be produced between the time lag of stochastic inputs and the
intrinsic period of the oscillatory coefficient. This phenomenon also
can be used to detect the internal period of a dynamical system
by means of tuning the external lag. We also show that, in agree-
ment with the equivalence between the lag in inputs and the delayed
intrinsic dynamics, an oscillatory behavior can be produced in a
over-damped pendulum, using simply the manipulation of the time
lag. Finally, we explain a simple experiment using diode laser to
confirm the result by controlling the autocorrelation function as a
coherency measure. It may be used instead of a delayed self-feedback
laser system for many photonic applications.

II. PRELIMINARIES

We consider an N-dimensional dynamical system governed by
a general equation

ẋi(t) = fi(Ex(t))+ ηi(t) for i = 1, . . . , N, (4)

where Ex(t) is an N-dimensional vector state of the dynamical system
at the moment t, with components xi(t)’s. The fi functions explain
the time evolution of the isolated system without any time-lagged
stochastic input in each dimension. ηi(t)which is the ith component
of the vector function Eη considered as the imposed stochastic input
in the form of the operation of a linear operator M on a general
function Ez(t). M operates on Ez(t) component by component. For
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example, by considering Ez(t) = Eξ(t) as a Gaussian white noise, we
defined the stochastic input in the form of

Eη(t) = MEξ . (5)

In this paper, we assumed that the scalar function ξ(t) (as the first

and the only nonzero component of the vector Eξ(t) by ξi’s compo-
nents) is a Gaussian white noise with a zero mean and unit variance,
although it can be extended to cover other different kinds of the
noise or even a general input function Ez(t). The operator M is an
invertible integral transformation defined in the form of

M Ez(t) =
∫ t2

t1

ds k(t, s)Ez(s), (6)

for the general vector function Ez(t). Here, k(t, s) is called a linear
kernel (see Appendixes A–D for more details), which is integrated
by each component of vector Ez(t) distinctly. As M is considered
invertible, by applying an inverse operator M

−1 on Eq. (4), the time
evolution of the dynamical state in a new coordinate Ey(t) = M

−1Ex(t)
can be droved as

ẏi(t) = M
−1fi

(

MEy(t)
)

+ ξi(t). (7)

More details on the definition of operator M, as well as the deriva-
tion approaches of the inverse operator M

−1 and simple forms of
the above equation, can be found in Appendixes A–D.

In this paper, we analytically examine two functional forms of
time-lagged stochastic input imposed just on the first component of
Ex(t). One as

η(t) = ξ(t)+ rξ(t − τ), (8)

which is composed of a summation of two copies of a single noise,
but one by time-lag τ related to the other one. It is an input, sim-
ilar to the DFC time-delayed feedback [see Eq. (2)], introduced by
Pyragas; however, here, a noise term has been used instead of a
deterministic function z(t). So, although in the Pyragas case it is
needed to know the dynamics of z(t) but stochastic input, we used
just governed by some characterized statistics (for example, we used
Gaussian white noise). A system composed of two neurons receiv-
ing time-lagged inputs from the common presynaptic population of
neurons through two different synaptic channels is a natural exam-
ple for such a system.47 Also, we extended the DFC-like stochastic
input to a case similar to the EDFC time-delayed feedback [see
Eq. (3)]. In such a system, one of the xi(t)’s receives lots of copies
of a single noise but with different time-lag τi = nτ as below,

η(t) = ξ(t)+
[t/τ ]
∑

n=1

rnξ(t − nτ), (9)

and the other components do not receive any stochastic input. A
network of neurons received common inputs through lots of dif-
ferent synaptic channels is a natural example for such multichannel
time-lagged stochastic input. Although, we did not investigate any
example for such a system in this paper, but by transferring the
dynamical equation from the case of delayed stochastic input to
a new coordinate, we have shown that it equals a dynamical sys-
tem without any time-lagged input but governed by time-delayed
dynamics. It should be noted that the effect of other sources of

noise could be added as an uncorrelated stochastic term; however, as
we want to investigate the effect of time-lagged noises, we dropped
them. Both two or multichannel time-lagged stochastic input can be
produced manually in an artificial device for different controlling
applications, as we will point out by some different simple examples
in the following sections of this paper.

By this approach and also using several one-dimensional exam-
ples for DFC-like time-lagged stochastic input, we want to show the
following results:

• A system driven by a stochastic forcing, comprised of a sum
of time-lagged copies of a single source of noise is equivalent
to the classical case of a stochastically-driven dynamical sys-
tem, with time-delayed inherent dynamics but without time lag
in the input noise. This suggests a framework to investigate a
system stimulated by several copies of a single noise through
multichannels.

• There is a resonancelike phenomenon between the inherent times
of the dynamical system, such as time period of oscillations
or delay in time-delayed dynamic systems, and time-lag of the
stochastic noise input. It could be used to determine unknown
inherent time by experiments.

• The dynamics of a system can be controlled by changing the time-
lag of stochastic forcing, in a fashion similar to Pyragas control via
delayed feedback.

III. RESULTS

A. Multichannels time-lagged noise, one-dimensional

case

We consider an N-dimensional dynamical system in the
presence of a first component time-lagged stochastic input,

Eη(t) =
[

η(t) 0 0 · · · 0
]

. The scalar η(t) is comprised of a sum of the

same copies of a single component noise, ξ(t), but with different
time-lags. Generally, it can be considered as

η(t) = Mξ(t) = ξ(t)+
[t/τ ]
∑

n=1

rnξ(t − τn), (10)

but we assumed the stochastic input amplitude ratio as rn = rn and
time-lags as τn = nτ for simplification and to be comparable by the
EDFC delay feedback case [but using noise instead of z(t) in Eq. (3)].
Here, M is an operator that sums each ξ by itself several times
but by different identified time-lags (see Appendixes A–D for more
details). We assume that the noise terms are time-lagged copies of a
Gaussian white noise governed by the statics identified by the zero
mean and unit variance, although it can be extended to cover other
different types of noise. So as 〈ξ(t)ξ(t − τ)〉 = δ(τ ), τ usually can be
considered as a disorder parameter. Dynamical behavior of the state
variable for such a system is explained by

ẋi(t) = fi(Ex(t))+ ηi(t) for i = 1, . . . , N. (11)

In this paper, we assumed that the stochastic input is imposed just
on the first component of ηi=1(t) = η(t) and the other stochastic
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components are zero. Therefore,
{

lẋi(t) = fi(Ex(t)) for i 6= 1,

ẋi(t) = fi(Ex(t))+ ξ(t)+∑[t/τ ]
n=1 rnξ(t − nτ) for i = 1.

(12)

As we have shown in Appendix C, Eq. (12) can be inverted to a new
coordinate Ey(t) so that

ẏi(t) = ξi(t)+ fi(M Ey(t))

+
∞
∑

n=1

(−1)n
[t/τ ]
∑

l1 ,l2···ln=0

r
(
∑n

j=1 lj)fi



M Ey



t −





n
∑

j=1

lj



 τ







 ,

(13)

where Eξ(t) =
[

ξ(t) 0 0 · · · 0
]

and Ex(t) = M Ey(t) (see Appendix C

for more details). Despite the complexity of the above equation, it
has an important consequence.

A solution of equations governing a dynamical system driven
by a time-lagged stochastic input, similar to EDFC in the Pyragas
delayed feedback control can be considered and used as another
stochastic system without a time-lag but with time-delayed dynam-
ics and vice versa. So by using such an input and selecting the
desirable parameters, e.g., time-lag or r, we can control and design
the dynamic behavior of some systems.

B. Two channel time-lagged noise, one-dimensional

case

In this paper, we mainly investigate a simpler case than mul-
tichannel noise input that considered the stochastic input η(t) as
a sum of two copies of the same noise ξ(t) but with different time
lags. Two neurons which receive time-lagged common inputs from a
presynaptic population of neurons is an example for such a system.47

The effects of such presynaptic spiking activities are considered
Gaussian white noises in a mean field approximation. But, the differ-
ences of distances between two neurons and presynaptic population
cause time-lagged common inputs. A dynamical equation governing
such a system is

ẋi(t) = fi(Ex(t))+ ηi(t),

with Eη(t) =
[

η(t) 0 0 · · · 0
]

and

η(t) = ξ(t)+ rξ(t − τ). (14)

Here, all the parameters are regarded as the case of multichannel
time-lagged noise case and η(t) = ξ(t)+ rξ(t − τ), imposed just on
one x(t) elements. This kind of stochastic input is similar to the DFC
case in the Pyragas approach for controlling the chaotic systems.
As shown in Appendix B in detail, solving such a system equals to
another system explained by state vector Ey(t) and governed by

ẏi(t) =
[t/τ ]
∑

n=0

(−r)nfi

(

Ey(t − nτ)+ rEy(t − [n + 1]τ)
)

+ ξi(t).

(15)

Here, Eξ(t) =
[

ξ(t) 0 0 · · · 0
]

and

Ex(t − nτ) = Ey(t − nτ)+ rEy(t − [n + 1]τ). (16)

Transformed equation (15) for a time-lagged noisy input
clearly illustrates a transition from a time lag in the inputs to proper
delays in the internal inherent interaction. As it can be seen from
the transformed equation in this case, lag has two main effects on
the behavior of systems: first, the state vector of the system can
be written as the sum of the same copies of a single time delayed
transformed state vector [see Eq. (16)], and it means that in the
autocorrelation of an original state variable, we will see peaks on lag
values and absolute values of lag differences. Second, in the struc-
ture of transformed equation, a time lag appears as the time delay
in dynamical equation and we can expect the same behavior as the
delayed differential equation in this case.

As we can see in the transformed equation, the dynamics of
transformed state variable Ey depends on the time evolution func-
tion M

−1fi(M Ey). In the following, we present the results for some
examples of the function fi.

1. Linear case (time independent)

First of all, we investigate a simple linear case, f(x) = −γ x,
in which γ is a constant parameter. By imposing an external
time-lagged stochastic input to a one-dimensional system, the time
evolution dynamics of x(t) would be

ẋ(t) = −γ x(t)+ ξ(t)+ rξ(t − τ). (17)

Pointing to Eq. (15), we rewrite the above equation in a transformed
coordinate y(t) as follows:

ẏ(t) =
[t/τ ]
∑

n=0

(−r)nf(x(t − nτ))+ ξ(t). (18)

By considering f(x(t)) = −γ x(t), expanding the summation
results

ẏ(t) = −γ x(t)

+ rγ x(t − τ)

− r2γ x(t − 2τ)+ · · · + ξ(t), (19)

and replacing x’s by the use of Eq. (16) [as x(t − lτ) = y(t − lτ)
+ ry(t − τ − lτ)], then

ẏ(t) = −γ
(

y(t)+ ry(t − τ)
)

+ rγ
(

y(t − τ)+ ry(t − 2τ)
)

− r2γ
(

y(t − 2τ)+ ry(t − 3τ)
)

+ · · · + ξ(t). (20)

Most of the terms in the above equation cancel each other and
by considering y(t −

[

t
τ

]

τ) = 0 due to the causality effect, the final
result for the transformed dynamics would be

ẏ(t) = −γ y(t)+ ξ(t). (21)

Although the equation for y(t), remains linear without a delay,
but still x(t), becomes a sum of two noisy processes y(t) and y(t − τ)

with τ delay time. So in autocorrelation, 〈x(t)x(t + τ)〉, we expect
the system to exhibit a peak on τ , due to the lagged stochas-
tic input. In Fig. 1(a), the autocorrelation of this system for one
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FIG. 1. Panel (a) shows th autocorrelation of a linear case with one (in black,
τ = 0.005) and two [in gray, τ1 = 0.005 and τ2 = 0.015 (s)] time-lagged
stochastic inputs for γ = 1. In the latter case, we can observe an additional peak
based on the difference of lags. Panel (b) represents the result of simulation of
x(t) governed by Eq. (22) for a simple quadratic dynamics (gray trace) along with
transformed equation (23) (completely matched by the black trace) and a partial
transformed equation with a first time delay term.

[η(t) = ξ(t)+ ξ(t − τ)] and two [η(t) = ξ(t)+ ξ(t − τ1)+ ξ

(t − τ2)] time-lagged stochastic inputs are shown. In the first case,
the presence of a peak at the given time lag is a dynamic feature of the
time-delayed dynamical system. For the two time-lagged stochas-
tic inputs, the similar expected effect is confirmed. As it is shown,
two peaks at the specific time lags of the inputs appeared, along
with an additional peak at a time delay corresponding to an absolute
difference of their time lags. This result is consistent with the trans-
formation in Eq. (21). Although in the current example, we have
shown a linear system driven by the time-lagged stochastic input,
governed by Eq. (17), equals to another system driven by the same
noise without a time-lag [see Eq. (21)], but we will see in the follow-
ing that the existence of a nonlinearity in the function fi causes that
the problem of a dynamical system driven by time-lagged stochas-
tic inputs to be equal by another time-delayed system with noise but
without any time-lag.

2. Nonlinear case

To illustrate the effect of nonlinearity, we turn to a simple
quadratic interaction, f(x) = I − x2. In order to verify our approach
in this case, we numerically simulate the related dynamical equa-
tions in the original and transformed coordinates. In this case, the
original equation is

ẋ = I − x2 + ξ(t)+ rξ(t − τ), (22)

where I is an arbitrary constant and other quantities are the same as
before. The transformed equation can be written as

ẏ = ξ(t)+ I
(1 − (−r)[t/τ ]+1)

1 + r
− y2(t)

−
[t/τ ]
∑

i=1

(−r)iy(t − iτ)[(1 − r)y(t − iτ)− 2y(t − (i + 1)τ )].

(23)

As we illustrate in this case, in addition to the effect of lag through
a time-lagged combination of the transformed equation, delayed
terms appear in the transformed equation which affects the dynam-
ical behavior of the system. In Fig. 1(b), we present this result (black
trace) along with simulation of system with only the first delayed
part (first term in the summation) in Eq. (23) indicated by white
circles, which shows a growing difference with time. This difference
shows the effect of higher order delayed terms in the transformed
equation which changes the behavior of the system from simple
one-delay case substantially. A quadratic nonlinear case appears in
many models, e.g., neuron behavior, and this effect can be used to
manipulate a system to show desired behavior in these systems.

3. Controlling the dynamics of a planar pendulum

As another example of system dynamics controlling by the
time-lagged stochastic input, we consider the motion of the over-
damped planar pendulum under the effect of time-lagged stochastic
input governed by the equation

θ̇ = I − A sin(θ)+ ξ(t)+ rξ(t − τ). (24)

Here, I and A are positive constants. When sin(θ) = I/A 6 1 and
for small τ , the system exhibits a noisy behavior around a fixed point
[see Fig. 2(a), black trace]. We set r = −1 and by using transforma-
tion properties mentioned before, the transformed equation for this
case is

φ̇ = ξ(t)+ I

2

[

t

τ

](

1 +
[

t

τ

])

− A sin
(

φ(t)− φ(t − τ)
)

− A

[t/τ ]
∑

i=1

sin
(

φ(t − iτ)− φ(t − (i + 1)τ )
)

, (25)

where φ(t) is a transformed variable and θ(t) = φ(t)− φ(t − τ).
For a large τ , the variable θ begins to grow with time and exhibits
several irregular rotation. An example of this behavior is presented
in Fig. 2(a) (gray trace). This result shows an example of delay

FIG. 2. Panel (a) shows simulation results of a nonlinear case with f(θ) = I

− A sin(θ). In a small lag, the behavior of system remains stationary around a
fixed point. For a larger lag, the system exhibits oscillation with a variable period.
In panel (b), we have represented a time-averaged difference from a zero-lag case
for a time-dependent linear case, in terms of lag. Zero values occur on a period
of coefficient and resembles resonance in forced ordinary periodic systems.
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induced behavior which can be controlled through a time-lagged
summation of noisy inputs.

4. Resonancelike effect: linear case (time dependent)

As another example, we consider a dynamical state governed
by the equation

ẋ(t) = q(t)x(t)+ ξ(t)+ rξ(t − τ), (26)

which is familiar specially in the literature related to the Floquet the-
ory. Here, x(t) describes the state of the dynamical system under
investigation, q(t) is an arbitrary periodic function with a unknown

period, and ξ(t) is a stochastic term. Using y(t) = ∑[t/τ ]
n=0 (−r)n

x(t − nτ), the transformed equation can be calculated as

ẏ(t) = q(t)y(t)

+
[t/τ ]
∑

n=1

(−r)n[q(t − (n + 1)τ )− q(t − nτ)]y(t − nτ)+ ξ(t).

(27)

So as it is clear in the above equation, if a time lag in the stochastic
input equals to the period of the function q(t), then the second term
in the right hand side of Eq. (27) vanishes and the time lag will be
eliminated in the new coordinate. So,

ẏ(t) = q(t)y(t)+ ξ(t). (28)

This is because of the resonancelike effect between a time lag
of the input noise and a time period of the oscillatory func-
tion q(t). In Fig. 2(b), we illustrate this effect by considering

q(t) = sin(2π t) through a time-averaged difference, g(τ ) =
∫ tf

0

[xτ (t)− x0(t)]dt, where tf is the final time, xτ denote a solution of
a system with a lag τ , and x0 is a solution for a zero lag. As it can be
seen in Fig. 2(b), when the time lag in input changes, zero values of
g(τ ) occur at points equal to an integer times the period of the func-
tion q(t), as we expected from the transformed equation. So to find
the period of function q(t), it is sufficient to fine-tune the time lag of
the delay stochastic input force, to achieve zero time-averaged dif-
ference, g(τ ) = 0. This resembles resonance behavior in externally
forced periodic systems.

5. Controlling the dynamics of bistable systems using

time-lagged stochastic input

Bistable systems affected by stochastic inputs and related
stochastic resonance phenomena have been investigated by details
from experimental as well as theoretical points of view in many
research studies (see more details in Ref. 48). It appears that com-
bined effects of noise and time delay are ubiquitous in nature,
from biological and laser dynamics49–52 to delayed stochastic bistable
systems.53–58 Also there are some research studies that studied the
effects of the thermal activation on bistable systems with an addi-
tional time-delayed feedback.59 To illustrate the application of the
time-lagged stochastic input for controlling the system dynamics, we
use a prototypical model which is the over-damped particle motion
in the double-well quartic potential U(x(t), x(t − T)), described by

the following Langevin equation:59

dx(t)

dt
= −∂U(x(t), x(t − T))

∂x
+

√
2D
(

ξ(t)+ rξ(t − τ)
)

= x(t)− x3(t)+ εx(t − T)+
√

2D
(

ξ(t)+ rξ(t − τ)
)

. (29)

Here, T is the inherent time delay, ε is the strength of the inher-
ent feedback, ξ(t) is a Gaussian white noise with a zero mean and
unit variance, D is the strength of the noise, τ i the time lag of the
stochastic input, and r is the strength ratio of the time-lagged noises.
The particle spends most of the time near potential minima x = ±1
and just occasionally jump from one to another state depending on
the amount of noise, in the case of stochastic input without a time-
lag.59 We investigate the effect of time-lagged stochastic input for
this system and apply such an input to control the transition rate
between the stable states for two cases, the small and large noise
amplitude.

To transform Eq. (29) into its y(t) coordinate, it is needed η(t)
to be in the form of Eq. (14); therefore, we rewrite it by substituting

x(t) =
√

2DX(t), (30)

in the form of

dX(t)

dt
= X(t)− 2DX3(t)+ εX(t − T)+ ξ(t)+ rξ(t − τ). (31)

Using Eq. (15), the above equation can be transformed into

dy

dt
= y(t)+ εy(t − T)+ ξ(t)

− 2D

[ t
τ ]
∑

n=0

(−r)n
(

y(t − nτ)+ ry(t − [n + 1]τ)
)3

, (32)

to explain the equivalent delayed system. Note that we do not intend
to solve the converted equation (32) in this paper. By using this
transformation, we just want to show that, as all systems governed
by a complex inherent delayed dynamics between internal elements
equals to another system without lots of different time delays in
intrinsic dynamics but driven by a time lagged stochastic input, this
kind of time-lagged stochastic input can be useful to control the
dynamical behavior of the system instead of tuning all these inherent
time delays.

At first, we consider the case in which the parameters tuned so
that the state of the system is not able to go far from one of the stable
points. In this situation, the system is said to be in the low amplitude
noise regime (for τ = 0), because the strength of the noise is not
able to drive the system state from a current fixed point to another
one [see Figs. 3(a), 3(c), and 3(e), black trace]. To simulate such a
case, we have used a set of system parameters that system fluctu-
ates around one of the stable points (x = 1) and select −1 < r < 0
to change the dynamical behavior of this system (r = −0.9). As it
is shown in the figure although fluctuations around x = 1 increased
by enhancing the time lag to τ = 0.2 s, the escape time is still too
long for the system state to switch to another stable point x = −1
[Fig. 3(a), gray trace). Further increasing the time lag to τ1.2 s leads
to sparse transition to another state x = −1 [Fig. 3(c), gray trace]
and for τ = 2.2 s, the particle has larger amount of intermittent
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FIG. 3. Simulation results of Eq. (29) for two cases, low (first column) and high
(second column) noise amplitude. Black traces in panels (a), (c), and (e) show
the simulation result for the case of low amplitude noise by setting τ = 0 s. Gray
traces show the simulation results for τ = 0.2 s [panel (a)], τ = 1.2 s [panel
(c)], and τ = 2.2 s [panel (e)]. Results show that increasing τ causes more fluc-
tuation about a current stable state and so leads to switch to another stable
point for this set of parameters (T = 0.2, ε = 0.02, D = 0.045, r = −0.9, and
x0 = 0.7). Black traces in panels (b), (d), and (f) show the simulation result for
the case of high amplitude noise by setting τ = 0 s. Gray traces show the simu-
lation results for τ = 0.2 s [panel (b)], τ = 2.2 s [panel (d)], and τ = 4.2 s [panel
(e)]. Results show that increasing τ causes less fluctuation about s current sta-
ble state and so leads to smaller switch rate to another stable point for this set
of parameters (T = 0.2, ε = 0.02, D = 0.02, r = 0.9, and x0 = 0.7). Note that
a total noise amplitude for τ = 0 in a low amplitude noise regime (first column)

is
√
2D(1 + r) =

√
2 × 0.045(1 − 0.9) = 0.03, and in a high amplitude noise

regime (second column) is
√
2D(1 + r) =

√
2 × 0.02(1 + 0.9) = 0.38.

switching behavior between the two states [Fig. 3(e), gray trace]. So,
the results show that, in this case, the transition behavior increased
by enhancing the time lag.

The second column of Fig. 3 (black traces) shows the dynamical
behavior of the system in the large amplitude noise regime for which
we selected another set of system parameters to have lots of transi-
tions between two states (for τ = 0). In this case, we set 0 < r < 1 to
control the switching rate between the two states (r = 0.9). As it is
shown in panels (b), (d), and (f), increasing the time lag in this case
stabilized the system and reduced transitions between stable states.
This results illustrate an applicable example of applying the time-
lagged stochastic input to control the rate of switching between two
well potential states.

6. Laser diode (experimental case)

In the final case of this study, we experimentally verified the
main idea of the paper by using a laser diode setup. There are some
recent research studies which controlled and applied laser instabil-
ities as a valuable resources.60 These instabilities could be the result
of external perturbation61 or delayed self-feedback in laser systems.60

They give rise to a rich scenario of complex dynamical behavior and
have been employed in unexpected applications.60–63

For example, feedback in a single laser can be employed
as a versatile broadband source in a wide variety of photonic
applications,64,65 as a useful utility tools for the generation of
laser light with a tunable coherence length,66 in chaotic LIDAR
applications,67 and random bit generation at GHz speed.68

Similarities between delay-coupled lasers and neuronal sys-
tems with respect to the emergence of collective dynamics and
synchronization phenomena69 have also initiated the development
of bioinspired photonic information processing applications.70,71

Also, the generation of highly coherent light is manda-
tory for several applications such as coherent optical fiber
communications.72 In this section, we use a system consisting of a
laser diode with a tunable external time-lagged stochastic input and
show that how the time lag between peaks of the autocorrelation of
a laser output signal can be controlled. This could be used similar to
the above mentioned example of the applications of laser instabili-
ties. We used a random Gaussian signal which is generated by a PC
and aggregated with its own time-lagged copy. Then, the resulted
signal is played as a sound wave via a PC sound card. The output
of the sound card was then amplified and fed into the laser diode as
the pump signal. A modulated laser beam was then sent to a pho-
tomultiplier tube to be digitized by using a DAQ (data acquisition)
card and recorded by the PC. The equations governing such a sys-
tem are complicated.12 Dynamical properties of the system could be
evaluated according to the following well-known rate equations:73

Ṅ = I

eV
− N

τn

− 0GP,

Ṗ =
(

0G − 1

τp

)

P + β
N

τr

.

(33)

Here, N is the carrier density, P is the photon density, I is the
applied current, e is the elementary charge, V is the volume of the
active region, τn is the carrier lifetime, G is the gain coefficient, 0
is the confinement factor, τp is the photon lifetime, β is the spon-
taneous emission factor, and τr is the radiative recombination time
constant. The gain coefficient G linearly varies with carrier density
N as

G = vgσg(N − NT), (34)

where vg is the group velocity, σg is the differential gain, and NT is
the transparency value of the carrier density. We suppose α = 0vgσg

and rewrite the above equations as

Ṅ = I

eV
− N

τn

− αNP + αNTP,

Ṗ =
(

αN − αNT − 1

τp

)

P + β
N

τr

.

(35)
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In our experiment, the output signal of the laser is the photon
density. In noisy cases, the current is a combination of a bias
DC input and corresponding time-lagged summation of a Gaus-
sian white noise. In the case of one time lag, the input current is
I = Ib + ξ(t)+ rξ(t − τ) where Ib is the bias DC input. To trans-
form the noisy time-lagged input to a single noise source, we
introduce

N(t) = M(t)+ rM(t − τ),

P(t) = Q(t)+ rQ(t − τ).
(36)

So, the transformed equations would be

Ṁ = Ib(1 − r[t/τ ])+ ξ(t)

eV
− M

τn

− α[MQ + R(M, Q)] + αNTQ,
(37)

Q̇ = α[MQ + R(M, Q)] −
(

αNT + 1

τp

)

Q + β
M

τr

,

where

R(M, Q) =
t/τ
∑

i=1

(−r)i [2M(t − iτ)P(t − iτ)

− M(t − iτ)P(t − (i + 1)τ )

+M(t − (i + 1)τ )P(t − iτ)]. (38)

While the result of the above equations depends on many param-
eters, still we expect that M and Q show an uncorrelated noisy
behavior around the average. It means that we expect 〈M(t)
Q(t − s)〉 = Const.δ(s) and also the same for the autocorrela-
tion of these quantities, due to the uncorrelated stochastic input
〈ξ(t)ξ(t − τ)〉 = Const.δ(τ ). Returning back to the relation intro-
duced between P(t) and Q(t), we expect that observed P(t) shows
an additional peaks on lag, i.e., 〈P(t)P(t − s)〉 = (1 + r2)〈Q(t)
Q(t − s)〉 + 2r〈Q(t)Q(t − s − τ)〉.

In the experiment, we stimulate laser with a biased lagged
noisy current. The details of the experiment can be found in
Appendixes A–D. A typical signal autocorrelation for the delay time
of 6 s between the noisy signal and its replicate is depicted in Fig. 4.
In addition, an autocorrelation plot of the output signal of the laser
with a DC input is also shown in Fig. 4(a). As anticipated theoreti-
cally, it is obviously seen that the noisy input significantly degrades
the coherence time of the laser diode. However, a second peak well
beyond the initial time (zero-lag time) appears in the tail of the auto-
correlation plot as a result of the correlation between the noise signal
and its delayed replicate at the lag time of 6 s.

Moreover, we examined the effect of triple delayed noise on the
output of the laser diode. Similarly, an initial Gaussian random noise
was added up to two of its replica that are delayed by 0.09 s and 0.12 s
with respect to the initial noise signal. An autocorrelation plot of the
laser output signal with such an input driving signal is depicted in
Fig. 4(b). Three distinct peaks beyond the zero-lag time are clearly
seen. The second and third peaks correspond to the mentioned
delays, while the first peak corresponds to the correlation between
the second and third delayed-noise signals and occurs at a lag time
equal to the time offset between these two signals at t = 0.03 s.

FIG. 4. Panel (a) shows the autocorrelations of a laser output signal with a DC
input and with a duplicate delayed-noise input with a delay time of 6 s between the
initial noise and its delayed replicate. As indicated by a black trace, a second peak
at a lag time of 6 s is the direct result of the duplicate delayed-noise input. Panel
(b) shows the autocorrelation of the laser output signal with a triple delayed-noise
input signal. The initial noise is added up with two of its replica that are delayed
by 0.09 s and 0.12 s, with respect to the initial noise and fed to the laser as a
driving signal. Three distinct peaks beyond the zero-lag time are clearly seen.
The second and third peaks correspond to the mentioned delay times between
the initial noise and its replica, while the first peak corresponds to the correlation
between the second and third delayed-noise signals and occurs at a lag time equal
to the time offset between the two signals at t = 0.03 s.

IV. CONCLUSIONS

By means of theory, simulation, and experiments, we have
shown that a dynamical system stimulated by a time-lagged noisy
input can exhibit the same effects as a usual delayed dynamical sys-
tem stimulated by the same single noise. Transformations between
these equivalent systems are derived for a 1D case and extended to
more general cases. In the theoretical treatment of stochastic pro-
cesses, this could help to formulate the Fokker–Planck equation for
a combination of Gaussian processes. For various applications, this
approach can also be used in situations where noise can be manip-
ulated. Under these conditions, the approach provides a means of
control to induce delay-like behavior in the system, and it can be
used as an alternative approach in different control methods to
evoke desired behavior in physical systems. Our approach can also
be extended to higher-dimensional coupled dynamical systems and
thus holds promise of further fascinating discoveries in the realm of
spatiotemporal dynamics.
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APPENDIX A: DEFINITIONS FOR LINEAR OPERATOR

M AND CALCULATING AN EXPRESSION FOR M
−1

Consider an invertible operator M, as a linear integral trans-
formation in the form of

Mf =
∫ t2

t1

k(t, s)f(s)ds. (A1)
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Here, k(t, s) is a linear kernel defined in the range s ∈ [t1, t2] and f
is a general function. In this section, we want to find an expression
for M

−1f, by having knowledge about the functionality of the linear
kernel k(t, s).

To reach this goal, we assume there exists an eigenvalue
equation in the form of

Mψλ = λψλ, (A2)

and as M is invertible

M
−1ψλ = 1

λ
ψλ. (A3)

To construct the inverse of the operator M, we define the opera-
tor N as N = I − M, where I is a unitary operator. Combining
the definition of operator N and Eq. (A2) results in the following
eigenvalue equation:

Nψλ = (1 − λ)ψλ. (A4)

By operating N recursively, one obtains

N
nψλ = (1 − λ)nψλ. (A5)

Assuming the case of stable spectrum (|λ− 1| < 1) and by applying
1/λ = ∑∞

n=0 (1 − λ)n, Eq. (A5) results in

∞
∑

n=0

N
nψλ =

∞
∑

n=0

(1 − λ)nψλ,

and so

∞
∑

n=0

N
nψλ = 1

λ
ψλ. (A6)

Since the right hand side of the above equation equals to Eq. (A3),
therefore, from these two equations, we would have

M
−1ψλ =

∞
∑

n=0

N
nψλ. (A7)

Now pointing to the definition of N = I − M and Eq. (A1), we
have

Nf = If − If

=
∫ t2

t1

(δ(s − t)f(s)ds −
∫ t2

t1

(k(t, s))f(s)ds

=
∫ t2

t1

(δ(s − t)− k(t, s))f(s)ds. (A8)

We define

g0(t, s) = δ(t − s),

gn(t, s) =
∫ t2

t1

(δ(t − u)− k(t, u))gn−1(u, s)du for n ≥ 1.
(A9)

So, using Eqs. (A8) and (A9), we have

f(t) = N
0f =

∫ t2

t1

dsδ(t − s)f(s),

(A10)

N
0f =

∫ t2

t1

dsg0(t, s)f(s),

Nf =N
1f =

∫ t2

t1

ds(δ(t − s)− k(t, s))f(s),

(A11)

N
1f =

∫ t2

t1

dsg1(t, s)f(s),

and by generalization,

N
nf =

∫ t2

t1

dsgn(t, s)f(s), (A12)

by applying Eq. (A7) and the above result, we have

M
−1ψλ =

∞
∑

n=0

N
nψλ

=
∞
∑

n=0

∫ t2

t1

dsgn(t, s)ψλ(s)

=
∫ t2

t1

ds

∞
∑

n=0

gn(t, s)ψλ(s). (A13)

Therefore, if we define a linear kernel of operator M
−1 as k−1(t, s),

then

M
−1ψλ =

∫ t2

t1

dsk−1(t, s)ψλ(s). (A14)

Comparing Eqs. (A13) and (A14) results in

k−1(t, s) =
∞
∑

n=0

gn(t, s), (A15)

where

g0(t, s) = δ(t − s),

gn(t, s) =
∫ t2

t1

(δ(t − u)− k(t, u))gn−1(u, s)du.

APPENDIX B: TRANSFORMED EQUATIONS FOR TWO

CHANNELS NOISE INPUT WITH A TIME LAG

In this section, we drive a M
−1 operator, for a simple form of

the linear kernel k(t, s) as to be

k(t, s) = δ(s − t)+ rδ(s − t − τ). (B1)

Then, by applying it on the dynamical equation of state variable, we
translate it into a new coordinate y(t), which is a delayed dynamic
equation but with a stochastic term without a time lag. So, we will
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prove that a dynamical system perturbed by a stochastic forcing
comprised of a sum of two time-lagged copies of a single source
of noise is equivalent to the classical case of a stochastically-driven
dynamical system, with time-delayed intrinsic dynamics but with-
out a time lag in the same source of noise. By applying Eqs. (A1)
and (B1) for ξ(t), in the range of 0 ≤ t ≤ ∞, a linear operator M

would be

Mξ(t) =
∫ ∞

0

ds
(

δ(s − t)+ rδ(s − t − τ)
)

ξ(s)

= ξ(t)+ rξ(t − τ), (B2)

here causality condition is r = 0 for 0 < t < τ . Pointing to this
condition, the dynamic equation governing the one-dimensional
x(t) is

ẋ(t) = f(x(t))+ ξ(t)+ rξ(t − τ). (B3)

First of all, we calculate the gn(t, s) functions by applying Eq. (A9)

g0(t, s) = δ(t − s),

g1(t, s) =
∫ ∞

0

du
[

δ(t − u)−
(

δ(t − u)

+ rδ(t − u − τ)
)]

δ(u − s)

= −r

∫ ∞

0

duδ(t − u − τ)δ(u − s)

= −rδ(t − s − τ),
(B4)

g2(t, s) = (−r)2
∫ ∞

0

du δ(t − u − τ)δ(u − s − τ)

= (−r)2δ(t − s − 2τ),

...

gn(t, s) = (−r)nδ(t − s − nτ).

Pointing to Eq. (A15), we would have one of the desired results
which is k−1(t, s) for M given in Eq. (B1),

k−1(t, s) =
∞
∑

n=0

(−r)nδ(t − s − nτ). (B5)

By using Eq. (A14) and the above result,

M
−1f =

∫ ∞

0

ds

∞
∑

n=0

(−r)nδ(t − s − nτ)f(s)

=
∞
∑

n=0

(−r)nf(t − nτ), (B6)

So, by operating M
−1 on Eq. (B3), we have

M
−1ẋ(t) = M

−1f(x(t))+ ξ(t), (B7)

in the above equation, and we use the fact Mξ(t) = ξ(t)+ rξ
(t − τ). Assuming y(t) = M

−1x(t) and point to commutativity

condition
(

M
d

dt
− dM

dt

)

f(t) = 0 (see Appendix D) and Eqs. (B6)

and (B7),

ẏ(t) =
∞
∑

n=0

(−r)nf(x(t − nτ))+ ξ(t)

=
∞
∑

n=0

(−r)nf(My(t − nτ))+ ξ(t)

(B8)

ẏ(t) =
∞
∑

n=0

(−r)nf

(

y(t − nτ)+ ry(t − [n + 1]τ)

)

+ ξ(t).

To account the effect of causality, we assume that the time-lagged
stochastic input is turned off for times in the range of 0 ≤ t < τ , and
then it is turned on at t = τ . So, for t < τ , we have x(t) = y(t) and
for an integer number nmax we would have y(t − nmaxτ) = 0 such
that

t − nmaxτ < τ ,

t = (nmax + 1)τ ,
(B9)

t

τ
< nmax + 1,

nmax =
[

t

τ

]

.

Here,

[

t

τ

]

is a floor function of

[

t

τ

]

. Consequently, for

n >

[

t

τ

]

, we would have y(t − nτ) = 0. Therefore, Eq. (B8) can be

rewritten as

ẏ(t) =
[t/τ ]
∑

n=0

(−r)nf

(

y(t − nτ)+ ry(t − [n + 1]τ)

)

+ ξ(t), (B10)

which is a time-delayed differential equation with a noise term ξ(t),
without any time lag. To confirm the above approach, we drive (B10)
by another approach.

Again consider M operator in the equation

ẋ(t) = f(x(t))+ M [ξ(t)], (B11)

such that

MF(t) = F(t)+ rF(t − τ), (B12)

for a general function F(t). Therefore, Eq. (B11) would be as

ẋ(t) = f(x(t))+ ξ(t)+ rξ(t − τ). (B13)

We rewrite this equation by different values of t several times [as
t equals (t − τ), (t − 2τ), (t − 3τ), . . . , (t −

[

t
τ

]

τ)] and multiplying
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them by some required power of (−r)n will result in

ẋ(t) = f(x(t))+ ξ(t)+ rξ(t − τ),

− rẋ(t − τ) = −rf(x(t − τ))− rξ(t − τ)− r2ξ(t − 2τ),

r2ẋ(t − 2τ) = (−r)2f(x(t − 2τ))+ r2ξ(t − 2τ)+ r3ξ(t − 3τ),

... (B14)

(−r)[t/τ ]ẋ(t − [t/τ ]τ) = (−r)[t/τ ]f(x(t − [t/τ ]τ))

+ (−r)nξ(t − [t/τ ]τ)

+ (−r)[t/τ ]+1ξ(t − [[t/τ ] + 1] τ),

so by summing up the two side of the above equations, we will have
briefly

[t/τ ]
∑

n=0

(−r)nẋ(t − nτ) =
[t/τ ]
∑

n=0

(−r)lf(x(t − nτ))

+ ξ(t)+ (−r)[t/τ ]+1ξ(t − [[t/τ ] + 1]),
(B15)

also by changing variable as

x(t) = y(t)+ ry(t − τ), (B16)

and doing something like (B14), we would have

[t/τ ]
∑

n=0

(−r)nẋ(t − nτ) = y(t)+ (−r)[t/τ ]+1y(t − ([t/τ ] + 1) τ ).

(B17)

Note that by the causality condition, y(t − ([t/τ ] + 1) τ ) and
ξ(t − ([t/τ ] + 1)) equals to zero. Finally, by rewriting (B15) and
using (B17)

ẏ(t) =
[t/τ ]
∑

n=0

(−r)nf(x(t − nτ))+ ξ(t),

and using (B16),

ẏ(t) =
[t/τ ]
∑

n=0

(−r)nf

(

y(t − nτ)+ ry(t − [n + 1]τ)

)

+ ξ(t). (B18)

The above result confirms the result of Eq. (B10).

APPENDIX C: TRANSFORMED EQUATIONS FOR

MULTICHANNELS NOISE INPUT WITH TIME LAGS

In this section, we drive a M
−1 operator, for the linear kernel

k(t, s) as the form of

k(t, s) = δ(t − s)+
[t/τ ]
∑

l=1

rlδ(t − s − lτ), (C1)

using this kernel, we calculate M
−1 and so we transform the dynam-

ical equation governing the state of a system receiving time-lagged
copies of a single source of noise from multichannels to a new

coordinate ,which is a mathematical description for a time-delayed
dynamical system perturbed by one of the same sources of noise. To
calculate M

−1, we should have gn(t, s)’s. By applying Eq. (A9), we
have

g0(t, s) = δ(t − s),

g1(t, s) =
∫ ∞

0

du

[

δ(t − u)− δ(t − u)−
[t/τ ]
∑

l=0

rlδ(t − s − lτ)

]

× δ(u − s)

=
∫ ∞

0

du

[

−
[t/τ ]
∑

l=0

rlδ(t − u − lτ)

]

× δ(u − s)

= −
[t/τ ]
∑

l=0

rlδ(t − u − lτ),

(C2)

g2(t, s) =
∫ ∞

0

du



−
[t/τ ]
∑

l1=0

rl1δ(t − u − l1τ)





×



−
[t/τ ]
∑

l2=0

rl2δ(u − s − l2τ)





= (−1)2
[t/τ ]
∑

l1 ,l2=0

rl1+l2δ
(

t − s − (l1 + l2)τ
)

,

...

gn(t, s) = (−1)n
[t/τ ]
∑

l1 ,l2 ,...,ln=0

r
∑n

i=1 liδ

(

t − s −
(

n
∑

i=1

li

)

τ

)

.

Therefore, using the above result for gn(t, s) and Eq. (A15), we have
the following result for k−1(t, s):

k−1(t, s) = δ(t − s)+
∞
∑

n=1

(−1)n
[t/τ ]
∑

l1 ,l2 ,...,ln=0

r
∑n

i=1 liδ

(

t −s −
(

n
∑

i=1

li

)

τ

)

.

(C3)

So, pointing to the above result for k−1(t, s) and using the
definition of

M
−1F =

∫ ∞

0

k−1(t, s)F(s)ds,

for any general function F, the resulted expression for M
−1Fwould

be

M
−1F = F(t)+

∞
∑

n=1

(−1)n
[t/τ ]
∑

l1 ,l2 ,...,ln=0

r
∑n

i=1 liF

(

t − (

n
∑

i=1

li)τ

)

.

(C4)
Therefore, the transformed equation (13) can be easily concluded
from Eq. (12).
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APPENDIX D: COMMUTATION RELATIONS FOR THE

LINEAR OPERATOR M

We define the commutation operator L = [M, d/dt] as

Lf = [M, d/dt]f

= M
df

dt
− d(Mf)

dt
. (D1)

Operating M on the general function f results in

Mf(t) =
∫ t2

t1

ds k(s, t)f(s), (D2)

so we have

M
df

dt
=
∫ t2

t1

ds k(s, t)
df(s)

ds

=
∫ t2

t1

k(s, t)df(s)

= [k(t2, t)f(t2)− k(t1, t)f(t1)]

−
∫ t2

t1

∂sk(s, t)f(s)ds. (D3)

Also for the second term of Eq. (D1),

d(Mf)

dt
= d

dt

∫ t2

t1

ds k(s, t)f(s)

=
∫ t2

t1

ds ∂tk(s, t)f(s), (D4)

combining Eqs. (D1), D3, and D4 results in

M
df

dt
− d(Mf)

dt

= [k(t2, t)f(t2)− k(t1, t)f(t1)] −
∫ t2

t1

ds [∂sk(s, t)+ ∂tk(s, t)]f(s).

(D5)

So, assuming two conditions

k(t1, t) = k(t2, t) = 0,

∂tk(s, t) = −∂sk(s, t),
(D6)

for boundary values of the kernel and its partial derivatives guaran-
tees a commutativity relation between M and d/dt. Under these two
conditions,

M
df

dt
= d(Mf)

dt
. (D7)

Investigated cases in this paper satisfy these two boundary
conditions.

APPENDIX E: DIODE LASER EXPERIMENT SETUP AND

PARAMETERS

Based on the theoretical predictions, it was expected that a
noisy input (pump) signal would significantly alter the output a sys-
tem with a stochastic dynamic. In order to model such a stochastic

FIG. 5. Schematic representation of the experimental setup. A random Gaussian
signal was created and added to its delayed replicate and then played as a sound
wave via a sound card. The output of the sound card was then amplified and fed
into the laser diode as the pump signal. Modulated laser beam was then sent to a
photomultiplier tube whose output was digitized by using a DAQ (data acquisition)
card and recorded by the PC.

system, we used a diode laser with a noisy pump. In such a simple
system, a pure stochastic pump signal would, in principle, result in
a direct noisy modulation of the output intensity of the laser. A laser
diode (with a central wavelength of λ = 635 nm) was used since its
output could be directly modulated by an input pump signal. The
experimental setup is schematically represented in Fig. 5. A random
Gaussian signal was created and added to its delayed replicate and
played as a sound wave by a PC sound card. The output of the sound
card as a modulated electronic signal was sent to an electronic ampli-
fier with a proper amplification bandwidth and the amplified signal
was fed into the laser diode as a pump signal. Emitted laser beam,
that was temporally modulated due to the noisy pump signal, was
then sent to a photomultiplier tube (PMT), and the output of the
PMT was recorded after being digitized by a DAQ (data acquisition)
card.

The procedure of creating a noisy time-delayed signal is done
by a computer PC. We simulate a random Gaussian signal in a time
interval of 10 s. After shifting the signal by desired delay (in this case
4 s), both signals are combine together to create the final signal, com-
posed of a noisy input with its delayed replicate. Such a signal was
then used as the driving (pump) signal of the laser diode and resulted
in a similar modulation in the output intensity of the laser which
was detected by a PMT and recorded after digitization by a DAQ
card. For several delay times between the noisy driving signal and its
time-shifted replicate, the autocorrelation of the output signal was
measured.
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