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Abstract

A mathematical model for bursting Ca2þ oscillations is analysed from a physical point of view as a system of in-

ternally coupled fast and slow oscillators. We show that the fast subsystem determines the interburst frequency, whereas

altering the kinetics of the slow processes changes the duration of the bursting phase in a resonant manner. The res-

onance effect appears between two oscillatory Ca2þ-buffering mechanisms. This may be biologically important for a

highly selective Ca2þ signal transduction from cell receptors to target proteins.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

The phenomenon of bursting oscillations ap-

pears in many chemical and biological systems. In

chemical systems, bursting oscillations were ob-

served experimentally in Belousov–Zhabotinskii

[1] and peroxidase-oxidase [2,3] reactions, for ex-
ample, and also studied theoretically [4,5]. Fur-

thermore, bursting oscillations characterise

changes of free cytosolic Ca2þ in excitable cf. [6] as

well as in non-excitable cells [7–9]. The oscillatory

changes of free cytosolic Ca2þ, known as Ca2þ

oscillations, regulate many cellular processes from

egg fertilization to cell death [10] and have recently

been intensely investigated both from experimental
and theoretical point of view (for review see [11]).
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In particular, trying to explain the mechanism of

experimentally observed bursting Ca2þ oscillations

[7–9], several mathematical models for complex

Ca2þ oscillations in excitable [6] as well as in non-

excitable cells [12–14] were proposed.

It has been shown that for generation of

bursting oscillations the system has to incorporate
fast and slow processes (see e.g. [15]). Therefore,

special methods were developed to analyse burst-

ing, taking benefit of the interplay between fast

and slow processes in bursting systems. One of the

most prominent methods for analysing bursting

oscillations is the so-called fast–slow burster

analysis proposed by Rinzel [16]. By this method,

variables of the slow subsystem are considered as
bifurcation parameters. Hence, the original system

is mathematically reduced to a lower dimensional

system in which the stability analysis can be car-

ried out more efficiently.
erved.
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For a particular model that describes intracel-

lular Ca2þ oscillations in non-excitable cells [13],

we study bursters as internally coupled fast and

slow oscillators. By separating the model system

into fast and slow subsystems [16], we examine the

influences of the fast and the slow subsystem on
the interburst frequency and the duration of the

bursting phase. In particular, a resonance depen-

dency between the frequency of bursting oscilla-

tions and the kinetics of the slow subsystem is

pointed out. A possible biological importance of

the results is discussed.
2. Mathematical model

We use a mathematical model for bursting Ca2þ

oscillations, originally proposed by Marhl et al.

[13], which consists of three basic model com-

partments, i.e., the cytosol, the endoplasmic re-

ticulum (ER), and the mitochondria. The Ca2þ

exchange is considered between the cytosol and the
ER (Jch; Jpump; Jleak), and between the cytosol and

the mitochondria (Jin; Jout). Calcium buffering is

taken into account in the cytosol (explicitly by the

JCaPr and JPr), in the ER (ber), and in the mito-

chondria (bm). The volume ratios between the ac-

tive parts of the ER and the cytosol, and between

the mitochondria and the cytosol are taken into

account by qer and qm, respectively.
The concentrations of free Ca2þ in the cytosol

(Cacyt), in the ER (Caer), and in the mitochondria

(Cam) are given by the following equations:

dCacyt
dt

¼ Jch � Jpump þ Jleak þ Jout � Jin

þ JCaPr � JPr; ð1Þ

dCaer
dt

¼ ber

qer

Jpump

�
� Jch � Jleak

�
; ð2Þ

dCam
dt

¼ bm

qm

Jinð � JoutÞ; ð3Þ

where

Jch ¼ kch
Ca2cyt

Ca2cyt þ K2
1

Caer
�

� Cacyt
�
; ð4Þ
Jpump ¼ kpumpCacyt; ð5Þ

Jleak ¼ kleak Caer
�

� Cacyt
�
; ð6Þ

JPr ¼ kþCacytPr; ð7Þ

JCaPr ¼ k�CaPr; ð8Þ

Jin ¼ kin
Ca8cyt

Ca8cyt þ K8
2

; ð9Þ

Jout ¼ koutCam: ð10Þ
Concentrations of the free (Pr) and the occupied

(CaPr) Ca2þ protein binding sites in the cytosol are

given by two conservation relations (see [13]):

Pr ¼ Prtot � CaPr; ð11Þ

CaPr ¼ Catot � Cacyt �
qer

ber

Caer �
qm

bm

Cam: ð12Þ

The parameter values are given in figure captions.

The most important parameters are briefly dis-
cussed in the text, whereas a complete presentation

of their meaning and biological relevance is given

in [13].
3. Results

Bursting Ca2þ oscillations in the examined

mathematical model (Eqs. (1)–(12)) are presented

in Fig. 1. During phase I, after the Ca2þ release

from the ER, a rapid Ca2þ uptake by mitochon-

dria and partially by the Ca2þ binding proteins
takes place. In Phase II Ca2þ is slowly transferred

from the mitochondria to the cytosolic proteins.

Concomitantly, during phase II a fast exchange of

Ca2þ between the Ca2þ stores and the cytosol ap-

pears, which characterises the bursting phase be-

tween two main spikes (see Fig. 1). After the

bursting phase (phase II), Ca2þ is released from the

cytosolic proteins and the concentration of Ca2þ in
the ER starts to rise rapidly (phase III), which

starts a new oscillatory cycle.

Time courses in Fig. 1 indicate that bursting

results from the interplay between fast and slow

processes in the model. During the bursting phase

(phase II), fast changing variables Cacyt and Caer



Fig. 1. Bursting Ca2þ oscillations for parameter values: kleak ¼ 0:05 s�1, kpump ¼ 20:0 s�1, kin ¼ 300 lM s�1, kout ¼ 0:76 s�1, kþ ¼ 0:1

lM�1 s�1, k� ¼ 0:01 s�1, K1 ¼ 5:0 lM, K2 ¼ 0:8 lM, Catot ¼ 90 lM, Prtot ¼ 120 lM, qer ¼ 0:01, ber ¼ 0:0025, qm ¼ 0:01, bm ¼ 0:0025,

and kch ¼ 3420 s�1. Time courses of Caer (solid line), Cacyt (dotted line), Cam (dash-dotted line), and CaPr (dashed line) are shown.

Fig. 2. Bifurcation diagram of the fast subsystem (only Caer is
depicted), whereas the slow variable (Cam) is used as the bi-

furcation parameter. Solid (dashed) lines represent stable (un-

stable) steady states. Dash-dotted lines represent stable periodic

solutions. Circle represents the supercritical Hopf bifurcation.

The thick solid line represents the 2D projection of the trajec-

tory in the whole phase space. Parameter values are the same as

in Fig. 1.
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hint that the fast Ca2þ exchange between the ER

and the cytosol determines the superimposed high-

frequency oscillations, whereas the slow Ca2þ

transfer from mitochondria to the cytosolic pro-

teins is linked to the whole oscillation period. It

can be shown mathematically that the high inter-

burst frequency indeed depends exclusively on the

kinetics of the fast Ca2þ exchange between the ER
and the cytosol. We carry out the fast–slow burster

analysis [16], taking Eqs. (1) and (2) as the fast

subsystem, and considering Cam as the bifurcation

parameter (see also [17,18]). The bifurcation dia-

gram of the fast subsystem and the projection of

the trajectory of the complete system are shown in

Fig. 2. During the bursting phase, the trajectory

runs through a domain of stable foci, passes the
supercritical Hopf bifurcation (HB) and enters

into a domain of unstable foci. Calculations of

complex conjugate eigen values of the stable/un-

stable foci (e.g., k1;2 ¼ �3:96i at the HB) show that

the frequency of the corresponding oscillations in
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the fast subsystem exactly matches the interburst

frequency (m ¼ 0:63 Hz) of the complete system.

This means that the interburst frequency is indeed

determined exclusively by the fast Ca2þ exchange

between the ER and the cytosol.

To determine the role of the slow subsystem, we
alter the kinetic constants that influence the slow

Ca2þ transfer from the mitochondria to the cyto-

solic proteins. If we enlarge kout from the reference

value kout ¼ 0:76 s�1 (see Fig. 1) for 50%, 100%,

and 150%, for example, the interburst frequency

remains unchanged (i.e., m ¼ 0:63 Hz), which even

further confirms the above result showing that the

interburst frequency is determined exclusively by
the fast Ca2þ exchange between the ER and the

cytosol. However, changing the parameter kout in-
fluences the length of the bursting phase and

herewith the main frequency of the bursting os-

cillations. To examine this dependency, we vary

the parameter kout and measure the period of Ca2þ

oscillations. The results are presented in Fig. 3. We

obtain a resonance dependency with the maximal
duration of the bursting phase at kout ffi 1:58 s �1.

Furthermore, bursting is well expressed for values

0:23 s�1 < kout < 4:32 s�1, whereas for values

kout < 0:23 s�1 and kout > 4:32 s�1 bursting degen-

erates to spike-like oscillations.

To explain the obtained resonance dependency

in Fig. 3, we study Ca2þ net fluxes for the ER

(Jnet; er), mitochondria (Jnet; m) and the cytosolic
proteins (Jnet; Pr):
Fig. 3. Resonance dependency of the oscillation period of Ca2þ

oscillations on the Ca2þ efflux rate from the mitochondria (kout).
Jnet; er ¼ Jpump � Jch � Jleak; ð13Þ

Jnet; m ¼ Jout � Jin; ð14Þ

Jnet; Pr ¼ JPr � JCaPr; ð15Þ
We calculate the net fluxes (Eqs. (13)–(15)) for

kout ¼ 1:58 s�1 and kout ¼ 4:25 s�1 (marked by da-

shed vertical lines in Fig. 3). The results are pre-

sented in Fig. 4. By comparing Fig. 4a and b, the

crucial difference in time courses of the net fluxes

can be observed during the bursting phase (phase
II). When the net Ca2þ efflux from the mitochon-

dria exactly matches the net Ca2þ uptake by the

proteins (see Fig. 4a), the resonance peak in Fig. 3

takes place. By this fine-tuning of the mitochon-

drial kinetics with the kinetics of the cytosolic

proteins, the slow transferring of Ca2þ from the
Fig. 4. Analysis of Ca2þ net fluxes for the ER (dashed line), the

mitochondria (solid line), and Ca2þ binding proteins (dotted

line) at: (a) kout ¼ 1:58 s�1 and (b) kout ¼ 4:25 s�1.



436 M. Perc, M. Marhl / Chemical Physics Letters 376 (2003) 432–437
mitochondria to the proteins is maximized in time,

whereas the transfer of Ca2þ to the ER, and con-

sequently the emergence of a new main Ca2þ

spikes, is maximally delayed. This results in the

longest bursting phase and thus the longest oscil-
lations period of bursting oscillation (see Fig. 3).

Contrary, in Fig. 4b the mitochondrial release is

too fast for a direct Ca2þ uptake by the proteins.

Therefore, already during phase II the ER starts to

take up the Ca2þ that the proteins were unable to

bind. This facilitates the emergence of a new main

spike and thus shortens the oscillation period. By

even further increasing of kout, the mitochondrial
kinetics becomes too fast with respect to other

processes, so that the interrelation of slow and fast

processes essential for the emergence of bursting

oscillations disappears. Consequently, spike-like

oscillations, characterized by even smaller oscilla-

tion periods, come into existence.

Also for kout < 1:58 s�1, the period of bursting

Ca2þ oscillations becomes smaller. This appears
because the Ca2þ efflux decreases at the constant

Ca2þ influx. In consequence, more Ca2þ is buffered

in the mitochondria and the amount of Ca2þ in-

volved in the inter-compartmental exchange be-

comes smaller. Due to the smaller Ca2þ transfer

from mitochondria to the cytosolic proteins, the

transfer becomes faster and the period of Ca2þ

oscillations decreases.
Taken together, the two oscillatory Ca2þ-buf-

fering mechanisms, i.e., the mitochondria and the

cytosolic proteins, determine the frequency of

bursting oscillations. If they are in resonance, the

period of bursting oscillations is maximised,

whereas for both cases of uncorrelated kinetics,

i.e., for faster or slower mitochondrial net efflux

compared to the net Ca2þ uptake by the cytosolic
proteins, the period is smaller.
4. Discussion

In this Letter, we investigated a mathematical

model for bursting Ca2þ oscillations [13] from a

physical point of view as a system of internally
coupled fast and slow oscillators. Using the fast–

slow burster analysis [16], we showed that the

interburst frequency is determined by the fast
subsystem, whereas the slow Ca2þ transfer from

the mitochondria to the cytosolic proteins deter-

mines the period of bursting Ca2þ oscillations in a

resonant manner. For the resonance effect, a fine-

tuning of the net Ca2þ release from the mito-

chondria with the net Ca2þ uptake by the cytosolic
proteins is necessary. If both oscillatory Ca2þ-

buffering mechanisms are in resonance, the period

of bursting oscillations and the amount of the

transferred Ca2þ to the cytosolic proteins is max-

imised, whereas for faster or slower mitochondrial

net efflux compared to the net Ca2þ uptake by the

cytosolic proteins, the period and the amount of

the transferred Ca2þ is smaller.
For living cells, resonance effects between two

Ca2þ-buffering mechanisms could be important for

a highly selective Ca2þ signal transduction from

cell receptors to target proteins. Since the target

proteins differ in their kinetic constants, only spe-

cific protein classes can resonantly response.

Consequently, only to the specific classes of pro-

teins, the amount of the transferred Ca2þ is en-
larged and a higher stage of the protein

phosphorylation can be achieved. It seems that

temporal buffers, like mitochondria for example,

may function as intermediate servers for the Ca2þ

distribution to different classes of target proteins.

The real physiological role of the temporal

buffers is poorly understood; however, it is well

known that they exist. In many cells, like in
chromaffin cells for example, it has been shown

that after the Ca2þ release from the ER, the ma-

jority of the Ca2þ (up to 80% [19]) is first seques-

tered by mitochondria, and after that, the Ca2þ is

slowly shifted to the cytosolic proteins. Also for

skeletal muscle cells, it is known that Ca2þ released

into the cytosol is first very rapidly sequestered by

intracellular organelles and fast-binding domains
of troponin C, and after a brief lag phase, the

bound Ca2þ population shifts to the slow-binding

protein parvalbumin [20].

Additional experimental studies will be neces-

sary to verify the biological relevance of our results.

In further studies, it would also be interesting to

investigate the influences of resonance effects on

bursting oscillations in other fields of research,
where such resonance effects may also be of

importance.
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