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Noise-induced spatial periodicity in excitable chemical media
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Received 9 April 2005; in final form 11 May 2005

Available online 9 June 2005
Abstract

We show that spatiotemporal noise acting on the illumination intensity of an excitable photosensitive Belousov–Zhabotinskii

medium, modelled by the diffusively coupled two-component Oregonator kinetics, is able to extract a characteristic spatial frequency

of the system in a resonant manner. We emphasize that thereby the system is locally initiated from steady state excitable conditions

so the observed patterns are exclusively noise induced. Thus, the reported phenomenon is a novel observation of spatial coherence

resonance in excitable chemical media.

� 2005 Elsevier B.V. All rights reserved.
1. Introduction

Since the early experiments with the Belousov–Zhab-

otinskii (BZ) medium [1,2], target patterns have become

the most distinctive and visually compelling examples of

self-organization in chemical systems. Coherent spatial

structures have also been observed in catalytic surface

reactions [3], cardiology [4] and neurophysiology [5],

as well as optical devices [6].

Given the ubiquity of wave-like behaviour in chemi-
cal media, several studies have been devoted to the anal-

ysis of these fascinating phenomena [7–13]. A

particularly interesting aspect of media dynamics that

has recently attracted much interest is the ability of

noise to induce spatiotemporally ordered behaviour

[14]. Spatiotemporal stochastic resonance has been first

reported in [15] for excitable systems, while explicit spa-

tial coherence resonance has been introduced in [16] for
systems near pattern-forming instabilities. Moreover,

there exist studies reporting noise-induced spiral growth

and enhancement of spatiotemporal order [17–19], noise

sustained coherence of space-time clusters and self-
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organized criticality [20], noise-induced excitability

[21], noise-induced propagation of harmonic signals
[22], as well as noise sustained and controlled synchroni-

zation [23] in space extended systems. Particularly for

chemical systems, there also exist several theoretical

and experimental studies reporting a constructive effect

of noise on the spatiotemporal dynamics of chemical

media [24–28]. Despite vast literature existing on this to-

pic, little attention has been devoted to the explicit anal-

ysis of characteristic spatial frequencies of non-linear
media. Besides the work of Carrillo et al. [16], there exist

no studies reporting resonant enhancement of an inher-

ent spatial frequency in space extended systems.

In the present study, we analyse spatial frequency

spectra of excitable chemical media in dependence on

different noise intensities. We show that spatiotemporal

noise acting on the illumination intensity of an excitable

photosensitive Belousov–Zhabotinskii medium [29], lo-
cally modelled by the Oregonator kinetics [30], is able

to extract an inherent spatial frequency of the system

in a resonant manner. By calculating the average spatial

structure function, we present first evidences for spatial

coherence resonance in excitable media. Note that

although coherence resonance phenomena have been

extensively studied in arrays of dynamical systems

[31,32] as well as systems with spatial degrees of freedom
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[25–28], our work focuses explicitly on the spatial [16]

rather than temporal or spatiotemporal system scale.

Given the novelty of reported spatial coherence reso-

nance in excitable media, our work hopefully outlines

some possibilities for future experimental work, espe-

cially in chemistry, but also in other fields of research
such as cardiology and neurophysiology, where excit-

ability and noise in space extended systems appear to

be universally present.
2. Mathematical model

The spatial dynamics of the excitable Belousov–
Zhabotinskii medium is studied by using the photosensi-

tive version [29] of the reduced Oregonator model [33]

given with the equations:

du
dt

¼ 1

e
u� u2 � ðfvþ /Þ u� q

uþ q

� �
þ Dr2u; ð1Þ

dv
dt

¼ u� v; ð2Þ

where the dimensionless concentrations of bromous acid

u(x,y, t) and the oxidised form of the light-sensitive cat-
alyst v(x,y, t) are considered as two-dimensional scalar

fields on a n · n square lattice with mesh size

Dx = 0.3125. Parameters e = 0.077 and q = 0.002 deter-

mine the kinetics of the reaction, f = 1.4 is a stoichiom-

etric parameter, whereas / is proportional to the

illumination intensity, which is given by / = /0 + n,
where n is Gaussian noise with zero mean, white in space

and time, and variance r2 [14]. The Laplacian D$2u, D
being the diffusion coefficient for u, is integrated into

the numerical scheme via a five-point finite-difference

formula with no-flux boundary conditions. For above

fixed parameter values and small /0 the local determin-

istic kinetics is oscillatory, while beyond the supercritical

Hopf bifurcation at /0 = 4.4 · 10�3 an excitable steady

state governs the dynamics. In following calculations,

we set /0 = 0.01 and initial conditions satisfying
du/dt = dv/dt = 0.0. Thus, under deterministic condi-

tions all lattice sites would remain forever in their initial

excitable steady states and the medium strictly unable to

exhibit wave-like behaviour. On the other hand, small

noisy perturbations of the illumination profile locally

evoke non-trivial spike-like behaviour, which can induce

regular wave propagation in the spatial domain of the

space extended system [26–28]. Note that noise acting
additively on /0 is in fact multiplicatively coupled to

the state of the system u, thus introducing a determinis-

tic non-negative contribution to the dynamics at first or-

der in noise intensity [14,26]. However, since in our case

the applied r2 are small (see below), this effect does not

induce a shift in the dynamics governing the system, and

thus the observed phenomenon is not a consequence of a
noise-induced phase transition as reported in [21], for

example, but must be attributed to noise-induced thresh-

old crossing events. In what follows, we will show that

there exists an optimal noise intensity for which a partic-

ular spatial frequency of the studied system is resonantly

enhanced, thus providing first evidences for spatial
coherence resonance in excitable chemical media.
3. Spatial coherence resonance

To quantify effects of various noise intensities on the

spatial scale of the studied system we calculate the struc-

ture function according to the equation

P ðkx; kyÞ ¼ hH 2ðkx; kyÞi=S; ð3Þ
where H(kx,ky) is the spatial Fourier transform of the u

– field at a particular t, S is the area of the system, and

Æ. . .æ is the ensemble average over noise realizations.
Note that P(kx,ky) can also be interpreted as the spatial

power spectrum of the system. To study results obtained

according to Eq. (3) in more detail, we exploit the spher-

ical symmetry of the spatial power spectra as proposed

in [16]. In particular, we calculate the spherical average

of the structure function according to the equation

pðkÞ ¼
Z
Xk

P ð~kÞ dXk; ð4Þ

where~k ¼ ðkx; kyÞ, and Xk is a spherical shell with radius

k ¼ j~kj. Fig. 1a shows results for various r2. It can be

well observed that there indeed exists a particular spatial

frequency, marked with the vertical dashed line at kmax,
that is resonantly enhanced for some intermediate noise

intensity. To quantify the ability of each r2 to extract the

characteristic spatial periodicity in the system more pre-

cisely, we calculate the signal-to-noise ratio (SNR) as the

peak height at kmax normalized with the background

fluctuations existing in the system. This is the spatial

counterpart of the measure frequently used for quantify-

ing constructive effects of noise in the temporal domain
of dynamical systems, whereas an identical measure for

quantifying effects of noise on the spatial scale of space

extended systems was also used in [16]. Fig. 1b shows

how the SNR varies with r2 for three different diffusion

constants D. It is evident that there always exists an

optimal noise intensity for which the peak of the spher-

ically averaged structure function is best resolved, there-

by indicating the existence of spatial coherence
resonance in the studied excitable chemical media.

The existence of a preferred spatial periodicity in the

studied excitable media for certain noise intensities can

be well corroborated by studying snapshots of typical

u – field configurations for optimal r2 and various D,

as presented in Fig. 2. It is evident that optimal r2 at

each particular D clearly enhance a particular spatial

scale, thus providing visible evidences that corroborate



Fig. 1. Spatial coherence resonance in the studied excitable media:

(a) spherical average of the structure function for various r2 at D=0.5;

(b) SNR in dependence r2 for various D.
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results presented in Fig. 1. Interestingly, note how the

width of the wave pattern representing the characteristic

scale of the system, i.e., the inverse of kmax, increases

with increasing D. As we will argue next, this property

is crucial for explaining the observed spatial coherence

resonance in the studied chemical media.

To explain the above-reported phenomenon, we first

briefly summarize findings regarding the temporal
coherence resonance in excitable systems [34]. It is

known that excitable systems have a characteristic firing

time te, termed excursion time, which is well preserved

under variable noisy perturbations. Contrary, the aver-

age time between consecutive firings ta, termed activa-

tion time, depends heavily on the noise intensity, i.e.,

decreases with increasing r2. The time coherence of the

system is best pronounced when r2 is large enough so
that ta � te, but still small enough so that fluctuations

of te remain moderate and thus the outline of excursion

phase smooth [34].

These different noise dependencies of te and ta, to-

gether with the rate of diffusive spread that is propor-

tional to
ffiffiffiffi
D

p
, hold also the key to understanding the

spatial coherence resonance in excitable media. We ar-

gue that during te each particular lattice site acts like a

circular (after local initialisation all directions for

spreading are equally probable) front initiator. After ini-

tialisation the front starts to spread through the media

with a rate proportional to
ffiffiffiffi
D

p
. When embarking on

neighbouring sites the front can, depending on r2, cause
new excitation or eventually die out. In particular, if r2

is large enough, i.e, ta short enough, neighbouring sites

have a large probability to also become excited, which

eventually nucleates a wave that propagates through

the media. Analogous to the time domain, for this to

happen the noise level also has to be sufficiently small

so that the outline of the excursion phase remains

smooth, which constitutes a nearly deterministic nucleus

formation in the spatial domain and guarantees that lo-
cally initiated excitations can merge into spatially coher-

ent structures. Since larger D constitute faster diffusive

spread, it is understandable that the characteristic spa-

tial scale of coherent structures induced by increasing

D increases (see Fig. 2). However, since for larger D lo-

cal excitations tend to die out more quickly, and larger

coherent structures also require a higher rate of local

excitations to propagate through the media, it is evident
that shorter ta (larger r2) are required to produce sus-

tained waves. This also explains the increasing r2 that

is required for the optimal response at ever larger D,

as shown in Fig. 1b. Furthermore, since larger r2 blur

local excursion phases (te) as well, the maximal spatial

coherence that can be achieved by noise decreases with

increasing D (see Fig. 1b).

Finally, it is of interest to explain the existence of a
particular spatial periodicity. We argue that the charac-

teristic noise robust excursion time te, combined with the

diffusive spread rate proportional to
ffiffiffiffi
D

p
, marks a char-

acteristic spatial scale of the system that is indicated by

the resonantly enhanced spatial wave number kmax.

Since the characteristic spatial scale is determined by

the inverse of the resonantly enhanced spatial wave

number kmax, our reasoning thus predicts the depen-
dence kmax ¼ 1=

ffiffiffiffiffiffi
sD

p
, whereby s � te � constant. Fig. 3

shows numerically obtained kmax for different D. It is

evident that obtained values are in excellent agreement

with the inverse square root function, thereby validating

our above explanation. Nevertheless, an open question

remains how the constant s is explicitly linked to te,

which is left as a problem to be solved in future studies.

The main point is that the inverse square root function
fits to the numerically obtained values with a constant

s, which reflects a noise robust te that is characteristic



Fig. 2. Characteristic snapshots of the spatial profile of u for various D at optimal r2. Note that all figures are depicted on 128 · 128 square grid.
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for excitable systems [34]. Together with a given D, this

property of excitable systems constitutes an inherent

spatial scale that can be resonantly enhanced by noise,

thus explaining the existence of spatial coherence reso-

nance in the studied excitable chemical media.
4. Discussion

We show that spatiotemporal noise is able to extract

a characteristic spatial scale of the excitable chemical

media in a resonant manner. In particular, there exist



Fig. 3. Resonantly enhanced spatial wave number kmax (see Fig. 1a) in

dependence on different values of D. Dots indicate numerically

obtained values, whereas the solid line indicates the predicted

kmax ¼ 1=
ffiffiffiffiffiffi
sD

p
dependence for s = 5.8.
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an optimal level of additive noise acting on the illumina-

tion intensity of an excitable photosensitive Belousov–

Zhabotinskii medium for which the spatial periodicity
of the system is best pronounced. Thereby, no addi-

tional deterministic inputs were introduced to the system

and the latter was initiated from steady state excitable

conditions. Thus, the presented results offer convincing

evidence for the existence of spatial coherence resonance

in the studied excitable chemical media.

Noteworthy, the phenomenon of spatial coherence

resonance has been first reported by Carrillo et al. [16]
for the chlorine dioxide–iodine–malonic acid chemical

reaction system. In dependence on the illumination

intensity, and for large differences between the diffusion

coefficients of the activator and inhibitor, the latter sys-

tem exhibits a pattern-forming supercritical Turing

bifurcation, which gives rise to a preferred noise-induced

spatial periodicity. In the present case, the situation is

different since the resonant spatial frequency does not
emerge as a noisy precursor of a pattern-forming bifur-

cation, but is a consequence of a noise robust excursion

time that is characteristic for excitable systems whereby

the diffusion constant, representing the rate of diffusive

spread, determines the actual resonant spatial fre-

quency, which decreases with increasing D.

Our results thus extend the theoretical knowledge as

well as possibilities for future experimental work regard-
ing the analysis of spatial dynamics from systems near

pattern-forming instabilities, present for example in

chemical reaction systems, electro-convection, Rayleigh-

Bénard convection and granular media [16], to excitable

media, which are also ubiquitous in all areas of science
ranging from chemistry, neurophysiology, cardiology

and physics of optical devices [35].
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