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From stochasticity to determinism in the collective dynamics
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Received 8 November 2005; in final form 17 January 2006
Available online 13 February 2006
Abstract

We report a novel mechanism for the transition from stochasticity to determinism in Ca2+ oscillations via diffusive coupling of indi-
vidual cells that are modelled by stochastic simulations of the governing reaction-diffusion equations. In particular, we show that by
physiologically relevant conditions the collective dynamics of coupled cells is, unlike by isolated cells, deterministic for large enough
ensemble sizes. The presented results explain the discrepancy regarding stochastic vs. deterministic nature between real-life recordings
of physiological functions at cellular and organic level.
� 2006 Elsevier B.V. All rights reserved.
1. Introduction

Biochemical systems are commonly modelled by differ-
ential equations or simulated by stochastic algorithms.
The deterministic approach can be justified only when the
participating molecule numbers are high enough to be
approximated by concentrations. For low particle numbers
stochastic algorithms are more accurate, but also computa-
tionally more expensive. Modelling of cellular processes,
like Ca2+ oscillations, for example, is a typical example
where the question arises whether the deterministic or the
stochastic approach should be used. Many deterministic
models have been developed in order to explain the occur-
rence of Ca2+ oscillations in the cell [1,2]. However, the
number of receptors and ion channels in the cell can be
very low (in the range of 103–105 per cell), thus leading also
to stochastic modelling of Ca2+ oscillations [2].

In the past, several approaches were proposed and
developed in order to take into account influences of sto-
chastic effects due to the fluctuations in particle number
or the uncertainty related with the execution of a particular
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reaction. Very often, the behaviour of such chemical sys-
tems was investigated when the control parameters or sys-
tem variables were perturbed by noise [3–9]. As an
alternative, stochastic modelling approaches involving
numerical Monte-Carlo simulations of the master equation
[10–13] were used. Recently, these methods have been
employed very successfully for stochastic modelling of cel-
lular biochemical systems [14–18].

Comparisons of the results obtained by stochastic and
deterministic modelling of cellular oscillators have shown
that qualitative differences between the outputs are possi-
ble. For example, it has been shown that for a deterministic
steady state the stochastic model can yield oscillatory solu-
tions [15,16], whereby this is true only for an intermediate
volume considered in the stochastic simulation; whereas for
a very large volume, i.e., when the number of involved par-
ticles is very high, it is known that stochastic solutions con-
verge to the deterministic limit [10,11,15].

In addition to the well-known convergence of a stochas-
tic solution to its deterministic limit when the number of
particles in the cell increases, we presently present a new
mechanism for the transition from stochasticity to deter-
minism via diffusive coupling of individual cells. We show
that the collective dynamics of coupled cells becomes deter-
ministic for large enough ensemble sizes, although the sin-
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gle cell dynamics is by physiological conditions still sto-
chastic. Our simulations are in accordance with real-life
recordings of physiological functions at the cellular and
organic level, thus providing ample support for determinis-
tic modelling on macro system scales.

2. Single cell dynamics

We start by studying Ca2+ oscillations outputted by a
single stochastically simulated cell. Specifically, we focus
on the stochastic vs. deterministic nature of obtained solu-
tions for physiologically relevant conditions regarding the
number of Ca2+ ions forming the solutions. To this pur-
pose, we use the model proposed by Houart et al. [19],
and the Gillespie’s simulation method [10,11]. The mathe-
matical model considers changes of free Ca2+ concentration
in the cytosol (Z) and in the intracellular Ca2+ store (Y), as
well as the dynamics of IP3 (A). We simulate the behaviour
of the model by using parameter values for which the differ-
ential equations yield simple spike-like oscillations when
integrated by a deterministic Runge–Kutta procedure.
The parameter values, with the same notation as introduced
in [19], are listed in the caption of Fig. 1.
Fig. 1. Phase space plots (top row) and the pertaining average directional vect
Left two panels: N = 6000 (V = 10 lm3, j � 0.4); right two panels: N = 240000
K5 = 0.3194 lM, KA = 0.1 lM, Kd = 1.0 lM, KY = 0.3 lM, KZ = 0.6 lM, k =
V1 = 2.0 lM s�1, VM2 = 6.0 lM s�1, VM3 = 30.0 lM s�1, VM4 = 3.0 lM s�1 an
To evaluate the level of determinism in the system, we
use the method originally proposed by Kaplan and Glass
[20], which is based on measuring average directional vec-
tors in a coarse-grained phase space. The idea is that, in
case of a deterministic solution, neighbouring trajectories
in a small portion of the phase space should all point in
the same direction, i.e., not cross, thus assuring uniqueness
of solutions, which is the hallmark of determinism. The
determinism factor 0 6 j 6 1 is obtained by calculating
the average length of all resultant vectors pertaining to a
particular phase space box, whereby the resultant vectors
are obtained by assigning a unit vector to each pass of
the trajectory through a particular phase space box and
calculating their vector sum. Hence, if the dynamics of
oscillations is deterministic, the average length of all direc-
tional vectors j will be 1, while for a completely random
system j = 0.

When simulating an isolated system stochastically, the
defining quantity determining whether the output will be
stochastic or deterministic is the number of reactants N

actively participating in forming the solution. In our case,
N is the number of Ca2+ ions in the smallest compartment
considered by the model. Since concentrations Z, Y, and A
or field approximations (bottom row) for one stochastically simulated cell.
(V = 400 lm3, j � 0.9). Other system parameters: b = 0.64, K2 = 0.1 lM,
10.0 s�1, kf = 1.0 s�1, e = 11.0 s�1, n = 4, m = 2, p = 1, V0 = 2.0 lM s�1,
d VM5 = 50.0 lM s�1.



Fig. 2. Transition from stochasticity to determinism in a single stochas-
tically simulated cell by increasing the value of N. The dashed line marks
the physiologically relevant state given by N = 18000 (V = 30 lm3).
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are of the same order of magnitude, the number of particles
depends directly on the volume of the corresponding com-
partment. Thus, the smallest N is given by the number of
Ca2+ ions in the intracellular Ca2+ store Y. Fig. 1 shows
two phase space portraits obtained for different N and
the corresponding average directional vector field approxi-
mation obtained as outlined above. It is evident that sto-
chastic effects are much more pronounced for small N,
whilst for substantially larger N basically all resultant vec-
tors are of unit length, which is a strong indicator for com-
plete determinism. This is in agreement with the existing
theory claiming that for large enough N the stochastic solu-
tion converges to the deterministic limit [10,11,15].

The question arises which of the two solutions presented
in Fig. 1 better mimics a real-life experimental recording. In
order to answer this question, we have to determine the
number of particles N that corresponds to the free Ca2+

concentration in Y, which from Fig. 1 can be seen to equal
approx. 1 lM (on average). Considering a typical cell with
a volume of about 900 lm3, the endoplasmic reticulum
(ER), representing the main Ca2+ store, has a volume of
about 30 lm3. Thus, by assuming that roughly the whole
ER is available for Ca2+ storage, we consider 30 lm3 being
a good approximation for the volume of the smallest intra-
cellular Ca2+ compartment considered by the studied
model [19]. By calculating the particle number N for the
average Ca2+ concentration 1 lM and the volume
30 lm3, we obtain N � 18 000, which indicates that the left
panels in Fig. 1 better resemble the reality than the ones on
the right.

To obtain a more accurate insight into the dynamics of a
single stochastically simulated cell at physiological numbers
of Ca2+ ions, we present j in dependence on various N in
Fig. 2. It is evident that for physiologically relevant condi-
tions (N � 18000, V � 30 lm3) j � 0.6, which suggests that
real-life measurements of Ca2+ oscillations in a single cell
can hardly be expected to be fully deterministic. Although
a detailed study of such real-life recordings has not yet been
made, our results can be qualitatively confirmed solely by
visually inspecting the experimental traces available in liter-
ature [21–24], where a substantial base-line noise as well as
quite heavily fluctuating peak heights can be inferred.
Although these noisy features can (and should) at least to
some extend be attributed to the measurement error, our
theoretical results indicate that also the internal cell dynam-
ics is to be held responsible. Indeed, Wolf et al. [25] report
that mechanisms assuring intracellular Ca2+ oscillations
are much more sensitive to fluctuations than, for example,
circadian rhythms where deterministic oscillations can be
obtained already at much smaller N. Interestingly, this is
mainly due to the fact that Ca2+ oscillations rely on positive
feedback loops, whilst circadian rhythms are driven by neg-
ative feedback loops. In the following section, we will show
that diffusive coupling of individual cells eliminates the sto-
chastic fingerprint of oscillations in a single cell, which
explains the origin of determinism observed in experimental
recordings obtained at the organic level [26,27].
3. Transition to determinism via cell coupling

The diffusive coupling of individual cells is modelled by a
one-dimensional chain, whereby we introduce an additional
flux of the form D$2Zi to the differential equation model-
ling changes of cytosolic Ca2+ concentration in each of
the i = 1, 2, . . . , S coupled cells. The Laplacian is integrated
into the numerical scheme via a first-order numerical
approximation D(Zi� 1 + Zi + 1 � 2Zi), yielding nearest
neighbour interactions, and periodic boundary conditions,
whereby D = 70 s�1 already incorporates the spacing
between individual cells. Noteworthy, although several
authors have emphasised also the importance of IP3 for
intercellular communications [28,29], we find that below
results do not differ considerably if we include also coupling
via the variable A. Thus, for simplicity but without loss of
generality, we presently do not consider diffusive coupling
via IP3 in our calculations. Moreover, the collective dynam-
ics of the ensemble is approximated via a simple mean-field
approximation given by ðZ; Y ;AÞ ¼ ð1=SÞ

PS
i¼1ðZi; Y i;AiÞ,

where S is the number of coupled cells.
Fig. 3 shows time courses of Z for two different S. It is

evident that as S increases, the time traces become increas-
ingly noise free and smooth, i.e., deterministic. Particularly,
while the oscillations outputted by a single cell resemble
experimentally obtained traces in that base-line and peak
height fluctuations are well pronounced, the collective
dynamics by S > 1 is far more deterministic and has more
the characteristics of an experimental recording obtained
at the organic level, such is for example an ECG [27].

This visual assessment of the transition from stochasticity
to determinism can be made quantitative by calculating j for
different S. The results in Fig. 4 show that the stochastic fin-
gerprint of oscillations vanishes as S increases. Thereby, we



Fig. 3. Temporal plots of Z for S = 1 (top panel) and S = 100 (bottom
panel) obtained by setting N = 18000 for each individual cell.

Fig. 4. Transition from stochasticity to determinism via diffusive coupling
of several stochastically simulated cells by physiologically relevant
conditions.
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show that diffusive coupling of individual stochastically sim-
ulated cells can induce a transition from stochasticity to
determinism in the limit of large enough system sizes. It
should be noted, of course, that the minimal value of S nec-
essary for complete determinism (j � 1) increases if the num-
ber of active Ca2+ ions N pertaining to a single cell decreases.
However, we find that for S P 100 the system can be consid-
ered deterministic for all physiologically feasible settings.

Importantly, we note that the transition to determinism
can be observed only at the collective level meaning that
individual cells, even if coupled, still do not show fully
deterministic behaviour. In particular, if one cell is simu-
lated individually for a given N, its trace has the same j
as either of the traces pertaining to an individual cell form-
ing the diffusively coupled ensemble. This implies that even
under coupled conditions intracellular signalling still suf-
fers from stochasticity. However, we emphasise that such
signals, although somewhat burdened with noise
(j � 0.6), can still have a well-defined frequency and peak
heights, as shown in the top of Fig. 3, and are thus able
to efficiently encode information either in their amplitude
and/or in frequency. In this sense, it should not be assumed
that stochasticity in a single-cell dynamics renders the
whole behaviour physiologically irrelevant.

To explain these results, we argue that the reported tran-
sition from stochasticity to determinism is twofold. First, it
should be noted that the mean-field approximation of the
collective dynamics averages out at least some part of
base-line fluctuations that can be observed by single cell
oscillations. More importantly, however, the transition
from stochasticity to determinism occurs due to the
increase of the effective total system volume, which in the
limit case D!1 would simply imply N! SN. We
emphasise also that the diffusive coupling induces self-
organisation of the system dynamics. In particular, the
coupled cells self-organise their dynamics with respect to
D and S, which in turn leads to locally synchronous oscil-
lations and an overall decrease in stochasticity in the collec-
tive dynamics of the system as presented in Figs. 3 and 4.

4. Discussion

We show that diffusive coupling of individual stochasti-
cally simulated cells at physiologically relevant conditions
can induce a transition from stochastic to deterministic
behaviour in the collective dynamics of the system for large
enough ensemble sizes. In particular, while a single cell at
physiological conditions, whether uncoupled or coupled
with its neighbour, exhibits a largely stochastic oscillatory
behaviour with well-expressed base-line and peak height
fluctuations, these stochastic markers vanish in the collective
dynamics as the number of diffusively coupled cells increases.
We argue that this transition occurs due to the mean-field
effect and the increase of the effective total system volume,
whereby a self-organizing effect on the system dynamics sets
in, which leads to an overall decrease in stochasticity in the
collective system dynamics. Importantly, the self-organisa-
tion manifests also as synchronisation of Ca2+ oscillation
in neighbouring cells, which despite the fact that the deter-
minism in each individual cell is not enhanced, still improves
the overall reliability of the system in that vital information is
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no longer encoded only by the dynamics in a single cell, but is
effectively emitted by a whole cluster of nearby cells in which
the concentration of Ca2+ oscillates with the same amplitude
and/or frequency.

The presented results have important real-life implica-
tions. It is a well-established fact that virtually all real-life
phenomena at small scales, i.e., cellular level, are heavily
affected by the internal stochasticity given by the probabil-
ity rather than a definite deterministic kinetic rate that
some reaction will or will not occur [2,30]. Thus, it is not
at all surprising that real-life experimental recordings of
cellular functions often yield stochastically appearing
traces, which we also confirmed presently by our theoreti-
cal calculations. On the other hand, recordings of physio-
logical functions at organic level are often deterministic
in appearance, which was confirmed mathematically
numerous times for ECGs [27] and human locomotion
[26], for example. Our theoretical results suggest that this
discrepancy between experimental recordings obtained at
cellular level and organic level can be attributed to the
self-organisation of individual oscillators due to influences
from neighbouring cells, which ultimately leads to the
decrease in stochasticity in the collective dynamics of the
whole organ. Noteworthy, synchronisation and phase syn-
chronisation of coupled noisy oscillators has been the sub-
ject of several theoretical and experimental studies [31–34].
Although not directly linked to Ca2+ oscillations, phenom-
ena described there appear to be generic and can thus be
viewed as a source of inspiration for the present work.
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