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Taming desynchronized bursting with delays

in the Macaque cortical network∗
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Inhibitory coupled bursting Hindmarsh–Rose neurons are considered as constitutive units of the Macaque corti-

cal network. In the absence of information transmission delay the bursting activity is desynchronized, giving rise to

spatiotemporally disordered dynamics. This paper shows that the introduction of finite delays can lead to the synchro-

nization of bursting and thus to the emergence of coherent propagating fronts of excitation in the space-time domain.

Moreover, it shows that the type of synchronous bursting is uniquely determined by the delay length, with the transi-

tions from one type to the other occurring in a step-like manner depending on the delay. Interestingly, as the delay is

tuned close to the transition points, the synchronization deteriorates, which implies the coexistence of different bursting

attractors. These phenomena can be observed by different but fixed coupling strengths, thus indicating a new role for

information transmission delays in realistic neuronal networks.
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1. Introduction

The brain is a complex network of neurons ex-
hibiting a fascinating richness of behaviour, which al-
low it to perform the most intricate tasks with cog-
nition and reliability. Synchronization[1] of the dy-
namics in the cortical network has been suggested as
particularly relevant for the efficient processing and
transmission of neuronal signals (see e.g. Refs. [2]
and [3]). To this date, synchronized states have
been demonstrated to occur in many special areas
of the brain, such as the olfactory system or the
hippocampal region.[4−6] Based on mainly theoreti-
cal analysis, neuronal synchronization on complex net-
works has been explored in detail,[7−16] leading to sev-
eral insights which have the potential of applicability
on realistic problems in the neurosciences. For ex-
ample, synchronization of gap–junction-coupled neu-
rons has been investigated, where the dependence
of neuronal synchronization on the coupling strength
was explored.[12] Moreover, the synaptically coupled
Hodgkin–Huxley neurons with time-dependent con-
ductance of the synapse were demonstrated to ex-

hibit rich dynamics including in-phase, anti-phase
and chaotic oscillations.[13] Synchronization and co-
herence of chaotic Morris–Lecar neural networks have
been investigated and it has been found that there
is an optimal number of shortcuts at which the
collective behaviour of neurons is most ordered.[14]

The influence of the coupling strength and network
topology on synchronization was investigated also for
networks of bursting Hindmarsh–Rose neurons with
chemical synapses.[15] Interestingly, it was reported
that chemical and electrical synapses perform comple-
mentary roles in the synchronization of interneuronal
networks.[16]

Bursts of spikes, as opposed to single spikes, are
considered to enhance the reliability of communica-
tions between neurons by facilitating transmitter re-
lease. Bursting synchronization likely plays many sub-
tle information processing roles in healthy neuronal
tissue.[17] Experimentally, burst synchronization has
been considered within cell cultures, where the in-
teraction of spontaneous bursts, stimulation-induced
bursts and propagation of activity could be studied
conveniently.[18] Theoretical studies considering the
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Perc individually acknowledges support from the Slovenian Research Agency (Grant No. Z1-2032).
†Corresponding author. E-mail: nmqingyun@163.com

c© 2011 Chinese Physical Society and IOP Publishing Ltd
http://www.iop.org/journals/cpb　http://cpb.iphy.ac.cn

040504-1



Chin. Phys. B Vol. 20, No. 4 (2011) 040504

synchronization of bursting oscillations have also at-
tracted considerable attention in recent years.[19−21]

In particular, the dependence of the chaotic phase syn-
chronization on the coupling properties and an exter-
nally applied time-periodic signal were demonstrated
on scale-free networks of bursting neurons.[19] More-
over, bursting synchronization was investigated also
for a ring neuronal network, in which each neuron ex-
hibited chaotic bursting behaviour.[21]

Because of finite (non-zero) and varying signal
transmission speeds between different pairs of cou-
pled neurons, delays in information processing and
signal transmission in spatially distributed neuronal
systems are unavoidable. As such, they should not
be neglected and dismissed as being irrelevant. Some
experiments have actually shown that the delays can
reach up to 80 ms in cortical networks. Delays have
thus far been found responsible for several interest-
ing phenomena in coupled dynamical systems.[22−28]

For example, Ernst et al.[25] have identified mecha-
nisms of synchronization between pulse-coupled os-
cillators in the presence of time delays. Very re-
cently, it has been found that synchronization tran-
sitions between clustering anti-phase synchronization
and in-phase synchronization can be induced by in-
formation transmission delays in map-based neuronal
networks.[26,27] Also recently, Liang et al. studied the
effects of distributed time delays on phase synchro-
nization of bursting neurons.[28]

Here we aim at extending previous studies on
this topic by considering a real-life Macaque cortical
network,[29,30] hosting inhibitory coupled Hindmarsh–
Rose neurons[31] individually set to bursting mode.
We thus combine experimental findings with math-
ematical modeling to investigate the impact of infor-
mation transmission delays on the spatiotemporal dy-
namics and function of neuronal networks. If infor-
mation transmission delays are neglected, individual
neurons exhibit bursting oscillations which are vir-
tually completely uncorrelated across the whole net-
work, thus giving rise to an essentially disordered
spatiotemporal dynamics. Quite remarkably, if in-
formation transmission delays are introduced as an
integral part of the setup, we find that the disorder
can be tamed effectively by appropriately tuned de-
lay lengths. A further interesting fact is that increas-
ing delays not only lead to synchronized bursting, but
can also evoke period-adding bifurcations such that
the bursting pattern becomes increasingly complex,
i.e. which are characterized by an increasing number

of intra-burst spikes. Near these bifurcation points the
synchrony of excitatory bursts deteriorates slightly,
which suggests the coexistence of bursting attractors
in coupled neurons. We interpret these findings in
terms of eigen-frequencies which are routed in each
individual Hindmarsh–Rose bursting neuron, both in
the damped oscillations around the quasi-stable fo-
cus as well as the so-called global-resonant frequen-
cies that can be linked to intra-burst spikes.[32] We
also examine the robustness of our findings to different
coupling and external stimulus strengths and briefly
discuss their relevance for the field of neuroscience.

2. Mathematical model and setup

For the network hosting individual Hindmarsh–
Rose neurons,[31] we employ the cortical network
of one hemisphere of the Macaque monkey, as de-
scribed in Refs. [29] and [30] (data were obtained
from http://www.biological-networks.org). The con-
nections among different cortical areas were obtained
so that the average spatial positions of cortical ar-
eas were estimated on the basis of surface colour-
ing using the CARET software (van Essen Lab,
http://brainmap.wustl.edu/caret). The resulting net-
work consists of 95 cortical regions and 2402 links
among them, as shown in Fig. 1. A detailed analy-
sis of this network was performed in Refs. [29] and
[30], where it was shown, for example, that the distri-
bution of distances between nodes, i.e. the length of
connections, contains also long-range links. For more
details we refer the reader to the original papers.[29,30]

Fig. 1. Schematic presentation of the employed Macaque

cortical network, consisting of 95 nodes and 2402 links,

thus having average degree ≈ 25.3.

The mathematical model of the studied Macaque
cortical network is thus described by the following set
of equations:

ẋi = yi − ax3
i + bx2

i − zi + Ii
ext
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+ D(Vsyn − xi)
N∑

j=1

aijΓ (xj), (1)

ẏi = c− dx2
i − yi, (2)

żi = r[s(xi −X0)− zi], (3)

where xi is the membrane potential of the i-th neu-
ron, yi is associated with the fast current, Na+, or
K+ and zi is associated with the slow current, for
example, Ca2+. The parameters are taken as a =
1.0, b = 3.0, c = 1.0, d = 5.0, s = 4.0, X0 = −1.60
and r = 0.006. The Ii

ext is the external current of the
i-th neuron. With the change of parameter Ii

ext, the
Hindmarsh–Rose neuron exhibits rich firing behaviour
such as periodic spiking and bursting as well as chaotic
spiking and bursting. The D is the synaptic coupling
strength. The Vsyn is the synaptic reversal potential,
which is dependent on the type of synaptic transmitter
released from a presynaptic neuron and its receptors.
It determines whether the synapse is excitatory or in-
hibitory. In this paper, we consider the inhibitory net-
work, thus setting Vsyn = −1.8. The delayed synaptic
coupling function is modeled by the sigmoidal function
Γ (xj) = 1/(1+ exp{−λ[xj(t− τ)−Θs]}), where Θs is
the threshold, above which the postsynaptic neuron is
affected by the presynaptic one. We here take Θs = 0.
The λ = 30 represents a constant rate for the onset
of excitation or inhibition. The τ is the information
transmission delay among neurons, which is the main
parameter to be varied in this paper. Finally, regard-
ing the network links, we consider the non-weighted
case, that is, if the i-th neuron is connected to the
j-th neuron, aij = aji = 1. Otherwise, aij = aji = 0
and aii = 0.

3. Results

For the studied Macaque cortical network with
inhibitory synapses, we first investigate the effects of
different information transmission delays on the spa-
tiotemporal behaviour of neurons via space-time plots
presented in Fig. 2. We set the external stimulus
Ii
ext = 3.2 so that every neuron in the network is ini-

tially chaotically bursting. Results depicted in Fig. 2
illustrate the spatiotemporal dynamics of neurons for
characteristic values of the delay τ . It can be ob-
served that in the absence of information transmis-
sion delay, neurons are chaotic and unsynchronized
(see Fig. 2(a)). However, when the delay is set to
τ = 7.0, neurons can exhibit regular period one burst-
ing synchronization (see Fig. 2(b)). Subsequently, by

increasing the delay further, the synchronized burst-
ing pattern transits from a simple period-one to more
complex period-two, then to period-three and finally
period-four bursting, as evidenced in Figs. 2(c)–2(e).
Hence, it is demonstrated that the spatiotemporal
chaos of the network can be tamed effectively by
means of finite (non-zero) information transmission
delays. Moreover, it can be observed that the com-
plexity of the synchronized pattern increases with
longer delays. This shows that the firings of individual
neurons go through a series of period-adding bifurca-
tions. It can thus be concluded that finite information
transmission delays can play a central role in the gen-
eration of bursting patterns of neuronal activity on
the Macaque cortical network.

Fig. 2. Space-time plots of xi(t) obtained for D = 2.0 and

Ii
ext = 3.2 with different information transmission delays

τ : (a) 0, (b) 7, (c) 14, (d) 22, (e) 30. Notice how the

bursting synchronization and the number of spikes in one

burst increase as τ increases. In all panels the system size

is i = 1, 2, . . . , 95 and the colour profile is linear, white

depicting −2.0 and black depicting 2.5 values of xi(t) (the

scale is partitioned into ten different shades of gray to en-

able the colour coding of small-amplitude deviations from

the quasi-stable foci).

In order to supplement the visual assessment of
space-time plots presented in Fig. 2, it is instructive
to introduce and examine the average membrane po-
tential of the network. Accordingly, we introduce the
average membrane potential of all neurons X(t) as fol-
lows:

X(t) =
1
N

N∑
n=1

xi(t). (4)

It is evident from Eq. (4) that if the dynamics of
individual neurons is weakly correlated, i.e. desyn-
chronized, X(t) should fluctuate irregularly with small
amplitudes as the time is evolving. Conversely, X(t)
should exhibit regular bursting dynamics if all neurons
burst coherently. Hence, X(t) is a simple alternative
indictor, which can help us to identify the evolutionary
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behaviour of neurons constituting the Macaque corti-
cal network. Temporal courses depicted in Figs. 3(a)–
3(e) represent X(t) corresponding to the space-time
plots presented in Figs. 2(a)–2(e). Evidently, it can be
concluded that the desynchronized out-of-phase burst-
ing of individual neurons and the corresponding spa-
tiotemporally chaotic dynamics at τ = 0 gives way to
synchronized in-phase neuronal activity as τ increases,
thus supporting the conclusion that delays can be con-

sidered as important mediators of coherent neuronal

activity on realistic networks. The increment of the

complexity of the synchronous bursting pattern can

also be appreciated via X(t), as the simple bursting

oscillations at τ = 7 (see Fig. 3(b)) are replaced by in-

creasingly complex bursting oscillations with an ever

increasing number of intra-burst spikes as τ increases

[see Figs. 3(c)–3(e)].

Fig. 3. Temporal courses of the average membrane potential X(t), corresponding to the space-time plots presented in

Figs. 2(a)–2(e). Notice the increment in the number of intra-burst spikes as the delay increases. It is also worth while

noting that the synchronization seems to deteriorate minutely, if at all, as the complexity of the bursting pattern increases

[note that X(t) would deteriorate in amplitude drastically in case of desynchronization or even phase slips].

It remains interesting to analyse the observed pat-
terns of neuronal activity also quantitatively by means
of measures which can characterize spatiotemporal
system dynamics as well as synchronization. For this
purpose, we define two quantities. First is the mem-
brane potential covariance, defined as

m = 〈xixj − 〈xi〉2t,N 〉t,N , (5)

with 〈· · ·〉t,N denoting time and network averages.
The membrane potential covariance m is a measure
of the average global network synchronization. The
more synchronous the neuronal network is, the larger
the parameter m is. In addition, it can also identify
transitions between different patterns of bursting, as
we will show below. Thus, m can be dubbed as the
bursting synchronization transition parameter. The
second quantity is the characteristic correlation time
q, which measures the ordered behaviour of neuronal
firings. Based on the normalized autocorrelation func-
tion ci(τd), it is defined as

ci(τd) =
〈(xi(t)− 〈xi(t)〉)(xi(t + τd)− 〈xi(t)〉)〉

〈(xi(t)− 〈xi(t)〉)2〉 , (6)

where xi(t) is the membrane potential of the i-th neu-
ron at time t, τd is the time delay and 〈·〉 denotes
the average over the time. The characteristic corre-
lation time for the i-th neuron is then evaluated by
τi,c = (1/T )

∫
T

c2
i (t)dt (see Ref. [33]). In the present

case of the limited and discrete sampling with N0 data
points for each neuron, the characteristic correlation
time is given as follows:

τi,c =
1

N0∆t

N∑

k=1

c2
i (τk)∆t, (7)

where τk = k∆t with ∆t being the sampling time, and
N0∆t the length of time series. Then, q is defined as

q = 〈τi,c〉, (8)

where 〈·〉 is the average value over all neurons. It is
known that the more ordered a neuron is, the longer
its characteristic correlation time is. Therefore, q is
called the order parameter and can be used to measure
the degree of spatiotemporal order in the considered
neuronal network.
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The bursting synchronization transition param-
eter m is plotted in Fig. 4(a) for different values of
D in dependence on τ . It can be observed that m

increases steadily with τ almost independently of D

(as expected, higher values of D altogether elevate
m slightly, but the characteristic features remain pre-
served). This thus agrees with the above visual ob-
servations, indicating that finite information trans-
mission delays promote synchronous bursting activ-
ity and tame the disordered behaviour observed for
τ = 0. Moreover, the step-like increase in the param-
eter m indicates that the number of spikes in each
burst increases from one to four through the whole
network as the delay increases, as indicated by the
added labels in Fig. 4(a). Interestingly, in-between
two different bursting patterns the finite slope in m

suggests that there exists a narrow region, where the
two attractors coexist. These observations can be fur-
ther supplemented by examining the order parameter
(characteristic correlation time) q, which is depicted
in dependence on τ in Fig. 4(b). The descends in q

following nearby the period-adding bifurcations agree
nicely with the behaviour of m, thus affirming the co-
existence of different bursting attractors in a narrow
region of τ near the transition points. However, the
order is quickly regained as one of the two bursting
attractors competing for supremacy in the system’s
spatiotemporal dynamics fully gives way to the other.

Fig. 4. (a) Dependence of the bursting synchronization

parameter m on τ for different values of the coupling

strength D. (b) Dependence of the order parameter (char-

acteristic correlation time) q on τ for different values of the

coupling strength D. See also main text for details.

An interpretation of the observed impact of finite
(non-zero) values of τ on the spatiotemporal neuronal
dynamics can be obtained by studying the robust-
ness of the results upon varying the external stimu-
lus I. The latter parameter determines the inherent

dynamics of each neuron and it is instructive to ex-
amine how the delay lengths, responsible for the on-
set of synchrony of different bursting patterns, vary
dependently on I. In Fig. 5, we plot m in depen-
dence on τ for different values of I. It can be ob-
served that the bursting synchronization transitions
still occur (denoted by integer values indicating the
number of intra-burst spikes), yet at lower values of
I, an increase of larger τ is required for the same ef-
fect. We argue that the transitions to synchrony are
due to a resonant match between the delay length and
the eigen-frequency of each Hindmarsh–Rose neuron
which is routed in the damped oscillations around the
quasi-stable foci.[32] Since the latter decreases as I de-
creases (the distance between consecutive burst be-
comes larger; note that for low I a Hopf bifurcation
to steady state dynamics occurs[31]), the information
transmission delay required for inducing synchronized
bursting increases. Accordingly, more frequent transi-
tions can be observed when I is large. For example, for
I = 2.0 the neurons transit from period-one bursting
to period-two bursting in the considered delay inter-
val; whereas for I = 3.2 they transit from period-one
up to period-four bursting inclusive in the same delay
interval. We speculate that the synchronous bursting
patterns following the period-one bursting are prob-
ably related to the global resonant frequency which
manifests through the intra-burst inter-spike intervals
and cannot be detected by the traditional local sta-
bility analysis,[32] although we were unable to show
this conclusively with our resources. Nevertheless, the
presented results clearly attest to the fact that appro-
priately tuned delay lengths can tame the desynchro-
nized bursting in the Macaque cortical network, with
further increments of the delay enabling the selection
of complexity of the bursting patterns in terms of the
number of intra-burst spikes.

Fig. 5. Dependence of the bursting synchronization pa-

rameter m on τ for different values of the external stimulus

I. See also main text for details.
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4. Summary and discussion

In summary, we have demonstrated the possibil-
ity of taming desynchronized bursting activity with fi-
nite information transmission delays. We have shown
that finite, i.e. non-zero, delays induce synchronized
bursts of activity, with the bursting type depending in-
tricately on the delay length. In general, longer delays
have been found to induce synchronized bursting with
a larger number of intra-burst spikes. The transitions
between different bursting types are accompanied by
a decrease in the synchronization, which implies the
coexistence of two different bursting attractors com-
peting for supremacy in the system’s spatiotemporal
dynamics. These observations are, however, typically
limited to a rather narrow interval of delay lengths.
We have also tested the robustness of these findings
on variations of the coupling strength and the ex-
ternal stimulus, concluding that they are robust to

the alterations and may provide insights explaining
the observed behaviour. Importantly, the observed
transitions to bursting synchronization are the sole
consequence of finite information transmission delays,
which are in this form not attainable by increasing
the coupling strength or other system parameters. In
this sense, the results suggest that delays could play a
crucial role in both synchronization as well as pattern
formation in networked neuronal systems.

Bursting synchronization likely plays many subtle
information-processing roles in neuronal tissue,[34,35]

though these roles are far from being completely un-
derstood at the present time.[36] Clinically, the con-
nection between bursting and synchronization is ex-
tremely important, since synchronization in large neu-
ronal populations is widely viewed as a hallmark of
seizures. Hopefully, the results of this paper will be
instructive for understanding the properties of collec-
tive behaviour in realistic neuronal networks.
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