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We investigate the impact of short-term plasticity on spike propagation in neuronal net-
works. We shown that for different combinations of the synaptic rise and decay time, neu-
rons in the network exhibit a variety of different spike propagation transitions as the
parameter related to the short-term plasticity increases. We establish the criteria for the
existence and stability of simple and composite traveling waves, and we verify the analyt-
ical results by means of numerical simulations. Interestingly, we discover that the coexis-
tence of simple and composite traveling waves, as well as the coexistence of stable and
unstable waves is possible, provided only the short-term plasticity is properly set.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

A common experimental paradigm for the study of propagation of neuronal spikes is to record activity in vitro by
means of a thin brain slice preparation [1,2]. The spikes emitted by different neurons in the network form the evolution
of spatiotemporal waves, which are believed to be involved in the encoding of sensory stimulation [3–5]. Many theoretical
investigations have made for dynamics of the spatiotemporal waves in neuronal networks. In particular, Bressloff studied
the existence and stability of traveling waves in a one-dimensional network of integrate-and-fire neurons with synaptic
coupling [4]. Neuronal field models have also been used extensively to study propagation phenomena [6–9]. In a contin-
uous neuronal network, for example, the existence and stability of traveling pulse solutions are investigated in a set of
integro-differential equations that describe activity in a spatially extended neuronal population with synaptic connection
[7]. The effects of the range of shortcuts in the dynamic model of neural networks was explored, and some interesting
results have been obtained [10,11]. Moreover, mathematical and computational models for the propagation of activity
in coupled neurons with excitatory synapses were simulated and analyzed in Ref. [12], where it is shown that the velocity
scales as a power law with the strength of synaptic coupling, and the exponent is dependent only on the rise phase of the
synapse.

Recently, Tonnelier [13] examined the ability of spiking neural networks to propagate a spatiotemporal sequence of
spikes. Furthermore, the influence of synaptic coupling and stochastic perturbations on the propagation of spike
sequences was also investigated. Despite the vibrancy of this field of research and many fascinating discoveries that were
reported in the preceding seminal works, the relationship between the short-term plasticity b, the synaptic rise time sr
. All rights reserved.
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and the synaptic decay time sd has not been examined. This paper aims to fill this gap and to study this important open
problem.

In spiking neural networks, the information is encoded in a firing sequence, tf
i , which is the spiking time of neuron i. In

what follows, we only consider the first firing time of each neuron.
We consider a spatially structured network, where the dynamics of membrane potential of every neuron, v iðtÞ is given by

the following equation [9],
dv i

dt
¼ �v i þ Ii þ Iapp; ð1Þ
where Ii and Iapp are the total synaptic current of neuron i and the external current, respectively. The neuron fires a spike
when the membrane potential reaches a threshold m [14], and after the spike the membrane potential is reset to vr < m.
In this work, we set m ¼ 1 without loss of generality.

Due to its important role on learning and the development of nervous system, long term plasticity has attached
much attention [15]. Recently, another form of synaptic plasticity–short-term plasticity has also become the focus of
nervous scientists, because it is associated with neuronal transmission of information and information processing
[16,17]. Early studies showed that [18], low frequency stimulation of brain rhythms and short-term plasticity are
linked.

Here we study one-spike propagation and consider only short-term modifications. Facilitation and depression are pre-
synaptic processes that modify the synaptic efficiency. Let s be a variable that monitors synaptic efficiency, aðtÞ is set to de-
scribe a pre-synaptic spike that induces a postsynaptic current. Hence, the total synaptic current of neuron i is given as
follows,
Ii;sðtÞ ¼ gsynsiðtÞ
XN

j¼1

wi;jaðt � tf
j Þ; ð2Þ
where gsyn is the total synaptic conductance and wi;j is the strength of the synaptic connection from neuron j to neuron i. For
convenience, we define wi;j ¼ wðji� jjÞ;wj ¼ wi;i�j, and weights are normalized so that

P
jjwjj ¼ 1. In addition, siðtÞ is a

depression for b < 1 or facilitation for b > 1, which is initially 1 and evolves as
si ! bsi: ð3Þ
When a spike is received, it follows,
dsi

dt
¼ 1� si

ss
ð4Þ
at another time. The time constant ss is at a time scale significantly larger than any other one related to the first spike prop-
agation. This leads to
dsi

dt
! 0: ð5Þ
Therefore, during the propagation, we neglect the relaxation of si after the arrival of the traveling wave, and take it as a con-
stant during each time interval. To efficiently control the shape of the postsynaptic current, we consider the normalized
piecewise linear function aðtÞ as follows,
aðtÞ ¼ 2
sr þ sd

t=sr 0 6 t 6 sr

1þ ðsr � tÞ=sd sr 6 t 6 sr þ sd

0 otherwise

8>>><
>>>:

ð6Þ
where sr is the synaptic rise time, and sd is the synaptic decay time.
As the reset current of neuron i, we use Iapp ¼ ðv r � 1Þdðt � tf

i Þ, where d is the Dirac function. Integrating Eq. (1) yields:
v iðtÞ ¼ gðt � tf
i Þ þ gsyn

XN

j¼1

bN�jþ1wj�ðt � tf
i�jÞ; ð7Þ
where gðtÞ ¼ ðv r � 1Þe�tHðtÞ is the reset pulse, the function HðtÞ is the Heaviside step function, and
�ðtÞ ¼
Z t

0
aðsÞe�ðt�sÞdsHðtÞ ð8Þ
which is the solution of the equation
�0ðtÞ þ �ðtÞ ¼ aðtÞ; �ð0Þ ¼ 0: ð9Þ
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Fig. 1. Postsynaptic potential �ðtÞ for different combinations of the synaptic rise time sr and the synaptic decay time sd (see legend).
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In view of aðtÞ set in this paper, �ðtÞ has the following form:
�ðtÞ ¼ 2
sr þ sd

0 t < 0
ðe�t þ t � 1Þ=sr t 6 sr

1þ sr�tþ1
sd
þ 1

sr
e�t � ð 1

sr
þ 1

sd
Þesr�t sr 6 t 6 sr þ sd

ð 1
sr
þ esrþsd

sd
� esr

sr
þ esr

sd
Þe�t otherwise

8>>>><
>>>>:

ð10Þ
Fig. 1 gives the general shape of �ðtÞ, it should be noted that no matter whatever the values of the synaptic time constants
sr and sd, the postsynaptic potential �ðtÞ always increases from 0 to a maximum value (rise phase), and then decreases to a
nonzero minimum over a relative long time span (decay phase).

2. Existence and stability of traveling waves

Firstly, it is of interest to discuss briefly the conditions for the existence of traveling waves. The spike sequence propaga-
tion in the neuronal network and the firing times of the neurons are given by,
tf
piþk ¼

piþ k
c
þ dk; ð11Þ
where c > 0 is the velocity of the wave, p is the length of the sequence, and i is the index of the i th repetition of the se-
quences. Moreover, k 2 f0; . . . ; p� 1g is the label of the successive neurons in the sequence, and dk are the propagated in-
ter-spike intervals, where d0 ¼ 0. As in Ref. [11], the traveling waves are divided into the simple and composite waves,
respectively. The composite waves are characterized by the propagation that can be thought of as the superimposition of
several simple waves, which propagate with the same velocity but with different time shifts. It is noted that in the present
letter we consider only the first spike of each neuron. Hence, all the indexes used ði; p; kÞ are related to a spatial location and
do not describe the successive spikes of a neuron.

2.1. Existence of traveling waves

Intuitively, the propagated sequence of a simple traveling wave is composed of a single neuron. In particular, it can be
descried that as dk ¼ 0, for 8k 2 f0; . . . ; p� 1g or equivalently p ¼ 1 in Eq. (11), the simple traveling wave can occur. Other-
wise, the composite traveling wave can appear. Based on Eq. (7), it is found that the traveling wave solutions satisfy the fol-
lowing Eqs. (12)–(14):
VkðnkÞ ¼ gðnkÞ þ gsyn

XN

j¼1

bN�jþ1wj� nk þ
j
c
þ dk � ~dk�j

� �
; ð12Þ
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where nk ¼ t � tf
pi and ~dj denotes the periodic extension of period p of dj. It requires the threshold condition

Vkð0Þ ¼ 1; ðk ¼ 0; . . . ; p� 1Þ, which yields
gsyn

XN

j¼1

bN�jþ1wj�
j
c
þ dk � ~dk�j

� �
¼ 1; ð13Þ
and also the causality criterion follows,
VkðnkÞ < 1; for nk < 0; k ¼ 0; . . . ;p� 1: ð14Þ
A necessary condition that satisfies criterion (14) is
XN

j¼1

bN�jþ1wj�0
j
c
þ dk � ~dk�j

� �
> 0: ð15Þ
To gain some insight into the analytical relationship of the wave speed and other parameters given in the studied equations,
we firstly consider a simple network, where each neuron connects only to one other presynaptic neuron, namely N ¼ 1. In
fact, in this network, only simple traveling waves can exist, which we prove in the next section. For simplicity, we set w1 ¼ 1.
Hence, we have:
�
1
c

� �
¼ 1

bgsyn
: ð16Þ
In order to obtain the expression of the velocity based on Eq. (16), we can see the series expansion of Lambert W function
that is proposed in Ref. [19]. The wave speed c can be obtained by solving the following equation:
xþ e�x ¼ l; 1=c 6 sr ; ð17Þ
where
l ¼ 1þ srðsr þ sdÞ
2bgsyn

: ð18Þ
Therefore we have
c ¼ 1
W0ð�e�lÞ þ l

; s�1
r 6 c; ð19Þ
where Wk denotes the kth branch of the Lambert W function. Using the series expansion of W0 near the branch point z ¼ e�1,
we have
W0ðzÞ ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðezþ 1Þ

p
� 2

3
ðezþ 1Þ þ Oðezþ 1Þ: ð20Þ
So based on Eq. (19), a large value of gsyn is necessary to get the asymptotic behavior of the wave speed, which is
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgsyn

srðsr þ sdÞ

s
� 1

6
þ O 1=

ffiffiffiffiffiffiffiffiffiffiffi
bgsyn

q� �
: ð21Þ
For N > 1, as long as the value of gsyn is large enough, it is expected that we can find the large speed value, i.e. 1=c� 1, where
the simple traveling waves can be obtained. Substituting the Taylor series of �ðtÞ,
�ðtÞ ¼ �ð0Þ þ �0ð0Þt þ e00ð0Þ t
2

2
þ Oðt3Þ; ð22Þ
into Eq. (13), and using
�ð0Þ ¼ �0ð0Þ ¼ 0; �00ð0Þ ¼ 2
srðsr þ sdÞ

; ð23Þ
we can obtain,
c2 �
gsyn

srðsr þ sdÞ
XN

i¼1

bN�iþ1i2wi: ð24Þ
However, it can be observed that as N > 1, gsyn and c are relatively small, analytical conditions on the existence of traveling
waves can not be obtained. Hence, we will discuss them in the later sections to show their complexity by means of some
numerical examples.
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2.2. Stability of traveling waves

In order to discuss the stability conditions of the traveling waves, we suppose that the firing times of neurons are per-
turbed as follows,
~tf
piþk ¼ ðpiþ kÞ=c þ dk þ lpiþk; ð25Þ
where asymptotic stability of the traveling waves can be expressed as,
lim
j!1

lj ¼ 0: ð26Þ
And then, the perturbed traveling wave solutions should satisfy
~vpiþkðtÞ ¼ vpiþkðtÞ � gsyn

XN

j¼1

bN�jþ1wjlpiþk�j�
0ðt � tf

piþk�jÞ: ð27Þ
Now, we expand Eq. (27) to the first order in ~tf
i�j and get the threshold condition at ~tf

i , which can lead to:
XN

j¼1

bN�jþ1ðli � li�jÞwj�0
j
c

� �
¼ 0: ð28Þ
Eq. (28) defines a map that has a general solution of the form lpiþk ¼ kiþ1
1 � � � k

iþ1
k ki

kþ1 � � � k
i
p. Hence, it is obvious that the asymp-

totic stability holds if
Yp

l¼1

kl

�����
����� < 1: ð29Þ
In particular, for the simple traveling wave, we have p ¼ 1;li ¼ ki. Recall that since k ¼ 1 is a solution of Eq. (28), the char-
acteristic equation can be obtained in the polynomial form:
PðkÞ ¼ ðk� 1Þ
XN�1

i¼0

bik
i ¼ 0; ð30Þ
where
bi ¼
XN

k¼N�i

biþ1wk�0
k
c

� �
: ð31Þ
We know that the simple wave is asymptotically stable if and only if PðkÞ is Schur stable, namely all roots of PðkÞ lie in the
interior of the unit circle. Furthermore, a simple sufficient condition for Schur stability is bN�1 > bN�2 > � � � > b0 > 0, which
can give
�0ði=cÞ > 0: ð32Þ
Since �0ði=cÞ ¼ 0, we have
i=c ¼ ln
ðsr þ sdÞesr þ sd

sr
; i ¼ 0; . . . ;N: ð33Þ
This implies that the simple wave is stable if the following condition is satisfied,
N
c
< ln

ðsr þ sdÞesr þ sd

sr
: ð34Þ
As a result, stable simple waves exist when gsyn and the wave speed are sufficiently large so that the arriving times of the pre-
synaptic spike, tf

i ¼ i=c, occur in the rise part of the postsynaptic potential, where �0ði=cÞ > 0. It should be noted that this is
the same as the conditions of stability for the neuronal network without short-term plasticity [11].

3. Transitions between simple and composite waves

For other combinations of the studied parameters, it can be expected that the composite waves can appear for suitable
combinations of the parameter values. Furthermore, transitions between the simple waves and composite waves can occur
as the key parameters are varied. In particular, it is known that 2-composite waves propagate (namely, there exist two
interspike intervals, and we set them as 1=c � d) if there exist two subthreshold time courses of the membrane potentials
V1 and V2 such that
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V1ðn1Þ ¼ gðn1Þ þ gsyn

XN

j¼1

bN�jþ1wj� n1 þ
j
c
� sj

� �
¼ 1; ð35Þ

V2ðn2Þ ¼ gðn2Þ þ gsyn

XN

j¼1

bN�jþ1wj� n2 þ
j
c
þ sj

� �
¼ 1; ð36Þ
where two parameters c and d are obtained from the threshold crossing conditions, which are given as follows,
gsyn

XN

j¼1

bN�jþ1wj�
j
c
� sj

� �
¼ 1; ð37Þ
where sj ¼ d if j is even and sj ¼ 0 if j is odd.
For N ¼ 1, from Eq. (37) we get �ð1=c � dÞ ¼ �ð1=c þ dÞ ¼ 1=gsyn. According to the quality of the postsynaptic potential

shown in Fig. 1, it is known that �0ð1=c þ dÞ < 0. Hence, there exist some n2, which can satisfy the following equation,
V2ðn2Þ ¼ gðn2Þ þ gsyn�ðn2 þ 1=c þ dÞ > 1 for n2 < 0; ð38Þ
which obeys the causality criterion of Eq. (14). Hence, it is clear that 2-composite waves are not possible for this case.
For N ¼ 2, similarly we need consider the solutions of the following equation,
b2w1�ð1=c � dÞ þ bw2�ð2=cÞ ¼ 1=gsyn: ð39Þ
From the shape of the postsynaptic potential as depicted in Fig. 1, we have �0ð1=c � dÞ > 0 and �0ð1=c þ dÞ < 0. During the
decaying period, since �ðtÞ is monotonously decreasing, we have �0ð2=cÞ < 0. Resultantly,
V 02ð0Þ ¼ b2w1�0ð1=c þ dÞ þ bw2�0ð2=cÞ < 0; ð40Þ
which is inadmissible according to Eq. (15).
For N ¼ 3, the solution of the 2-composite wave should simultaneously satisfy the following relations,
f ð1=c; dÞ ¼ b3w1�ð1=c � dÞ þ b2w2�ð2=cÞ þ bw3�ð3=c � dÞ � 1=gsyn ð41Þ
gð1=c; dÞ ¼ b3w1�ð1=c þ dÞ þ b2w2�ð2=cÞ þ bw3�ð3=c þ dÞ � 1=gsyn ð42Þ
V1ðnÞ < 1; V2ðnÞ < 1; for n < 0: ð43Þ
Moreover, the stability of the 2-composite wave is determined by:
a12k1k
2
2 þ a11k1k2 þ a01k2 þ a00 ¼ 0

b21k
2
1k2 þ b11k1k2 þ b10k1 þ b00 ¼ 0 ð44Þ
where
a12 ¼ b3w1�0ð1=c � dÞ þ b2w2�0ð2=cÞ þ bw3�0ð3=c � dÞ
a11 ¼ �b3w1�0ð1=c � dÞ
a01 ¼ �b2w2�0ð2=cÞ
a00 ¼ �bw3�0ð3=c � dÞ: ð45Þ
Here bij are obtained from aji by replacing d by �d. The 2-composite wave is asymptotically stable if every pair of roots
ðk1; k2; k3Þ of Eq. (44) satisfies jk1k2k3j < 1. From Eqs. (41)–(43), it is known that we can not analytically obtain the conditions
of the 2-composite wave in the studied parameter space, and transitions between the simple and composite waves can also
not be shown as the parameters vary. Thus, we can numerically verify the existence and stability of the 2-composite wave if
there exist some parameter values, which can meet Eqs. (41)–(43). It should be noted that, in these parameters if d ¼ 0, the
traveling wave is a simple wave. In what follows, since �ðtÞ is a piecewise function about sr and sd, we will study three char-
acteristic cases: (1) sr > sd; (2) sr ¼ sd; (3) sr < sd. We set gsyn ¼ 8:4, wi ¼ 1=3 and i ¼ 1;2;3 unless stated otherwise.

4. Numerical results

4.1. Case sr > sd

We firstly consider sr ¼ 6 and sd ¼ 2. Based on Eqs. (41)–(43), the results presented in Fig. 2 indicate the variations of 1=c
and d as the short-term plasticity b changes, which shows the existence of simple as well as composite waves in some
parameter regions. In particular, as b 2 ð0:923;0:94Þ, two simple waves can coexist and they are unstable. This results from
the roots ðk1; k2; k3Þ of Eq. (30), which can not satisfy jk1k2k3j < 1. For a good understanding, taking b ¼ 0:93
(b 2 ð0:923;0:94Þ), we get two simple waves with the velocities 1=c1 ¼ 2:357 and 1=c2 ¼ 2:083. And then, from the piecewise
function of �ðtÞ, we get
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�0ðtÞ ¼

0 t < 0

ð1� e�tÞ=24 t 6 6

�1=8� e�t=24þ e6�t=12 6 6 t 6 8

ð�1=24� 1=8e8 þ e6=6Þe�t otherwise

8>>>>><
>>>>>:

ð46Þ
Hence,
�0ð1=c1Þ ¼ 0:0377; �0ð2=c1Þ ¼ 0:0413; �0ð3=c1Þ ¼ �0:0965 ð47Þ

�0ð1=c2Þ ¼ 0:0365; �0ð2=c2Þ ¼ 0:041; �0ð3=c2Þ ¼ �0:0601: ð48Þ
Then, Eq. (30) becomes as the following form,
255k3 þ 326k2 þ 384k� 965 ¼ 0; ð49Þ

96k3 � 316k2 � 381kþ 601 ¼ 0; ð50Þ
and the roots of Eqs. (49) and (50) are as follows,
k1 ¼ 1:0; k2 ¼ �1:1392þ 1:5769i; k3 ¼ �1:1392� 1:5769i; ð51Þ

k1 ¼ 1:0; k2 ¼ 3:8978; k3 ¼ �1:6061; ð52Þ
where Eq. (49) with its eigenvalues (51) describes the case of 1=c1 ¼ 2:357, while Eq. (50) with its eigenvalues (52) describes
the case of 1=c2 ¼ 2:083. It is obvious that jk1k2k3j > 1 for all cases. Thus, two simple waves are both unstable. However, if
b 2 ð0:94; 0:985Þ, only one stable simple wave exists. In this case, we have
ln
ðsr þ sdÞesr þ sd

sr
¼ 6:288; N ¼ 3: ð53Þ
Hence, if 1=c < 2:096 as noted in Eq. (34), the wave is stable. For example, when b ¼ 0:94, we have a simple wave with veloc-
ity of 1=c ¼ 2:06, and obviously 1=c ¼ 2:06 < 2:096. Hence, it is stable. Interestingly, if b goes beyond 0.985, the 2-composite
wave will appear. Further investigations show that a sTable 2-composite wave and a stable simple wave can coexist when
b 2 ð0:985;1:04Þ. For example, when b ¼ 1, a 2-composite wave with the velocities 1=c ¼ 2:61 and d ¼ 2:49 occurs. From the
Eq. (44), the following forms are obtained,
�0ð1=c1 � dÞ ¼ 0:0047; �0ð2=c1Þ ¼ 0:0414; �0ð3=c1 � dÞ ¼ 0:0415; ð54Þ

�0ð1=c2 þ dÞ ¼ 0:0414; �0ð2=c2Þ ¼ 0:0414; �0ð3=c2 þ dÞ ¼ �0:0101: ð55Þ
Hence, we have
876k1k
2
2 � 47k1k2 � 414k2 � 415 ¼ 0; ð56Þ

727k2k
2
1 � 414k2k1 � 414k1 þ 101 ¼ 0; ð57Þ
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and the roots of Eqs. (56) and (57) are
k11 ¼ 1:0; k12 ¼
26685462

233485501
þ 626

233485501
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6807092739
p ; k13 ¼

26685462
233485501

� 626
233485501

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6807092739
p ; ð58Þ

k21 ¼ 1:0; k22 ¼ �
10372609
6053160

þ 77
6053160

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6807092739
p ; k23 ¼ �

10372609
6053160

� 77
6053160

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6807092739
p : ð59Þ
Therefore, jki1ki2ki3j < 1 (i ¼ 1;2). Hence, 2-composite waves in this interval of b are stable. As b further increases to 1:04, the
2-composite wave will disappear, leaving only one stable simple wave with the velocity 1=c < 2:096.

For more details on the impact of the short-term plasticity b on the occurrences of waves, we can choose some typical
short-term plasticity values b. Firstly, we choose b ¼ 0:93. Fig. 3 shows the plot of the level curves f ðd;1=cÞ ¼ 0 and
gðd;1=cÞ ¼ 0. It can be observed that there are only two intersections, where two simple unstable waves can appear. For
b ¼ 1, the results in Fig. 4 illustrate that only two intersections are acceptable with the conditions 1=c > d, V 0ð0Þ > 0 being
required. The upper intersection point denoted by black dot implies the sTable 2-composite traveling wave. Whereas, the
lower one denotes the stable simple traveling wave. In addition, the speed of the 2-composite wave is 1=c ¼ 2:61 with
d ¼ 2:49, and the velocity of the simple wave is 1=c ¼ 1:899 as illustrated in Fig. 4(a). Furthermore, the coexistence of a stable
simple wave together with a stable composite wave in the network can be clearly seen in Fig. 5. For b ¼ 1:05 > 1:04, only one
stable simple wave is shown in Fig. 6. Hence, these results supplement nicely those presented in Fig. 2.

4.2. Case sr ¼ sd

In this subsection, we consider sr ¼ sd ¼ 4. Similar to the above studies, the variations of 1=c and d are shown in Fig. 7 as
the short-term plasticity b is varied. It is shown that the 2-composite wave can exist as b 2 ð0:897;0:918Þ. More interestingly,
it is found that in this interval, two simple waves can also coexist. However, the wave with high velocity is unstable and the
one with lower velocity is stable. We take b ¼ 0:91 as an example. By calculations, we find that there are two simple waves,
with the velocity of 1=c1 ¼ 2:23;1=c2 ¼ 2:04. From the piecewise function �ðtÞ, we can get,
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Thus
�0ð1=c1Þ ¼ 0:0558; �0ð2=c1Þ ¼ 0:0157; �0ð3=c1Þ ¼ �0:0541; ð61Þ
�0ð1=c2Þ ¼ 0:0520; �0ð2=c2Þ ¼ 0:0607; �0ð3=c2Þ ¼ �0:0301: ð62Þ
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Hence, we can get the following formulas from Eq. (30),
Fig. 8.
intersec
waves.
wave w
velocity
64k3 � 462k2 � 143kþ 541 ¼ 0; ð63Þ
682k3 � 431k2 � 552kþ 301 ¼ 0; ð64Þ
whose roots are:
k1 ¼ 1:0; k2 ¼ 7:3663; k3 ¼ �1:1475; ð65Þ
k1 ¼ 1:0; k2 ¼ �0:8734; k3 ¼ 0:5053; ð66Þ
in which Eq. (63) describes the unstable case of 1=c1 ¼ 2:23 where jk1k2k3j > 1, while Eq. (64) describes the stable case of
1=c2 ¼ 1:78 where jk1k2k3j < 1.

For the 2-composite wave, we have,
�0ð1=c1 � dÞ ¼ 0:0285558; �0ð2=c1Þ ¼ 0:0518; �0ð3=c1 � dÞ ¼ �0:0004; ð67Þ
�0ð1=c2 þ dÞ ¼ 0:0606; �0ð2=c2Þ ¼ 0:0518; �0ð3=c2 þ dÞ ¼ �0:0589: ð68Þ
Based on Eq. (44), it can yield,
703k1k
2
2 � 236k1k2 � 471k2 þ 4 ¼ 0; ð69Þ

384k2k
2
1 � 502k2k1 � 471k1 þ 589 ¼ 0; ð70Þ
of which the roots are,
k11 ¼ 1:0; k12 ¼
1450424
4305875

þ 4
4305875
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þ 1
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Then jki1ki2ki3j ¼ 1:3288 > 1 (i ¼ 1;2), which implies that the 2-composite waves in this interval of b are unstable. As
b > 0:918, the upper branch will disappear, leaving only one acceptable branch, which denotes stable simple traveling
waves.

For clarity, the results in Fig. 8(a) with b ¼ 0:897 show that the upper intersection point is 1=c ¼ d, which implies that the
2-composite wave can appear from this moment because 1=c P d. And, the lower two intersection points denote two simple
waves since d ¼ 0 (This can also be seen in Fig. 8(b)). Three modes of propagation, including two simple waves and one
2-composite can be seen in Fig. 9 as sr ¼ sd ¼ 4 and b ¼ 0:91, where one simple wave has velocity c ¼ 1=1:78, the other
simple wave has velocity c ¼ 1=2:23, and one 2-composite wave has the velocity c ¼ 1=2:04 with d ¼ 1:43.

It is noted that there are two transitions of propagation. One transition is from two modes of simple wave and one
2-composite wave to only one simple wave. The other transition is from unstable simple wave to stable simple wave. More
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importantly, Ref. [11] pointed out that a necessary condition for the existence of a stable composite wave is sr > sd. How-
ever, if the depression of synaptic plasticity is considered, unstable composite waves can be obtained even when sr ¼ sd.

4.3. Case sr < sd

As the last case, we consider sr ¼ 2 and sd ¼ 6. As the b is increased, the variation of 1=c is illustrated in Fig. 10. It can be
seen that when b 2 ð0:867;0:906Þ, there are two stable simple waves. The reason is that the roots of Eq. (44) satisfy jRkij < 1.
For example, when b ¼ 0:905, we get two simple waves with the velocity of 1=c1 ¼ 1:142 and 1=c2 ¼ 2:167. And, from the
piecewise function �ðtÞ, we have
Fig. 11.
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0 t < 0
ð1� e�tÞ=8 t 6 2
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Thus
�0ð1=c1Þ ¼ 0:0851; �0ð2=c1Þ ¼ 0:0711; �0ð3=c1Þ ¼ �0:0057; ð74Þ
�0ð1=c2Þ ¼ 0:0851; �0ð2=c2Þ ¼ �0:0272; �0ð3=c2Þ ¼ �0:04; ð75Þ
Eq. (30) gets the following forms,
1283k3 � 697k2 � 643kþ 57 ¼ 0; ð76Þ
361k3 þ 697k2 � 658k� 400 ¼ 0; ð77Þ
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their roots are,
Fig. 13.
which i
potenti
this fig

Fig. 12.
velocity
k11 ¼ 1:0; k12 ¼ �0:6728; k13 ¼ 0:0085; ð78Þ
k21 ¼ 1:0; k22 ¼ �0:5391; k23 ¼ 0:0824; ð79Þ
where Eq. (76) describes the case of 1=c1 ¼ 1:142, while Eq. (77) describes the case of 1=c2 ¼ 2:167. For both cases, we can
get jRki1ki2ki3j < 1. Therefore, the two simple wave are both stable.
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In addition, as given in Eq. (34), we have
ln
ðsr þ sdÞesr þ sd

sr
¼ 3:5711; N ¼ 3: ð80Þ
Hence, if 1=c < 1:19, the simple wave is stable. As shown in Fig. 10, when b > 0:906, there is only one stable simple wave.
Based this inference, it is concluded that as sr < sd, no composite wave can appear.

In particular, two simple waves with different velocities are exhibited as b ¼ 0:905 in Fig. 11 (also see Fig. 12). However, it
is shown in Fig. 13 that as b ¼ 0:92, only one stable simple wave can be obtained.

5. Conclusion

In sum, we have investigated the propagation of spikes in neuronal networks incorporating short-term plasticity, and
analyzed the existence and stability conditions of the traveling waves. Analytical conditions were derived for the existence
and stability of the simple waves. In addition, it is shown that the simplest synaptic connection that support 2-composite
traveling waves is a network, where each neuron must connect with at least three pre-synaptic neurons. By means of the
theoretical analysis and numerical methods, transitions of the simple waves and composite waves have been studied for dif-
ferent combinations of synaptic rise and decay times in dependence on the neuronal short-term plasticity. Interestingly, we
have found that for sr > sd the stable and unstable simple waves can coexist, and then transit to a single stable simple wave.
Furthermore, a stable simple wave and a composite wave can also coexist, and then transit to a single stable simple wave. For
sr ¼ sd, it is shown that a stable simple wave, an unstable simple wave and an unsTable 2-composite wave can all coexist,
and then transit to a single stable simple wave as the short-term plasticity increases. Whereas for sr < sd, we have demon-
strated that the transition from the coexistence of two simple waves to only a single simple wave is possible as the short-
term plasticity increases. Short-term synaptic plasticity plays an essential role in the realizing neuronal normal functions. It
can achieve reliable neural information transmission, adjust the balance between excitation and inhibition of cortex [19,20].
Short-term synaptic plasticity may participate in some high-level brain functions, such as attention, priming, sleep rhythm,
learning and memory. In addition, since it is known that the propagation of spikes in neuronal networks is closely related to
the processing of information, we hope that the presented results on the synaptic plasticity induced transition of spike prop-
agation in neuronal networks can pave the way for new advances in this vibrant field of research.
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