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Abstract – Collective behavior among coupled dynamical units can emerge in various forms as
a result of different coupling topologies as well as different types of coupling functions. Chimera
states have recently received ample attention as a fascinating manifestation of collective behavior,
in particular describing a symmetry breaking spatiotemporal pattern where synchronized and
desynchronized states coexist in a network of coupled oscillators. In this perspective, we review
the emergence of different chimera states, focusing on the effects of different coupling topologies
that describe the interaction network connecting the oscillators. We cover chimera states that
emerge in local, nonlocal and global coupling topologies, as well as in modular, temporal and
multilayer networks. We also provide an outline of challenges and directions for future research.
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Introduction. – Synchronizability of dynamical net-
works of coupled oscillators can break down into two
or more synchronized and desynchronized domains when
nodes in the network are connected in a nonlocal manner,
and such fascinating complex spatiotemporal behavior is
called a chimera state [1]. More precisely, the chimera
state is a peculiar type of dynamical phenomenon which
exhibits a hybrid structure of coexisting synchronous (co-
herent) and asynchronous (incoherent) behavior in a net-
work of coupled identical oscillators with a symmetric type
of coupling topology.

Kuramoto and Battogtokh [2] first observed the co-
existence of coherence and incoherence in a network of
nonlocally coupled complex Ginzburg-Landau oscillators.
Later, Abrams and Strogatz [3] named it as chimera state
and introduced some theoretical explanations for the ex-
istence of such behavior. Initially, the chimera state was
investigated in phase oscillators, later it was also found
in limit-cycle oscillators [4], chaotic oscillators [5], chaotic
maps [6], hyper chaotic time delay systems [7,8] and even
in neuronal systems [9,10] which exhibit bursting dynam-
ics. In the beginning, chimera patterns were observed in
nonlocally coupled networks and after that these states
were also found in globally (all-to-all coupling) [11–13], lo-
cally (nearest-neighbor) [8,10,14,15] coupled networks and
also in modular network [16]. Very recently, synchronous

and asynchronous chimera states [17] have been stud-
ied between layers in the form of multiplex configura-
tion. Chimera states have also been observed in complex
networks [18] and coupled oscillators with hierarchical con-
nectivities [4,19]. The presence of nonlinearity in the cou-
pling function plays a key role for the existence of chimera
states in locally coupled oscillators [8,20]. Increment in
the nonlinearity of the local dynamics of nonlocally cou-
pled Van der Pol oscillators may lead to the occurrence
of multichimera states [21]. Depending on the differ-
ent types of symmetry breaking situations in networks,
chimera states are classified into various categories such
as amplitude-mediated chimera [22], globally clustered
chimera [23], amplitude chimera and chimera death [24],
etc. Also based on the spatio-temporal behavior of coher-
ent and incoherent motions, new terms are coined such as,
breathing chimera [25], imperfect chimera [26], traveling
chimera [27], imperfect traveling chimera [28] and spiral
wave chimera [5,29]. Breathing and alternating chimera
states were also observed in two coupled populations where
the links between the two populations were varied with
respect to time [30] and globally clustered chimera states
emerged if the links are static [23,31] over time.

Noise and time-delayed interactions are omnipresent in
the real-world systems. Robustness of chimera states are
studied in different types of networks under the impact of
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noise [32–34]. The research on chimera states under the
influence of time delay in the coupling function of cou-
pled systems is very important and interesting as the time
delay is unavoidable due to the finite transmission speed
in many physical, biological and environmental systems.
Sethia et al. [35] obtained the clustered chimera states in a
nonlocally delay coupled phase oscillators and also the ef-
fect of time delay on chimera states is discussed in locally
coupled networks [8] and two coupled populations [23,31].
Beside the existence of chimera in large networks, chimera
states also emerged in a small-size network [36] and exper-
imentally verified in four globally coupled chaotic opto-
electronic oscillators [37] and a network of four lasers [38]
with time-delayed interaction. Apart from the manifes-
tation of chimera state in identical oscillators, it is also
observed in nonidentical oscillators. Recently, Laing et al.

studied the existence and emergence of chimera states in
heterogeneous networks [39–41].

From the above discussion on chimera states, naturally
a question arises regarding the robustness and stability
of it over a long time. By providing solid numerical ev-
idence together with Lyapunov spectrum analysis, Wol-
frum et al. [42] revealed that chimera states are long-lived
chaotic transients and later it has been proved that how
chimera states persist over a long time [43]. However, Yao
et al. [44] studied the robustness of chimera states against
the random removal of links from the network structure.
Omelchenko et al. [45] showed that the chimera states are
robust with respect to the symmetric coupling topology
with nonidentical oscillator and irregular coupling config-
uration with identical oscillators. Several theoretical and
analytical approaches have been attempted for the sta-
bility analysis and characterization of the chimera states.
In this context, a real-valued local order parameter [6],
Lyapunov spectrum analysis [46] and long-time averaged
mean phase velocity [47] were used to characterize the
chimera states. Due to the failure of distinguishing am-
plitude chimera from frequency chimera [48] by using the
above methods, a statistical measure is developed named
as strength of incoherence [7] which characterizes various
collective states from the time-series only.

Beside several theoretical investigations on chimera
states, the appearance of these states has been veri-
fied in many experimental setups, such as electronic cir-
cuits [49], chemical oscillators [50], electrochemical [51],
opto-elctronic [52], mechanical [53] systems and frequency
modulation delay oscillators [54]. In the real world,
chimera or chimera-like behaviors are strongly connected
to many man-made systems, such as power grids [55,56],
social networks [57], and also it is associated with several
neuronal activities [58]. Recently, chimera states were also
observed in nonlocally coupled two-dimensional networks
of neuronal systems [59].

Network topology. – At the dawn of studies on
chimera states, it was believed that nonlocal coupling
topology is the necessary condition for the existence of

chimera states. But many recent studies on chimera states
explained that nonlocal coupling topology is not essential
for the emergence of such states. In this perspective, we
will focus on the effect of different coupling configurations
for the emergence of chimera states.

Local coupling topology. In this section, we discuss
the emergence and existence of chimera states in net-
works of locally coupled oscillators. At first, chimera
states were detected in nonlocally coupled oscillators in
the year 2002 by Kuramoto and Battogtokh [2], then af-
ter 13 years, Laing [14] showed the existence of chimera
states in networks of purely local coupling topology. Here
the author considered different cases: first considering the
slow-fast reaction diffusion equations in a one-dimensional
spatial domain where the interaction was through diffu-
sion. Next, assuming the purely local diffusive coupling
while taking non-identical complex systems into account,
he found the chimera solutions where the non-uniformity
was introduced by random frequencies from a Lorentzian
distribution. Lastly, the author also considered a net-
work of locally coupled identical Stuart-Landau oscillators
with periodic boundary conditions in the presence of non-
isochronicity parameter. With proper numerical evidence
and rigorous bifurcation analysis, the author clearly artic-
ulated the existence of a chimera states in locally coupled
systems by considering the above three cases.

In order to study the chimera states using local cou-
pling, we consider N Landau-Stuart oscillators interact-
ing through other complex variables. These N oscillators
are equally spaced on a domain of length 1, with periodic
boundary condition [14]. The mathematical form of the
network is as follows:

Ẇj = (1 + iω0)Wj − (1 + iC2)|W
2
j |Wj

+ K(1 + iC1)(Zj − Wj),

ǫŻj = Wj − Zj + 1
16(∆x)2 (Zj+1 + Zj−1 − 2Zj),

(1)

where Wj , Zj ∈ C for j = 1, . . . , N and C1, C2, ǫ, ω0, K are
real parameters with Δx = 1

N
. The long-time behaviors of

the variables Wj and Zj are depicted in figs. 1(a) and (b),
respectively. Figure 1(c) shows the long-time average
of rotation frequency which confirms the presence of a
chimera state.

After that chimera and multichimera states are also ob-
served in locally coupled neuronal systems [10], where the
individual nodes of the network exhibit bursting dynamics.
Here all neurons of the coupled network are considered to
be identical and interacting through a chemical synaptic
coupling function. The presence of the chemical synaptic
coupling function in the locally coupled bursting neurons
plays a key role for the emergence of chimera states.

In ref. [8], the existence of chimera states is studied in
networks of locally coupled chaotic and limit cycle oscilla-
tors by taking different nonlinear coupling functions. They
clearly enunciated that with suitable design of nonlinear
functions in purely local coupling topology, various types
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Fig. 1: (Colour online) The spatiotemporal dynamics of the
variables (a) Wj , and (b) Zj of locally coupled Landau-Stuart
oscillators are plotted for fixed C1 = −1, C2 = 1, K = 0.1, ǫ =
0.01, N = 200 and ω0 = 0. (c) The long-time average of rota-
tion frequency is plotted for the confirmation of chimera sates.
Figure reproduced with permission from the American Physi-
cal Society [14].

of chimera states may arise. Also the effect of time de-
lay in the coupling function is discussed. Later, Shepelev
et al. [20] found the chimera state by taking an additional
nonlinear unidirectional coupling function in the presence
of scalar diffusive coupling.

The various types of chimera patterns also emerged in
networks of coupled neuronal systems using local synap-
tic gradient coupling [28]. In this coupling function, the
synapses are excitatory or inhibitory depending on the
value of two parameters, namely, gradient and synaptic
coupling strengths. With proper tuning of these two cou-
pling strengths, different types of chimera patterns are
observed, such as imperfect chimeras, traveling chimeras
and imperfect traveling chimeras.

In this context, Hizanidis et al. [15] investigated the
emergence of robust multiclustered chimera states in a
dissipative driven system. In this work, each oscillator of
the coupled system is taken as identical superconducting
quantum interference device oscillator which are symmet-
rically and locally coupled. They found chimera states
by properly chosen initial conditions and observed that
the extreme multistability in the coupled systems is the
key feature to generate such states. Also, Clerc et al. [60]
found the chimera-like states in locally coupled oscilla-
tors in the presence of nonlinear damping. They also

Fig. 2: (a) The snapshot of phase Ψk at a particular point in
time, and (b) the long-time averaged frequency 〈Ψ̇k〉 for R =
14, N = 40 and α = 1.46. Figure reproduced with permission
from the American Physical Society [42].

showed that the family of chimera-type states may appear
or disappear depending on the initial conditions through
homoclinic snaking bifurcation. Beside several theoretical
and numerical studies of chimera states in locally cou-
pled oscillators, experimentally it is verified in a chain
of coupled electronic oscillators [49]. By performing an
experiment, they investigated a new state where synchro-
nized population coexists with a spatially patterned oscil-
lation death state.

Nonlocal coupling topology. Nonlocal coupling is very
crucial to investigate due to its ubiquity of application
in diverse fields, such as physics, chemistry and biology,
etc. In this section, we deal with a brief discussion on
the discoveries of different chimera patterns in nonlocally
coupled oscillators.

To show the emergence of chimera states in nonlocally
coupled networks, we take a ring of N identical coupled
phase oscillators with nonlocal coupling topology of finite
coupling range R [42] in the form

Ψ̇k = ω −
1

2R

j=k+R∑

j=k−R

sin[Ψk(t) − Ψj(t) + α], (2)

where k = 1, . . . , N and ω is the natural frequency of the
isolated oscillator and α ∈ (0, π

2 ) is the phase-lag param-
eter. Figures 2(a) and (b) show the snapshot of phases
Ψk of eq. (2) and the corresponding time average frequen-
cies 〈Ψ̇k〉, respectively. The time average frequency of the
coherent group is constant and in the incoherent group
they are randomly distributed together which signify the
emergence of chimera state.

The investigation reported in [61] revealed that the
chimera pattern generates through a continuous bifur-
cation from a spatially modulated drift state and de-
stroys over a saddle-node collision with an unstable
version of itself. Abrams et al. [25] produced first,
the exact results regarding the stability, dynamics and
bifurcations of chimera states by inspecting a model
comprising of two interacting populations of oscillators
expressed by

∂θσ
i

∂t
= ω +

2∑

σ′=1

Kσσ′

Nσ′

N
σ

′∑

j=1

sin(θσ′

j − θσ
i − α), (3)
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where σ = 1, 2; Nσ is the number of oscillators in popula-
tion σ and Kσσ′ being the coupling strength from oscilla-
tors in σ′ to the oscillators in σ.

Apart from these studies on nonlocally connected phase
oscillators, there have been a lot of analysis on chimera
states in other systems having amplitude dynamics. In
this context, Omelchenko et al. [47] considered a ring
of nonlocally coupled (with a rotational matrix form)
FitzHugh-Nagumo oscillators and showed that as a result
of strong-coupling interaction, multichimera states (com-
prising multiple domains of incoherence) arise. In [6],
authors conferred the disruption of spatial coherence in
networks of coupled oscillators with nonlocal interaction.
They diagnosed the appearance of multistable chimera-
like states using coupled maps of both chaotic and periodic
nature as well as with time continuous Rössler systems.
The blended feature of chimera pattern and oscillation
suppression (known as “chimera death”) occurring due
to the co-action of nonlocality and breaking of rotational
symmetry by the coupling is reported in [24]. Recently,
Omelchenko et al. [62] proposed a useful control scheme
having symmetric and asymmetric control terms in or-
der to stabilize chimera states in large- and small-size
networks.

Global coupling topology. This section is devoted
to the study of emergence of chimera or chimera-
like states in globally (all-to-all) coupled networks. The
global network is the simplest and most symmetric
type of network compared to nonlocal and local net-
works. As chimera refers to a symmetry breaking case,
so it was unexpected to find chimera patterns in glob-
ally coupled networks. Many recent results showed that
chimera is not only possible using nonlocal and lo-
cal coupling but it also emerges in globally coupled
networks.

Omelchenko et al. [63] studied the ensemble of glob-
ally coupled oscillators with time-delayed feedback and
they enunciated that chimera states appear due to spa-
tially modulated delayed feedback. By rigorous bifurca-
tion analysis, they affirmed that such symmetry breaking
states are the natural link between the coherent and in-
coherent states. Later, Yeldesbay et al. [11] demonstrated
the occurrence of chimera-like states in a network of iden-
tical globally coupled oscillators. They showed that the
presence of bistable features in the coupled systems plays
a crucial role for the emergence of chimera states. Such
bistability may occur in monostable systems with inter-
nal time delay feedback in an isolated node. Proper nu-
merical justification using coupled Landau-Stuart systems
and Kuramoto phase oscillators ensures the occurrence of
chimera-like states in globally coupled networks. Recently,
Chandrasekar et al. [12] examined chimera states in glob-
ally coupled oscillators where intensity is introduced in
each individual unit of the network. The mechanism be-
hind inducing intensity is to increase the multistability
of the coupled systems. They studied the effect of the

intensity parameter in the emergence of chimera states
of globally coupled Van der Pol and chaotic Rössler os-
cillators. In this case, chimera states appeared for a
well-prepared initial condition due to the presence of ex-
treme multistability.

Also Schmidt et al. [64] showed that a clustering mecha-
nism is a first step for the appearance of chimera states in a
network coupled via nonlinear global interaction. Depend-
ing on the amplitude variation, they categorized various
type of clusters which leads to the occurrence of the differ-
ent chimera states. Later Schmidt et al. [65] dealt with an
oscillatory medium and obtained the chimera states with
some regions displaying turbulence, and the remaining
portion showing the synchronized dynamics and pointed
out that diffusional coupling is non-essential for such com-
plex dynamics.

Recently, Mishra et al. [13] argued that global coupling
does not need to be nonlinear for the emergence of chimera
states. They showed that in the presence of both lin-
ear attractive and repulsive mean-field coupling functions,
chimera-like states may appear in a network of globally
coupled network. They identified two types of chimera-
like states by taking bistable Liénard system. The first
type is chaos-chaos chimera-like states where coherent and
incoherent populations of the chimera states are in chaotic
motion and in other types of chimera-like states, the co-
herent population showed the periodic oscillation while
incoherent population goes through irregular motion with
small amplitude.

Sethia et al. [66] found a new type of symmetry break-
ing state and named it amplitude-mediated chimera state
by considering a system of globally coupled complex
Ginzburg-Landau oscillators. Here, for the first time,
they observed the amplitude activity in the formation of
the chimera states. For this study, they considered a
large population of globally coupled complex Ginzburg-
Landau–type identical oscillators [66] whose dynamics can
be modeled by the following set of equations:

Ẇj = Wj −(1+ iC2)|W
2
j |Wj +K(1+ iC1)(W̄j −Wj), (4)

where Wj ∈ C, W̄j = 1
N

∑N

n=1 Wn for j = 1, . . . , N and
C1, C2, K are real constants. Figure 3 depicts the results
of amplitude-mediated chimera states in globally coupled
networks (4). The snapshot of amplitudes and phases of
the oscillators are shown in fig. 3(a) by a solid line and
dotted points, respectively. Figure 3(b) displays the cor-
responding long-time averaged frequencies 〈φ̇〉 of the os-
cillators. From this figure, the domains having coherent
(constant averaged frequency) and incoherent (randomly
distributed averaged frequency) dynamics in amplitude-
mediated chimera state are clearly visible. Figure 3(c)
shows the histogram of the time average frequencies in
the incoherent domain and the corresponding Gaussian
distribution.

In ref. [67], the authors studied the emergence
of chimera states in a network of globally coupled
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Fig. 3: Amplitude-mediated chimera state in a globally coupled network: (a) Snapshots of the profiles of the amplitude |W |
(multiplied by 10) and phase φ at K = 0.70, C1 = −1.0 and C2 = 2.0. (b) Long-time average of the frequencies φ̇ of the
oscillators. (c) A histogram of the frequencies (〈φ̇〉) in the incoherent segment with the corresponding Gaussian distribution.
Figure reproduced with permission from the American Physical Society [66].

semiconductor lasers using amplitude-phase coupling with
delayed optical feedback. Using random initial conditions,
they found the stable chimera states in four coupled
lasers and also discussed the link of multistability regime
between synchronous steady-state and asynchronous pe-
riodic solutions. Wang et al. [68] studied the emer-
gence of chimera states in frequency-weighted network of
Kuramoto oscillators with heterogeneous frequency. They
found the chimera states where the oscillators having nega-
tive frequency are desynchronized and oscillators with pos-
itive natural frequency are in synchronized motion, where
a weighting exponent played the key role.

Robustness of chimera states in small-size globally cou-
pled networks has been verified recently by an experiment.
Hart et al. [37] observed the chimera and cluster states in
a minimally all-to-all four coupled chaotic opto-electronic
oscillators. They described that this is the minimal net-
work size that can support chimera states and obtained
some multistable region where chimera states coexist with
different collective states.

Arbitrary coupling topology. Initially, chimera states
were observed in networks of identical oscillators with
symmetric coupling topology. Recently, some studies have
defeated these limitations. Chimera or chimera-like states
were also observed in networks with arbitrary interac-
tion topologies. The existence of chimera-like states in
modular neural networks based on the connectome of C.
elegans soil worm in the presence of both electrical and
chemical synapses is analyzed by Hizanidis et al. [16].
Omelchenko et al. [45] affirmed that chimera states are
robust against the perturbations in the form of irregu-
lar coupling topologies in networks of identical FitzHugh-
Nagumo oscillators. However, they found that alterations
in coupling topologies cause several qualitative changes of
chimera patterns, e.g., a change of the multiplicity of in-
coherent domains of the chimera state. Regarding this as-
pect, robustness of chimera states against random removal
of links in symmetrically coupled networks is reported by
Yao et al. [44].

In [18], authors have investigated properties of chimera
states on complex networks realized by scale-free (SF)
and Erdös-Rényi random (ER) architectures. We con-
sider N coupled phase oscillators which is described by

Fig. 4: The snapshot of phases of the oscillators are plotted in
column (a). Columns (b) and (c) show the corresponding ef-
fective angular velocities 〈ω〉 of oscillators and the fluctuation
of the instantaneous angular velocity σ of oscillators, respec-
tively. The results are shown in the upper and lower panels
for Erdös-Rényi and scale-free networks for fixed mean degree
of the network 〈k〉 = 4, N = 1024, A = 1, κ = 0.1, ω = 0
and α = π

2
− 0.1. Figure reproduced with permission from the

American Physical Society [18].

the following equation:

θ̇i = ω −
1

N

N∑

j=1

Gij sin(θi − θj + α), (5)

for j = 1, . . . , N ; ω and α are, respectively, the natural
frequency and phase-lag parameter. Gij is the coupling
function depending on shortest length dij between the i-th
and j-th oscillators in the underlying complex network.
The snapshots of the phases for ER (upper panel) and SF
(lower panel) networks are respectively shown in fig. 4(a).

To characterize the existence of chimera states,
the effective angular velocity defined as 〈ωi〉 =

limT→∞

1
T

∫ t0+T

t0
θ̇idt is used. Figure 4(b) shows the corre-

sponding effective angular velocity for ER (upper panel)
and SF (lower panel) networks. To further distinguish
between stationary and breathing chimeras, the instan-

taneous angular frequency σ2
i = limT→∞

1
T

∫ t0+T

t0
(θ̇i −

〈ωi〉)
2dt is calculated and shown in fig. 4(c).
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The existence of different types of chimera states,
namely stable, breathing, and alternating chimera pat-
terns in time-varying complex networks consisting of two
coupled sub-populations of Kuramoto oscillators, where
inter-population links are assumed to vary with time, is
reported in [30]. Chimera states caused by distance-
dependent power-law coupling in networks of the realis-
tic ecological Rosenzweig-MacArthur model are studied
in [69]. Transitions between spatial synchrony and dif-
ferent chimera patterns due to variation in the power-law
exponent are discussed. Traveling multichimera states in-
duced by hierarchical coupling topologies in nonlocally
coupled lattice of limit cycle model [19] are analyzed.
Moreover, another study [4] discussed chimera patterns
with various numbers of incoherent domains depending
on the level of hierarchy in ring networks of Van der Pol
oscillators with hierarchical coupling topology.

Laing et al. [41] reported the existence of chimera in
random non-complete networks of phase oscillators and
observed that these chimera states are really sensitive to
the elimination of connections in a random manner. Ob-
servation of metastable chimera states includes the work
on this phenomenon by Shanahan et al. [70] in networks
of community-structured phase oscillators.

Recently, there has been a strong urge in detecting
diverse chimera patterns in networks having multiplex
(multilayer) framework. Ghosh et al. [71] investigated
nonlocally coupled identical chaotic maps in multiplex
networks and found both intra-layer and layer chimera
states. In this context, asynchronous and synchronous
inter-layer chimera states are envisaged using nonlocally
coupled phase oscillators and Hindmarsh-Rose neuron
models in [17]. Interestingly, the emergence of chimera
patterns in a network of uncoupled neurons is induced by a
multilayer framework having another layer of globally cou-
pled neurons performing as the medium of interaction [72].

Conclusions and challenges ahead. – In summary,
we have reviewed the existence of chimera states in com-
plex nonlinear oscillator’s networks with different types of
coupling topologies, namely local, nonlocal, global and ar-
bitrary configurations. We also discussed different types
of chimera states and some recently developed methods
to characterize them. Since the discoveries on chimera
states, many of the open questions have been answered
during the last two decades but some important questions
arise which have yet to be answered clearly. Furthermore,
new challenges for chimera states appear in different fields.
These states may be extended in real-world networks, e.g.,
power grid, human brain, food webs, etc., where such be-
havior has not been understood clearly. Fast discoveries on
chimera states lead some challenges issues. For example,
the first challenging issue is how to control the coherent
and incoherent subpopulations in the chimera states. Al-
though some research works have been done regarding this
controlling issue but still there is no universal and suitable
technique invented. Bick et al. [73] prescribed a strategy

to control the chimera state where their scheme is based
on gradient dynamics to exploit drift of a chimera. Using
this controlling technique they dynamically modulated the
desired position of coherent population in chimera states.
Semenov et al. [74] studied the controlling issue of chimera
states using deterministic and stochastic external periodic
forcing. Recently, Gambuzza et al. [75] presented a con-
trol scheme of chimera states based on pinning control
in a system of nonlocally coupled FitzHugh-Nagumo and
Kuramoto oscillators. They articulated that by proper
pinning control, coherent and incoherent population of
chimera states can be suitably monitored. Very recently, a
controlling technique of chimera states in nonlocally cou-
pled ring-networks of FitzHugh-Nagumo elements is men-
tioned [76]. They studied the influence of excitability of
few nodes in the network, and even they showed that one
excitable element with all the other nodes in oscillatory
motion in the network is sufficient to control the coherent
and incoherent dynamics in chimera states. Most of the
above-discussed control protocol of chimera states is stud-
ied in nonlocal coupling topology but there is no control
strategy, to the best of our knowledge, in local, global and
other types of coupling configuration in the literature. So,
nowadays, the development of a general mechanism for
controlling chimera states irrespectively of coupling topol-
ogy is an important issue.

Next, the role of initial conditions of each oscillators in
the networks for the emergence of chimera states is another
challenging issue. From the discoveries, a fundamental
problem was how to choose the initial condition for the
emergence of chimera states. In this context, Martens
et al. [77] tracked the basin of attraction for chimera states
but they did not give any kind of quantification measure
for checking the robustness of various dynamical states
(coherent, incoherent, chimeras and clustered states, etc.)
against their initial condition. Recently, Rakshit et al. [78]
investigated using the basin stability analysis that there
exist finite windows in the coupling strength for which
only a fraction of randomly picked initial conditions lead
to a chimera state. So, further precise studies on the effect
of initial conditions are needed for better understanding
the underlying mechanism of chimera states in different
networks.

Also, the effect of the phase-lag and of the non-
isochronicity parameter for the appearance of chimera
states is an interesting issue. Chimera states were first
found in nonlocally coupled phase oscillators in the pres-
ence of the phase-lag parameter, after that many studies
have been done but it is still not clear how the phase-lag
parameter affects the dynamics of chimera state from an
analytical aspect. Also, the investigation of the role of
the nonisochronicity parameter, a characteristic feature of
many paradigmatic limit cycle systems, on the emergence
of chimera states in globally coupled oscillators is an im-
portant issue.

In the case of stability and characterization of
chimera states, few methods were developed such as the
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Ott-Antonsen approach, strength of incoherence, mean
phase velocity, and local order parameter, but there is
no concrete mathematical treatment which is still an open
question in the chimera literature. As the research on
chimera states is going so fast over time, it is not easy to
present a complete scenario regarding the chimera states
in dynamical networks.
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