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Abstract — Inverse stochastic resonance is a phenomenon where an oscillating system influenced
by noise exhibits a minimal oscillation frequency at an intermediate noise level. We demonstrate
a novel generic scenario for such an effect in a multi-timescale system, considering an example
of emergent oscillations in two adaptively coupled active rotators with excitable local dynamics.
The impact of plasticity turns out to be twofold. First, at the level of multiscale dynamics,
one finds a range of intermediate adaptivity rates that give rise to multistability between the
limit cycle attractors and the stable equilibria, a condition necessary for the onset of the effect.
Second, applying the fast-slow analysis, we show that the plasticity also plays a facilitatory role
on a more subtle level, guiding the fast flow dynamics to parameter domains where the stable
equilibria become focuses rather than nodes, which effectively enhances the influence of noise.
The described scenario persists for different plasticity rules, underlying its robustness in the light

of potential applications to neuroscience and other types of cell dynamics.

Copyright © EPLA, 2018

Introduction. — Noise in coupled excitable or bistable
systems may induce two types of generic effects [1]. On
the one hand, it can modify the deterministic behavior
by acting non-uniformly on different states of the sys-
tem, thus amplifying or suppressing some of its features.
On the other hand, noise may give rise to completely
novel forms of behavior, typically based on crossing the
thresholds or separatrices, or involving enhanced stabil-
ity of deterministically unstable structures. In neuronal
systems, the constructive role of noise at different stages
of information processing, referred to as “stochastic facili-
tation” [2,3], mainly comprises resonant phenomena. A
classical example is the stochastic resonance [4], which
allows for the detection of weak subthreshold periodic
signals. A more recent development concerns the ef-
fect of inverse stochastic resonance (ISR) [3,5-12], where
noise selectively reduces the spiking frequency of neuronal
oscillators, converting the tonic firing into intermittent
bursting-like activity or a short-lived transient followed
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by a long period of quiescence. The name of the effect
should be taken cum grano salis, because in contrast to
stochastic resonance, it involves no additional external sig-
nal: one rather observes a non-monotonous dependence of
the spiking rate on noise variance, whereby the oscilla-
tion frequency becomes minimal at a preferred noise level.
Such an inhibitory effect of noise has recently been shown
for cerebellar Purkinje cells [11], having explicitly demon-
strated how the lifetimes of the spiking (“up”) and the
silent (“down”) states [13-15] are affected by the noise
variance. ISR has been indicated to play important func-
tional roles in neuronal systems, including the reduction
of spiking frequency in the absence of neuromodulators,
suppression of pathologically long short-term memories,
triggering of on-off tonic spiking activity and even opti-
mization of information transfer along the signal propaga-
tion pathways [3,7,9,11].

So far, theoretical studies on ISR have mostly con-
cerned the scenario where a single neuron exhibits bistable
deterministic dynamics, featuring coexistence between a
limit cycle and a stable equilibrium. Such bistability is
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typical for Type-II neurons below the subcritical Hopf bi-
furcation, e.g., classical Hodgkin-Huxley and Morris-Lecar
models [3,6-8]. There, applying noise induces switching
between the metastable states, but at an intermediate
noise level, one surprisingly finds a strong asymmetry of
the associated switching rates, which makes the periods
spent in the vicinity of equilibrium much longer than the
periods of spiking activity.

An important open problem concerns conditions giving
rise to ISR in coupled excitable systems, where noise influ-
ences the emergent oscillations. Here we address in detail
this issue, as it may be crucial to understanding the preva-
lence of the effect in neural networks, whose activity de-
pends on the interplay of excitability, coupling properties
and noise. Synaptic dynamics typically involves the plas-
ticity feature, which makes self-organization in neuronal
systems a multi-timescale process: the short-term spiking
activity unfolds on a quasi-static coupling configuration,
while the slow adjustment of coupling weights depends on
the time-averaged evolution of units.

Motivated by the findings in neuroscience, we focus on
the onset of ISR in a simplified, yet paradigmatic system
of two adaptively coupled stochastic active rotators with
excitable local dynamics. Active rotators are canonical for
Type-I excitability and may be seen as equivalent to the
theta-neuron model. Adaptivity is introduced in a way
that allows continuous interpolation between a spectrum
of plasticity rules, including Hebbian learning and spike-
time-dependent plasticity (STDP) [16-18].

We demonstrate a generic scenario for the plasticity-
induced ISR, where the system’s multiscale structure, de-
fined by the adaptivity rate, plays a crucial role. On a
basic level, plasticity gives rise to multistable behavior in-
volving coexisting stationary and oscillatory regimes. An
additional subtlety, which we show by the fast-slow anal-
ysis, is that the plasticity promotes the resonant effect by
guiding the fast flow toward the parameter region where
the stable fixed points are focuses rather than nodes.

The paper is organized as follows. In the next sec-
tion the details of the model and the numerical bifurca-
tion analysis of the deterministic dynamics are presented.
The third section contains the results on the ISR effect
and the supporting conditions. In the fourth section the
fast-slow analysis is applied to explain the mechanism by
which plasticity enhances the system’s non-linear response
to noise. Apart from providing a brief summary, in the
last section we also discuss the prevalence of the observed
effect.

Model and bifurcation analysis of deterministic
dynamics. — Our model involves two stochastic active
rotators interacting by adaptive couplings [19-22],

$1 = Ip —sinpy + kysin (w2 — @1) + \/Efl(t),

o = Iy —sin o + ko sin (o1 — p2) + VDE(t), (1)
K1 = €(—r1 + sin(p2 — o1 + 5)),
Ky = €(—ko +sin(p1 — 2 + ),

where the phases {p1,¢2} € S', while the coupling
weights {k1, ko } are real variables.

The excitability parameters Iy, which one may interpret
as external bias currents in the context of neuroscience,
are assumed to be identical for both units. For such a
setup, the deterministic version of (1) possesses a Zs sym-
metry, being invariant to the exchange of units’ indices.
The uncoupled units undergo a SNIPER bifurcation at
Iy = 1, with the values Iy < 1(Iy > 1) corresponding to
the excitable (oscillatory) regime. We consider the case of
excitable local dynamics, keeping Iy = 0.95 fixed through-
out the paper, such that the oscillations may emerge only
due to the coupling terms and/or noise. The scale sepa-
ration between the fast dynamics of the phases and the
slow dynamics of adaptation is adjusted by the parameter
e < 1. The fast variables are influenced by independent
white noise of variance D such that & (¢)&;(t') = d;;0(t—t')
for i,j € {1,2}. Conceptually, adding stochastic input to
the fast variables embodies the action of synaptic noise in
neuronal systems [23].

The modality of the plasticity rule is specified by the
parameter (3, whose role may be understood by invok-
ing the qualitative analogy between the adaptation dy-
namics in classical neuronal systems and the systems of
coupled phase oscillators. This issue has first been ad-
dressed in [24-26], and a deeper analysis of the correspon-
dence between the phase-dependent plasticity rules and
the STDP has been carried out in [19]. In particular, it
has been shown that the plasticity dynamics for § = 3m/2,
where the stationary weights between the oscillators with
smaller/larger phase differences increase/decrease, quali-
tatively resembles the Hebbian learning rule [25,26]. Nev-
ertheless, when 8 = m, the coupling weights encode a
causal relationship between the spiking of oscillators by
changing in the opposite directions, in analogy to an
STDP-like plasticity rule. Our interest lies with the (8
interval interpolating between these two limiting cases.

Using bifurcation analysis of the deterministic dynam-
ics of (1), we first show how the modality of the plasticity
rule influences the number of stationary states, and then
explain how the onset of oscillations depends on adap-
tivity rate. The bifurcation diagram in fig. 1 indicates
that the number and the stability of fixed points of (1)
change with 8 in such a way that the system may pos-
sess two, four or six fixed points. Due to invariance to
Z5 symmetry, one always finds pairs of solutions shar-
ing the same stability features. We consider the plastic-
ity rules described by 8 € (3.298,4.495), cf. the shaded
region in fig. 1, where the system has two stable fixed
points lying off the synchronization manifold ¢ = @9, as
well as four unstable fixed points. The bifurcations oc-
curring at the boundaries of the relevant § interval are
as follows. At 8 = 3.298, the system undergoes a su-
percritical symmetry-breaking pitchfork bifurcation giving
rise to a pair of stable fixed points off the synchroniza-
tion manifold. For § = 4.495, this pair of stable fixed
points collides with a pair of unstable fixed points off
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Fig. 1: (Color online) Bifurcation diagram for the fixed points
of (1) with D = 0 under variation of 5. Solid lines refer to
stable fixed points, while dashed and dotted lines correspond
to saddles of unstable dimension 1 and 2, respectively. Shad-
ing indicates the considered range of plasticity rules. The two
fixed points independent on (8 belong to the synchronization
manifold. The remaining parameters are Ip = 0.95,¢ = 0.05.

the synchronization manifold, getting annihilated in two
symmetry- related inverse fold bifurcations. Note that the
weight levels typical for the two stable stationary states
support effective unidirectional interaction, in a sense that
one unit exerts a much stronger impact on the dynamics
of the other unit than vice versa. When illustrating the
effect of ISR, we shall mainly refer to the case § = 4.2.
For this 3, the two stable focuses of (1) at D = 0 are
given by (¢1, p2, k1, k2) = (1.177,0.175,0.032, —0.92) and
(p1, 92, K1, k2) = (0.175,1.177,—-0.92,0.032). Within the
considered 3 interval, the two stable fixed points of the
coupled system exhibit excitable behavior, responding to
external perturbation by generating either the successive
spikes or synchronized spikes [21].

The onset of oscillations for the deterministic version
of (1) relies on the interplay between the plasticity rule,
controlled by 3, and the adaptation rate, characterized
by e. In fig. 2(a) are shown the results of parameter sweep
indicating the variation of k, variable, o,,, = max(x1(t))—
min(rq(t)), within the (53, ¢) parameter plane. The sweep
indicates the maximal stability region of the two emerging
periodic solutions, related by the exchange symmetry
of units indices. The data are obtained by numerical
continuation starting from a stable periodic solution, such
that the final state reached for the given parameter set is
used as initial conditions of the system dynamics for incre-
mented parameter values. One observes that for fixed f3,
there exists an interval of timescale separation ratios € €
(Emin, €maz) admitting oscillations, see fig. 2(b). Within
the given € range, the system exhibits multistability
where periodic solutions coexist with the two symmetry-
related stable stationary states. The lower threshold for
oscillations, €,,i,, reduces with 3, whereas the upper
boundary value, €,,4:, is found to grow as 3 is enhanced.
Note that the waveform of oscillations also changes as
€ is increased under fixed 3. In particular, for smaller
€, the waveforms corresponding to the two units are
rather different. Nevertheless, around € ~ 0.06 the system
undergoes a pitchfork bifurcation of limit cycles, such that
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Fig. 2: (Color online) Onset of oscillations in (1) for D = 0.
(a) Variation o, of the coupling weight x1 in the (3, €)-plane.
(b) Mean coupling weights (r1)(e) and (k2)(€) for oscillatory
(thick lines) and stationary states (thin lines) at 8 = 4.2.
(¢) Variation o4, (¢) and ox,(€), presented as in (b). Shad-
ing in (b) and (c) indicates the € interval admitting the stable
periodic solutions.
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Fig. 3: (Color online) (a) Mean spiking rate (f) in terms of
D for e € {0.06,0.08,0.1}. The curves exhibit a character-
istic minimum at an intermediate noise level. (b)—(d) Time
traces ¢1(t) and @p2(t) for noise levels below, at and above
the resonant value. The remaining parameters are Iy = 0.95,
B =4.2,¢=0.06.

the oscillatory solution gains the anti-phase space-time
symmetry o1 (t) = @2(t+71/2), k1(t) = k2(t+T/2), where
T denotes the oscillation period [21].

Numerical results on ISR. — Inverse stochastic
resonance manifests itself as noise-mediated suppression
of oscillations, whereby the frequency of noise-perturbed
oscillations becomes minimal at a preferred noise level.
For system (1), we find such an effect to occur generically
for intermediate adaptivity rates, supporting multistabil-
ity between the stationary and the oscillatory solutions,
as described in the previous section. A family of curves
describing the dependence of the oscillation frequency on
noise variance (f)(D) for different e values is shown in
fig. 3. All the curves corresponding to € > €,,;,(3) show
a characteristic non-monotonous behavior, displaying a
minimum at the optimal noise intensity. For weaker noise,
the oscillation frequency remains close to the determinis-
tic one, whereas for much stronger noise, the frequency
increases above that of unperturbed oscillations. The dis-
played results are obtained by averaging over an ensemble
of 1000 different stochastic realizations, having excluded
the transient behavior, and having fixed a single set of ini-
tial conditions within the basin of attraction of the limit
cycle attractor. Nevertheless, we have verified that the

40004-p3



Iva Bacié et al.

0.08

D=0.0015 (b) D=0.0025

0.06

0.9 -
=006 |\

@

bP(K)

Fig. 4: (Color online) (a)—(c) Stationary distribution P(¢1) for the noise levels below, at and above the resonant value. System
parameters are Iy = 0.95, 8 = 4.2 and € = 0.06. From the three observable peaks, the middle one, prevalent in (a) and (c), refers
to the metastable state associated to the oscillatory mode of (1) for D = 0. The two lateral peaks, dominant in (b), correspond
to quasi-stationary states derived from the stable equilibria of the deterministic version of (1). (d) Bimodality coefficient for
the stationary distribution of k1, bp(s,), as a function of D. The three curves refer to e = 0.06 (diamonds), € = 0.08 (circles)

and € = 0.1 (squares).
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Fig. 5: (Color online) (a) and (b): transition rates from the stability basin of the limit cycle to the fixed point, yrc—rp(D)
and vice versa, yrp—rc(D), numerically obtained for e = 0.06 (squares) and € = 0.1 (circles). The remaining parameters are
Ip = 0.95,3 = 4.2. (c¢) Determinant of the Jacobian calculated along the limit cycle orbit as a function of the phase variable.
The quantity provides an indication of the sensitivity of certain sections of the orbit to external perturbation. Blue and red

colors correspond to € = 0.06 and € = 0.1, respectively.

qualitatively analogous results are obtained if for each
realization of stochastic process one selects a set of ran-
dom initial conditions lying within the stability basin of
the periodic solution. The suppression effect of noise de-
pends on the adaptivity rate, and is found to be more pro-
nounced for faster adaptivity. Indeed, for smaller €, (t)
series corresponding to the noise levels around the min-
imum of (f)(D) exhibit bursting-like behavior, whereas
for larger €, noise is capable of effectively quenching the
oscillations, such that the minimal observed frequency ap-
proaches zero.

The core of the described effect concerns switching
dynamics between the metastable states associated to
coexisting attractors of the deterministic version of sys-
tem (1). To illustrate this, in fig. 4 we have considered
the stationary distributions of one of the phase vari-
ables, P(yp), for the noise levels below, at and above the
minimum of the (f)(D), having fixed the remaining pa-
rameters to (8,¢) = (4.2,0.06). The distribution P(y)
is characterized by two lateral peaks, reflecting the two
symmetry-related quasi-stationary states, and the area
around the central peak, corresponding to the oscillatory
mode. For small noise D = 0.0015, see fig. 4(a), and
very large noise D = 0.006, cf. fig. 4(c), the central
peak of P(yp) is expectedly prevalent compared to the two
lateral peaks. Nevertheless, the switching dynamics for

D = 0.0025, the noise level about the minimum of (f)(D),
is fundamentally different, and the corresponding distribu-
tion P(¢p) in fig. 4(b) shows that the system spends much
more time in the quasi-stationary states than performing
the oscillations. The onset of ISR in the dynamics of fast
variables is accompanied by the increased bimodality of
the stationary distribution of the couplings, see fig. 4(d).

In order to observe the non-monotonous response of
the system’s frequency to noise, the geometry of the
phase space has to be asymmetrical with respect to the
separatrix between the coexisting attractors in such a
way that the limit cycle attractor lies much closer to
the separatrix than the stationary states. Such structure
of phase space gives rise to asymmetry in switching
dynamics, whereby at the preferred noise level around the
minimum of (f)(D), the transition rate from the stability
basin of the limit cycle attractor to that of stationary
states yLo—pp becomes much larger than the transition
rate in the inverse direction, ypp_rc. Figures 5(a)
and (b) corroborate that the dependences v,o_ pp(D)
and vrp_rc(D) are qualitatively distinct: the former
displays a maximum at the resonant noise level, whereas
the latter just increases monotonously with noise. The
fact that ISR is more pronounced for higher adaptivity
rates is reflected in that the curve ypo— pp(D) for e = 0.1
lies substantially above that for e = 0.06, see fig. 5(a).
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Fig. 6: (Color online) Mean spiking rate (f) as a function of 3
and D for fixed e = 0.05. The results evince the robustness of
the ISR effect with respect to different plasticity rules.

To understand why the interplay of adaptivity rate and
noise yields a stronger resonant effect for larger e, we have
investigated the susceptibility of the limit cycle attractor
to external perturbation. In particular, fig. 5(c) shows how
the determinant of the Jacobian calculated along the limit
cycle orbit change for € = 0.06 (blue line) and € = 0.1 (red
line), respectively. For smaller €, one may identify two
particular points where the determinant of the Jacobian
is the largest, i.e., where the impact of external pertur-
bation is felt the strongest. This implies that noise is
most likely to drive the systems trajectory away from the
limit cycle attractor around these two sections of the orbit,
which should lie closest to the boundary to the stability
basins of the stationary states. Such a physical picture
is maintained for larger €, but one should stress that the
sensitivity of limit cycle attractor to external perturbation
substantially increases along the entire orbit, cf. fig. 5(c).
In other words, faster adaptivity enhances the impact of
noise, contributing to a more pronounced ISR effect. This
point is addressed from another perspective in the next
section.

We also examine the robustness of ISR to different
modalities of the plasticity rule specified by (. Figure 6
shows how the average oscillation frequency changes with
B and D for fixed e = 0.05. The non-linear response to
noise, conforming to a resonant effect with a minimum of
oscillation frequency at an intermediate noise level, per-
sists in a wide range of (3, essentially interpolating between
the Hebbian-like and the STDP-like adaptive dynamics.

Fast-slow analysis: role of plasticity in the reso-
nant effect. — Though ISR is observed for intermediate e,
here we show that the fast-slow analysis may still be
applied to demonstrate a peculiar feature of the mecha-
nism behind the resonant effect. In particular, we find
that the plasticity enhances the resonant effect by driv-
ing the fast flow dynamics toward the parameter domain
where the stationary state is a focus rather than a node. It
is well known that the response to noise in multi-timescale
systems qualitatively depends on the character of station-
ary states. Indeed, by using the sample-paths approach
and other advanced techniques, it has already been shown

that such systems may exhibit fundamentally different
scaling regimes with respect to noise variance and the
scale-separation ratio [27,28]. Moreover, the resonant ef-
fects may typically be expected in the case in which quasi-
stationary states are focuses [27], essentially because the
local dynamics around the stationary state then involves
an eigenfrequency.

Within the standard fast-slow analysis, one may ei-
ther consider the layer problem, defined on the fast
timescale, or the reduced problem, concerning the slow
timescale [29]. For the layer problem, the fast flow dynam-
ics p1(t; k1, Ka), p2(t; K1, ko) is obtained by treating the
slow variables x1 and k5 as system parameters, whereas in
the case of the reduced problem, determining the dynamics
of the slow flow (k1(t), k2(t)) involves time-averaging over
the stable regimes of the fast flow of the layer problem.
The fast flow can in principle exhibit several attractors,
which means that multiple stable sheets of the slow flow
may emerge from the averaged dynamics on the different
attractors of the fast flow. Our key point concerns the dy-
namics of the slow flow, which requires us to first classify
the attractors of the fast flow.

The fast flow dynamics is given by

gél ZIO —sin<p1 + K1 sin ((pg —(pl), (2)

P2 = Io — sinpa + Ko sin (1 — 2),
where k1, ko € [—1, 1] are considered as additional system
parameters. One may formally obtain (2) by setting e = 0
in (1) with D = 0. We find that the fast flow is monos-
table for most of the (K1, k2) values, exhibiting either a
stable equilibrium or a limit cycle attractor, see fig. 7(a).
In general, the fast flow admits either two or four fixed
points, and a more detailed physical picture, including
the associated bifurcations, is presented in [21]. The sta-
bility region of the oscillatory regime, outlined by the red
color, has been calculated by numerical continuation start-
ing from a stable periodic solution. Bistability between a
stable fixed point and a limit cycle is observed only in a
small area near the main diagonal k1 = ko. Within the
region featuring oscillatory regime, each periodic solution
obtained for (ki,k2) above the main diagonal has a Zs
symmetry-related counterpart below the diagonal. Typi-
cally, the periodic solutions emanate from SNIPER bifur-
cations, which make up two branches where either x; or
ko are almost constant and close to zero.

Using the results from the analysis of the layer problem,
our goal is to determine the vector fields corresponding
to the stable sheets of the slow flow. We have numeri-
cally obtained the dynamics of the slow flow by a standard
two-step approach [19,30]. First, for fixed values (k1, k2),
we have determined the time-averaged dynamics of the
fast flow (2), (w2 — v1)¢ = h(K1, k2), whereby the averag-
ing (), is carried out over a sufficiently long time interval,
having excluded the transient behavior. As already in-
dicated, such an average depends on the attractor of the
fast flow for the given (k1,k2). If the fast flow possesses
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Fig. 7: (Color online) (a) Attractors of the fast flow (2) in terms of k1 and k2, now treated as free parameters. The fast flow
is typically monostable, admitting either a stable fixed point (FP) or a stable limit cycle (LC), apart from a small region of
bistability (FP+LC) around the main diagonal. (b) Vector field of the slow flow (3) determined by considering only the stable
regimes of the fast flow for g = 4.2, I = 0.95. Within the yellow-highlighted regions, the stable fixed point of the fast flow is

a focus rather than the node. The displayed orbit (k1

(t), k2(t)) corresponds to a switching episode from the oscillatory state
to the quasi-stationary state and back (evolution direction indicated by arrows).

Panels (¢) and (d) show the time traces of

phases and couplings during the switching episode. (e) Conditional probability pr (D) for € = 0.06 (blue squares) and ¢ = 0.1

(red circles).

a stable fixed point, then (w2 — ¢1); = @5 — @], which
corresponds to the slow critical manifold of the system.
For (k1, ko) where the attractor of the fast flow is a peri-
odic solution, (p2 —¢1)¢ amounts to the time average over
the period. Averaging over a periodic attractor of the fast
flow is a standard approximation [30], quite natural when
describing the influence of oscillations in the fast flow to
the dynamics of the slow flow.

As the second step, the obtained time averages are sub-
stituted into the coupling dynamics

K1 = €[—k1 + sin(h(k1, k2) + B)],

€[—ko + sin(—h(k1, ko) + 0)]. 3)

Ko =
The system (3) allows one to determine the vector fields
on the stable sheets of the slow flow, which correspond to
the attractors of the fast flow. In fig. 7(b), the vector fields
associated to each of the attractors (fixed point or limit
cycle) are presented within its respective (K1, ko) stability
region. In the small region of the (k1, k2)-plane support-
ing coexisting stable solutions of the fast flow, the corre-
sponding vector field of the slow flow is given on multiple
overlapping sheets, since the value of the average f(k1, k2)
depends on the initial conditions.

Within the above framework, one is able to explain a
subtle influence of adaptivity on the mechanism behind
the ISR. To this end, in fig. 7(b) we have projected a
typical example of the (k1(t), k2(t)) trajectory of the full
system (1) corresponding to a switching episode between
the metastable states associated to a limit cycle attractor
and a stable equilibrium of the deterministic system, see
the time traces in figs. 7(c), (d). One observes that for
the oscillating regime, the coupling dynamics always re-
mains close to the SNIPER bifurcation of the fast flow, cf.
fig. 7(a), which makes the oscillations quite susceptible to
noise. Recall that the fast flow is typically monostable.
Thus, switching events in the full system are naturally
associated to the fast flow undergoing the SNIPER, bifur-
cation: either a direct one, leading from the oscillatory to
the stationary regime, or the inverse one, unfolding in the

opposite direction. For (k1,k2) values immediately after
the SNIPER bifurcation toward the quiescent state, the
stable equilibrium of the fast flow is a node. Nevertheless,
for the noise levels where the effect of ISR is most pro-
nounced, we find that the coupling dynamics guides the
system into the region where the equilibrium is a stable
focus rather than a node, see the yellow highlighted re-
gion in fig. 7(b). We have verified that this feature is a
hallmark of the resonant effect by numerically calculating
the conditional probability pr that the events of crossing
the SNIPER bifurcation are followed by the system’s orbit
visiting the (k1, ko) region where the stable equilibrium is
a focus. The pp(D) dependences for two characteristic e
values at fixed § = 4.2 are plotted in fig. 7(e). One learns
that pp(D) has a maximum for the resonant noise levels,
where the corresponding curve f(D) displays a minimum.
In other words, the fact that the coupling dynamics drives
the fast flow to the focus-associated regions of the (k1, k2)-
plane results in trapping the phase variables for a longer
time in the quasi-stationary (quiescent) state. Small noise
below the resonant values is insufficient to drive the system
to this region, whereas for too large a noise, the stochastic
fluctuations completely take over, washing out the quasi-
stationary regime. Note that for the faster adaptivity rate,
the facilitatory role of coupling becomes more pronounced,
as evinced by the fact that the curve pp(D) for € = 0.1
lies above the one for € = 0.06.

Discussion. — In the present paper, we have demon-
strated a novel generic scenario for the onset of ISR, which
involves an interplay between the local excitability fea-
ture and the adaptive dynamics of the couplings. For
the example of two active rotators with coupling plastic-
ity, we have shown that the spiking frequency correspond-
ing to emergent oscillations varies non-monotonously with
noise, displaying a minimum at a preferred noise level.
Though the model per se is simplified, the underlying
paradigm is relevant for combining the two core features
of typical neuronal systems. The effect derives from the
multi-timescale structure of the system, whereby the scale
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separation between the local and the weight dynamics is
tuned via adaptivity rate. Within a range of intermedi-
ate adaptivity rates, the deterministic dynamics of the full
system exhibits multistability between the limit cycle at-
tractors and the stable equilibria, each appearing in pairs
due to the systems invariance to Z5 symmetry. Applying
the standard fast-slow analysis, we have shown that the
resonant effect with noise is in fact plasticity-enhanced:
plasticity promotes the impact of noise by guiding the fast
flow toward the parameter domain where the stable equi-
libria become focuses instead of nodes. This mechanism
increases the trapping efficiency by which the noise is able
to deviate the systems trajectory from the metastable os-
cillatory states to the non-spiking regime. For faster adap-
tivity, the resonant effect is found to be more pronounced
in a sense that the frequency dependence on noise shows
deeper minima. Our scenario has proven to persist in a
wide range of plasticity rules, interpolating between the

cases analogous to Hebbian learning and STDP.
In earlier studies, observation of ISR has mostly been

confined to Type-II neurons with intrinsic bistable dynam-
ics, as in case of Hodgkin-Huxley or Morris-Lecar neurons
near the subcritical Hopf bifurcation [3,6-9]. Even in case
of networks, the macroscopic ISR effect has been linked
to dynamical features of single units, only being modu-
lated by the details of synaptic dynamics and the network
topology [10]. In contrast to that, our results show that
ISR may not rely on bistability of local dynamics, but
may rather emerge due to the facilitatory role of coupling,
here reflected in the interplay of multiscale dynamics and
plasticity. Another distinction from most of the previous
studies is that our scenario concerns Type-I units. For
this class of systems, it is known that the dependence of
the oscillating frequency of a single unit with noise is just
monotonous [3,12], so that the resonant effect can only
be observed in case of coupled units. So far, the latter
case has been analyzed only once [5], but the underlying
scenario is different from ours insofar as it involves static,
rather than the adaptive couplings, and the effect per se

is confined to a narrow region of the parameter space.
Quite recently, the onset of ISR has been reported for a

single Fitzhugh-Nagumo oscillator [12], which is the first
observation of the effect for Type-II neuron model in the
vicinity of the supercritical Hopf bifurcation. Similar to
the scenario we elaborated, ISR there also derives from
the multiscale structure of the system. However, the ac-
tual mechanism behind the effect is associated to phase-
sensitive (non-uniform) excitability of a limit cycle orbit
conforming to relaxation oscillations [12]. These findings
and the results here suggest that ISR may indeed provide
a generic means of controlling and optimizing the firing
rate in multi-timescale systems, which can be applied to
neuronal activity, calcium signaling and other types of cell
dynamics.
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