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Synchronization transitions on small-world neuronal networks:
Effects of information transmission delay and rewiring probability
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Abstract – Synchronization transitions are investigated in small-world neuronal networks that
are locally modeled by the Rulkov map with additive spatiotemporal noise. In particular, we
investigate the impact of different information transmission delays and rewiring probability. We
show that short delays induce zigzag fronts of excitations, whereas intermediate delays can further
detriment synchrony in the network due to a dynamic clustering anti-phase synchronization
transition. Detailed investigations reveal, however, that for longer delay lengths the synchrony of
excitations in the network can again be enhanced due to the emergence of in-phase synchronization.
In addition, we show that an appropriate small-world topology can restore synchronized behavior
provided information transmission delays are either short or long. On the other hand, within the
intermediate delay region, which is characterized by anti-phase synchronization and clustering,
differences in the network topology do not notably affect the synchrony of neuronal activity.
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Introduction. – The complex dynamics of networks
of coupled neurons is a central topic in theoretical
neuroscience [1]. Within the array of possible dynamical
behaviors, wave formation and synchronization [2] seem
to be very important for the efficient processing and
transmission of information across the nervous system.
The brain is a highly distributed multitasking system
in which numerous operations are executed in a parallel
fashion, yet it lacks a main coordination center. One of
the coordinating mechanisms appears to be the synchro-
nization of neuronal activity via phase locking [3] of
self-generated oscillations. In the past decade many theo-
retical and experimental works have been performed with
the goal to analyze wave formation and synchronization
in a vast variety of different systems, including complex
networks [4]. Paths to synchronization on complex
networks have been investigated in [5], whereas universal-
ities in the synchronization of weighted random networks

(a)E-mail: nmqingyun@163.com

were reported in [6]. More specifically related to neuronal
systems, subthreshold stimulus-aided synchronization
and wave formation on a square lattice of noisy neurons
have been investigated by means of the Rulkov map [7].
Moreover, Sato et al. studied the effects of different widths
of the action potential on synchronization phenomena of
coupled neurons [8]. Complex spatiotemporal behaviors,
including in-phase and anti-phase synchronization as well
as various wave formation patterns, have been observed
in a ring network of discrete bursting oscillators [9].
Pattern formation and firing synchronization have also
been studied in a network of discrete neurons as the
coupling strength was varied [10].
According to the Watts-Strogatz small-world

network [11], neurons of the brain are coupled mainly
locally, but in addition, are also connected through sparse
long-range connections linking physically distant units.
Convincing evidences have been presented which support
the idea that small-world networks provide a powerful
and versatile tool, leading us towards understanding
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the structure and function of the human brain [12–15].
Hence, much attention has been devoted to studying
the dynamics of small-world neuronal networks [16].
Furthermore, Kwon and Moon [17] investigated the
effects of small-world networks on the phenomenon of
coherence resonance in ensembles of Hodgkin-Huxley
neurons. It has been reported that increasing the network
randomness may lead to an enhancement of temporal
coherence and spatial synchronization. Spatiotemporal
chaos and synchronization on complex neuronal networks
have also been studied [18,19]. Both works report that
the synchronization, which is absent in the regular
network, can be greatly enhanced by random shortcuts
between distant neurons. Moreover, Perc et al. have
recently investigated the stochastic resonance and spatial
synchronization on excitable [20] as well as bistable [21]
small-world networks, whereby previously it has also
been reported that the synchronization of small-world
networks depends not only on their topology but also on
the type of coupling [22].
When modeling realistic neuronal networks, it is

important to explicitly consider time delays in the
description of the information transfer. Information
transmission delays are inherent to the nervous system
because of the finite speed at which action potentials
propagate across neuron axons, as well as due to time
lapses occurring by both dendritic and synaptic process-
ing. Typical conduction velocities approximately equal
ten m/s, leading to non-negligible transmission times, in
the order of milliseconds or even hundreds of millisec-
onds, for information propagation through the cortical
network [23]. It is known that different time delay lengths
can change both qualitative and quantitative properties
of dynamics [24], such as introducing or destroying stable
oscillations, enhancing or suppressing synchronization
between different neurons as well as generating spatiotem-
poral patterns. Thus far, complex behaviors due to finite
time delays, such as multi-stability and synchronizations
have been analytically and numerically investigated
in several neuronal models that included delayed
coupling [25–28], and studies devoted to more general
properties of synchronization in time-delayed systems
have shed light on many intriguing phenomena [29,30].
At present, we aim to extend the subject by study-

ing wave formation and synchronization transitions on
small-world neuronal networks that are characterized
with information transmission delay and noise. We report
several non-trivial effects induced by finite delay lengths
and small-world topology, such as the emergence of zigzag
fronts, enhanced and decreased synchrony of neural activ-
ity, as well as a dynamic clustering anti-phase and in-phase
synchronization transition. Accordingly, the continuation
of this letter is organized as follows. First, we introduce
the employed neuronal model and other mathematical
considerations presently in use. Second, we present the
main results, whereas finally, we summarize our work and
discuss potential implications of the main findings.

Mathematical model and setup. – We use, as the
constitutive model, the Rulkov map [31], which succinctly
and numerically efficiently captures all the main dynami-
cal features of the more complex time-continuous models.
The spatial-temporal evolution of the studied network,
along with additive Gaussian noise and information trans-
mission delay, is governed by the following iteration
equations:

x(i)(n+1) = αf [x(i)(n)]+ y(i)(n)+wξ(i)(n)

+D
∑
j

εi,j
[
xj(n− τ)−xi(n)] , (1)

y(i)(n+1) = y(i)(n)−βx(i)(n)− γ, i= 1, . . . , N,
where x(i)(n) is the membrane potential of the i-th neuron,
y(i)(n) is the variation of ion concentration, and they
represent the fast and the slow dynamics, respectively.
The slow temporal evolution of y(i)(n) is due to the small
values of the positive parameters β and γ, which within
this study equal β = γ = 0.001. Moreover, n is the discrete
time index, while α is the main parameter determining the
dynamics of individual neurons constituting the network
to be presented below. f(x) = 1

1+x2 is a nonlinear function
warranting the essential dynamical ingredients of real-
life neuronal dynamics, and ξi(n) is the delta-correlated
Gaussian noise that is characterized by 〈ξi〉= 0 and
〈ξi(n)ξj(n′)〉= δi,jδ(n−n′). Parameter w in eq. (1) thus
determines the noise intensity. The coupling strength is
set to D= 0.02 throughout this work, whereby εi,j = 1 if
neuron i is coupled to neuron j and εi,j = 0 otherwise.
Finally, τ is the information transmission delay, which
will be one of the main parameters on which we focus
in this work, as it determines the onset of different
synchronization regimes. It is worth noting that the
coupling strength D is presently of secondary importance
as it only shifts the borders of τ where the different
regimes of synchronization can be observed, but it does not
affect below results qualitatively. Hence, we do not vary
D within this study. In accordance with the established
reasoning, higher D may uphold the spatial synchrony
for somewhat larger τ and thus delay the occurrence of
anti-phase synchronization, whereas lower D have just the
opposite effect.
Underlying interaction networks for the Rulkov neurons

are obtained by starting from a regular ring with periodic
boundary conditions comprising N = 300 vertices, each
having k= 4 nearest neighbors as shown in fig. 1(a).
The parameter p determines the probability of rewiring
a link and can occupy any value from the unit interval,
whereby p= 0 constitutes a regular graph, while p= 1
results in a random network. For 0< p< 1, as exemplified
in fig. 1(b), the resulting network may have small-world
properties in that the normalized characteristic path
length between distant units is small, i.e. comparable
with that of a random network, while the normalized
clustering coefficient is still large, i.e. comparable with
that of a regular nearest-neighbor graph. The rewiring
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(a) (b)

Fig. 1: Examples of considered network topologies. For clarity,
regarding k and p only 25 vertices are displayed in each
panel. (a) Regular ring characterized by p= 0 with periodic
boundary conditions. Each vertex is connected to its k= 4
nearest neighbors. (b) Realization of small-world topology via
random rewiring of a certain fraction p of links (in this case 4
out of all 100 were rewired, hence p= 0.04).

Fig. 2: Space-time plots obtained for different information
transmission delays. From left to right τ equals 0, 60, 270
and 480, respectively. Other parameter values are p= 0.1 and
w= 0.01. In all panels the color profile is linear, white depicting
0.0 and black depicting −1.6 values of xi(n) (the scale is
partitioned into ten different shades of gray to enable the color
coding of small-amplitude deviations from the excitable steady
states).

probability p is the second main parameter to be varied
below. Resulting networks are iterated forward in discrete
time n in a straightforward fashion consecutively over all
i= 1, . . . , N neurons, and after every full iteration cycle
the whole network is updated and n→ n+1.
As noted above, for an isolated Rulkov neuron the

parameter α determines its main dynamical properties.
Indeed, the array of possible dynamical states is large,
comprising excitable steady states if α< 2.0, as well
as complex firing and bursting patterns of temporal
activity which emerge via a Hopf bifurcation as α> 2.0.
A more detailed analysis of the bifurcation structure of
this fascinating model is given in the original work [31].
Presently, we set α= 1.95 so that all neurons stay in an
excitable steady state. Thus, importantly, the additive
spatiotemporal Gaussian noise acts as the only source of
large-amplitude excitations. We set w so that firings are
frequent yet still temporally uncorrelated, as exemplified
in fig. 2(a). The impact of different noise intensities on
phase synchronization and the transitions has already
been investigated in great depth (see, e.g., [32]), whereas

Fig. 3: (a) An inset of fig. 2(c), enabling a clearer demonstration
of the cluster anti-phase synchronization. (b) Temporal series
of the two selected neurons labeled by A and B in panel (a). As
in panel (a), the anti-phase synchronization is clearly visible.

here Gaussian noise acts only as a source of (temporally
uncorrelated) large-amplitude excitations.

Results. – In what follows, the effects of information
transmission delay τ and rewiring probability p on wave
formation and synchronization in the examined neuronal
system are presented. First, results presented in fig. 2
illustrate the spatiotemporal dynamics of neurons evoked
by different τ on a typical realization of small-world
topology given by p= 0.1. Initially, in the absence of
information transmission delay, neurons can synchronize
their spiking with relatively sparse excitations occurring
within a given time interval due to the application of rela-
tively weak Gaussian noise that fails to evoke consecutive
large-amplitude excitations. By short delays, zigzag fronts
can appear as shown in fig. 2(b). In fig. 2(c), however, it is
illustrated that by further increasing τ , alternative layer
waves can be induced at which excitatory spikes appear
alternatively among nearby clusters in space as the tempo-
ral dynamics evolves. A local enlargement of fig. 2(c)
clearly shows that the anti-phase synchronization can be
observed amongst the nearby clusters (see fig. 3(a)). For
a clearer presentation of this phenomenon, we select two
neurons in the positions labeled A and B in fig. 3(a) and
plot their time series separately in fig. 3(b). It is obvious
that the two neurons exhibit anti-phase synchronization.
Hence, this phenomenon can be termed appropriately as
the clustering anti-phase synchronization transition occur-
ring by an appropriate information transmission delay.
Moreover, for larger τ in-phase synchrony can be observed
(see fig. 2(d)), and it can also be seen that, as the delay
increases, more spikes are fired in a given time interval,
and consequently, the frequency of neuronal firing
increases as well. In fact, this is not surprising since
delays introduce phase slips, and hence zigzag fronts as
well as alternative layer waves can appear that supple-
ment the noise-induced excitations. This near-regular
wave formation in noisy neuronal networks additionally
amplifies the significant role of time delays in such
systems.
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Fig. 4: Space-time plots obtained for different information
transmission delays. From left to right τ equals 0, 60, 270
and 480, respectively. Other parameter values are p= 0.1 and
w= 0.018. The color profile is the same as in fig. 2.

In order to emphasize the independence of the above
results from variations of w, we present the results
obtained by setting w= 0.018 in fig. 4. Indeed, only the
initial frequency of excitations by τ = 0 increases, whereas
the emergence of zigzag fronts, the subsequent cluster
anti-phase synchronization, as well as in-phase synchrony
are qualitatively identical as in fig. 2. Moreover, similar
investigations have been performed also for other values
of w as well as D, yielding qualitatively identical results
as are depicted in the thus far presented figures. Hence,
we show that appropriate information transmission
delays on small-world neuronal networks can induce
complex waves and synchronization transitions, including
zigzag fronts, clustering anti-phase synchronization and
near-regular in-phase synchronization, irrespective of the
coupling strength and the level of background noise, which
arguably is a common ingredient of neuronal dynamics.
Noteworthy, while here the emergence of anti-phase
synchronization is directly linked with the intermediate
information transmission delays, Zhou et al. [33] have
demonstrated earlier that the modular structure may also
be a source of clustering anti-phase synchronization.
Next, we visually inspect the impact of different values

of p on the synchronization within the studied system with
a finite information transmission delay. To do so, we set
τ = 60 and w= 0.018, and subsequently vary p. Results
in form of space-time plots are presented in fig. 5. It can
be observed that, as p increases, zigzag fronts gradually
vanish and near-regular in-phase synchronization sets in.
The synchronization seems to saturate as p is enlarged
towards the random network limit. Notably, we do not
observe clustering anti-phase synchronization as reported
above, which leads us to the conclusion that the latter
indeed is a consequence of an intermediate information
transmission delay rather than complex, or small-world in
particular, network topology.
To study the degree of spatial synchronization quan-

titatively, and thus support above visual assessments, we
introduce by means of the standard deviation the synchro-
nization parameter σ as used earlier in [34], which can be

Fig. 5: Space-time plots obtained for different rewiring prob-
abilities. From left to right p equals 0.0, 0.1, 0.4, 0.6 and 0.8,
respectively. The color profile is the same as in fig. 2.

Fig. 6: (a) Dependence of the synchronization parameter σ on
τ by different p. (b) Dependence of σ on p by different τ . Where
applicable, other parameters are the same as in fig. 4.

calculated effectively according to

σ=
1

T

T∑
n=1

σ(n), σ(n) =
1

N

N∑
j=1

[xj(n)]2−

 1
N

N∑
j=1

xj(n)



2

.

(2)
In particular, σ is an excellent quantity for numerically
effectively measuring the spatial synchronization of exci-
tations, hence revealing different synchronization regimes
and with it the related transitions. From eq. (2) it is
evident that the more synchronous the neuronal network,
the smaller the synchronization parameter σ. Accordingly,
in the event of complete synchrony σ= 0.
In fig. 6(a) we plot σ vs. τ for different p. It is evident

that as the delay increases, σ initially increases, which
directly implies the deterioration of spatial synchroniza-
tion. By conducting detailed investigations, we observed
zigzag fronts for short information transmission delays and
anti-phase synchronization of nearby clusters for interme-
diate values of τ . Longer τ , however, again increased the
spatial synchronization due to the emergence of in-phase
synchrony amongst the neurons. In fig. 6(b) σ is presented
in dependence on p for different τ . Evidently, for smaller
and larger delays σ clearly decreases past the small-world
topology and finally saturates as p approaches the
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Fig. 7: Contour plots of σ in dependence on p and τ : (a) w=
0.01 and (b) w= 0.018. In both panels the color profile is linear,
white depicting 0.04 and black depicting 0.32 values of σ (the
scale is partitioned into ten different shades of gray).

random-network limit. However, for the intermediate
delays the impact of different p on σ is much less profound,
suggesting that the clustering anti-phase synchronization
is robust against alterations of the interaction network
provided τ is adequately adjusted. We argue that the
clustering anti-phase synchronization cannot be affected
by the rewiring as it already constitutes an optimal
state in terms of information transmission amongst
distant (all in fact) neurons. Note that the anti-phase
synchronization does result in a higher σ, i.e. weaker
spatial synchronization than in-phase synchronization
for example, yet in terms of excitatory states of neurons
in the network it is fully predictable as the dynamics
by every second neuron is virtually identical. Thus, the
classical role of the small-world topology to facilitate the
information transmission amongst distant neurons [35]
is not applicable in this case, and hence only negligible
effects can be observed as p is varied. To make an overall
inspection, the dependence of σ on both p and τ is
presented in fig. 7 for two different w. Indeed, it is evident
that there exists a rather narrow-banded region of τ
where σ undergoes no particular changes in dependence
on p. For smaller and larger delays, however, σ has
mostly a decreasing tendency as p increases. We can thus
conclude that both p and τ have a non-trivial impact on
spatial synchronization in noisy neuronal networks, which
can be succinctly summarized as follows.

Summary and discussion. – We study the impact of
information transmission delay and rewiring probability
on wave formation and spatial synchronization in noisy
neuronal networks that are locally modeled by the discrete
Rulkov map. We report that, as the delay increases,
neurons within the network can exhibit transitions from
zigzag fronts to clustering anti-phase synchronization and
further to regular in-phase synchronization. Moreover, we
show that spatial zigzag fronts can transit to increasingly
regular in-phase synchronous behavior as p closes in on
the limit of random networks provided the governing

information transmission delays are either short or long.
Lastly, we reveal that the transition towards the clustering
anti-phase synchronization can be observed only within
a rather narrow interval of intermediate delay lengths,
where the impact of p is small due to the already optimal
information transmission across coupled neurons.
Although the importance of information transmission

delays, complex interaction structures, as well as noise
by shaping neuronal firing patterns has been recognized,
the trend for further explorations in this direction is still
upward bound. The results presented in this letter allow
us to understand the origin of diversity of synchronous
dynamical states observed in large neuronal networks,
which according to the above findings, can emerge either
due to finite information transmission delays or small-
world topology. In fact, we argue that the phenomenon of
enhanced neuronal synchrony via appropriately adjusted
delays might have important implications, in particular,
helping us to understand synchronization phenomena
amongst distant neurons and information processing
within the brain. Furthermore, the synchronization of
neurons was reported to play a decisive role by the emer-
gence of pathological brain rhythms, like by the Parkin-
son’s disease, essential tremors, or by epileptic seizures.
Hence, our results may be instructive to understand the
implications of impaired brain functioning, especially in
terms of an affected transmission of biologically relevant
information in delayed and noisy environments.
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Cortex, 10 (2008) 1093.

[13] Bassett D. S. and Bullmore E., Neuroscientist, 12
(2006) 512.
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