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Abstract — We show that strategy-independent adaptations of random interaction networks can
induce powerful mechanisms, ranging from the Red Queen to group selection, which promote
cooperation in evolutionary social dilemmas. These two mechanisms emerge spontaneously as
dynamical processes due to deletions and additions of links, which are performed whenever players
adopt new strategies and after a certain number of game iterations, respectively. The potency
of cooperation promotion, as well as the mechanism responsible for it, can thereby be tuned
via a single parameter determining the frequency of link additions. We thus demonstrate that
coevolving random networks may evoke an appropriate mechanism for each social dilemma, such
that cooperation prevails even in highly unfavorable conditions.

Copyright © EPLA, 2009

Introduction. — Social dilemmas constitute situations
where the collective well-being is at odds with individual
success. Frequently studied within the framework of evolu-
tionary game theory [1], they provide some of the most
challenging environments for the sustenance of cooperative
behavior. As successors of evolutionary games on regu-
lar grids [2-4], evolutionary games on complex networks
have been the subject of intense investigations in the
last years [5], and their ability to promote or sustain
cooperative behavior in different types of social dilem-
mas has often been confirmed [6-14]. Apart from some
notable early exceptions [15,16], the majority of these
studies considered static interaction networks underlying
the main evolutionary process. The evolution on networks
is, however, increasingly often accompanied also by the
evolution of networks [17-26], and this not just in the
context of evolutionary game theory. Indeed, networks
are to be seen as evolving or adaptive entities that
may substantially influence any dynamical process that
is taking place on them [27].

Coevolutionary processes in general, i.e. processes that
happen alongside the main evolution of strategies, are
currently in the focus of attention within evolutionary
game theory, and it has been shown that they may very
effectively promote cooperation (see, e.g., [22,25,26]).
Notably, the subject of coevolution need not be the inter-
action network, but the term may refer to the teaching

activity and related reproduction capability [28], or the
ability of the players to move on the spatial grid [29-31],
as well. An important observation in many cases is that
coevolutionary rules may lead to highly heterogeneous
states in a spontaneous manner [32]. Since heterogeneity
has often been found favorable for the evolution of
cooperation [33,34], it is considered a key outcome of co-
evolutionary processes that lead to enhanced levels of
cooperation.

Here, we aim to show that simple coevolutionary rules
affecting the interaction network may lead not just to
heterogeneous states promoting the cooperative strategy,
but also to new dynamical processes that positively
affect the evolution of cooperation. In particular, we
start with a random interaction network and introduce
a coevolutionary rule entailing both deletions of existing
and additions of new links between players. While existing
links are deleted whenever a player adopts a new strategy
or its degree exceeds a threshold value, new links are
added after each given number 7 of game iterations.
The latter parameter thus defines a time scale for the
addition of new links, which may be tuned faster or slower
according to the deletion of existing links. Irrespective
of the time scale separation [35,36] between them, the
counteraction of deletions and additions of links largely
preserves the initial random topology of the network and
its heterogeneity, so that the reported ability of resolving
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social dilemmas is due to the spontaneous emergence of
the Red Queen mechanism and group selection, which
appear spontaneously in dependence on 7 and the social
dilemma governing the evolution of the strategies. We thus
show that simple strategy-independent coevolutionary
rules may evoke appropriate dynamical mechanisms that
affect the adoption of strategies on the macroscopic level of
evolutionary games so that the governing social dilemma
is resolved in favor of the collective well-being.

The remainder of this letter is organized as follows.
First, we describe the considered social dilemmas and the
protocol for the coevolution of random networks. Next, we
present the results, and lastly we summarize and discuss
their implications.

Social dilemmas and setup. — In what follows,
we consider all three major social dilemma types where
players can choose either to cooperate or to defect,
whereby mutual cooperation yields the reward R, mutual
defection leads to punishment P, and the mixed choice
gives the cooperator the sucker’s payoff S and the defec-
tor the temptation 7. Adopting previously introduced
parametrization [12], thus designating R=1 and P=0
as fixed, the remaining two payoffs can occupy —1<.5<1
and 0<T <2, where if T>R>P>S we have the
prisoner’s dilemma game, T'> R > S > P yields the snow-
drift and R >T > P > S the stag-hunt game. Irrespective
of the governing social dilemma, initially each player
x is designated either as a cooperator (s, =C) or as a
defector (s, = D) with equal probability, and is placed on
a random network that is constructed from N individuals
with an average degree kqyg=4. As usual, duplicate
links are omitted. Evolution of the two strategies is
performed in accordance with the Monte Carlo simulation
procedure comprising the following elementary steps.
First, a randomly selected player x acquires its payoff
pz by playing the game with all its k, neighbors. Next,
one randomly chosen neighbor of x, denoted by y, also
acquires its payoff p, by playing the game with all its k,
neighbors. Last, if p, >p,, player z tries to enforce its
strategy s, on player y in accordance with the probability
W (sy — $y) = (pz — py)/bkq, where k, is the largest of the
two degrees k, and k,, as used before in case of heteroge-
neous interaction topologies [9,12,22]. In accordance with
the random sequential update, each player is selected
once on average during a full Monte Carlo step.

In addition to the evolution of the two strategies by
each considered social dilemma, a rule for the adaptation
of random interaction networks is implemented. First,
whenever player x adopts a new strategy, all its links,
except for the one with the donor of the new strategy,
are deleted. This process of strategy adoption and
simultaneous link deletion is demonstrated schematically
in fig. 1. Hence, in addition to adopting a new strategy,
the player is forced to break its connections to former
allies and getting k,=1. Second, to counteract the
depletion of links that constitute the random network,

Fig. 1: Schematic presentation of the coevolutionary rule
affecting the interaction network. Player depicted by the black
circle passes strategy to its neighbor depicted by the white
circle. Consequently, the invaded player looses all its links,
except for the one with the donor of the new strategy.
This is marked by the dashed lines extending towards other
neighboring players depicted by gray circles.

all individuals are allowed to form a new link with a
randomly chosen player with which they are not yet
connected after every 7 full Monte Carlo steps. The latter
process can be considered as aging, and accordingly,
as soon as k, reaches a threshold k..., player = dies
and is replaced by a newborn having the same strategy
and keeping a single randomly selected link from its
predecessor, thus maintaining k, = 1. Within the current
work k... was chosen large enough so as not to influence
the initial random topology of players. Below presented
results were obtained on networks hosting N =10* to
2-10° players, for which ke =500 has proven to be
sufficiently large. It is worth mentioning that the coevo-
lutionary process affecting the interaction network may
occasionally result in detached individual players that
originally formed the neighborhood of an invaded player.
In such cases, we relinked the detached player randomly
back onto the network with a single connection. By main-
taining the minimal degree equal to one, we achieve that
every player has at least one neighbor at all times, which
is a necessary condition for playing the game and defining
the fitness of an individual. We also highlight that the
proposed rule for the adaptation of interaction networks
is fully strategy independent, and thus, on its own does
not indirectly support cooperators by treating C-C,
C-D, or D-D links differently from one another. Next, we
will systematically analyze the evolution of cooperation
by 7=1 and 7 =500 for all three social dilemma types.
The two considered values correspond to small and large
time scale separation between link deletions and addi-
tions, and as we will show, largely affect the sustenance
of the cooperative strategy as well as the mechanisms
responsible for it.

Results. — We start by presenting results obtained for
7=1 in fig. 2, where the complete T-S phase diagram
is presented. In the bottom right quadrant, where the
T > R > P > S ranking constitutes the prisoner’s dilemma
game, the cooperators can be sustained up to T'=1.1 but
only if =0, whereas for all S < —0.037, the defectors
dominate completely. Moving to the stag-hunt game in
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Fig. 2: (Color online) Full T-S phase diagram obtained for
7 =1. Solid red lines denote the borders between full coopera-
tor dominance (C phase), full defector dominance (D phase),
and the mixed states (C'+ D phase). Dotted blue line in the
snowdrift quadrant (upper right) denotes the border of oscil-
latory solutions (O phase). We further examine this quadrant
along the dash-dotted black line using the common r para-
metrization (see text for details). Dashed green lines depict
borders between the social dilemma types. Note that the domi-
nance of cooperators in the upper left quadrant is trivial since
T <1 and S > 0 simultaneously.

the bottom left quadrant (R>T > P > S) of fig. 2, the
sustenance of cooperators improves, yet in both cases
cooperation levels do not notably surpass those that
can be obtained on random networks in the absence of
coevolutionary rules (see, e.g., fig. 2 in [12]). Indeed,
the most interesting features can be observed in the
upper right quadrant, where besides complete cooperator
dominance for low enough 7', there exists a broad region
of mixed C'+ D states including oscillatory solutions
(marked with O). Evidently, the dynamical adaptations
of the random network can sustain cooperators across the
whole snowdrift quadrant, which is a notable improvement
if compared to the case of static interaction networks.
Aiming to identify the mechanism behind the promotion
of cooperation, we analyze the evolutionary processes in
the upper right quadrant of fig. 2 more accurately. With-
out loosing generality, we can introduce a single parame-
ter € (0,1) that determines the free payoff elements as
T=1+r and S=1—r [37]. Accordingly, the values of
r, constituting the dash-dotted diagonal in fig. 2, charac-
terize the cost-to-benefit ratio of the snowdrift game [9].
In fig. 3 we present the density of cooperators pco along
r. Since the r diagonal cuts through the oscillatory solu-
tions (dotted blue region in fig. 2), we plot the minima
and maxima of pco for these particular values of r in fig. 3.
Following a complete cooperator dominance up to r = 0.41
and a rather sharp descent of po (region around arrow a),
the oscillatory solutions start via a second-order continu-
ous phase transition at r =2 0.50. The amplitudes of these
oscillations are therefore initially modest (arrow b), but

1.0 T T - —

08 1

0.6 1

Pc

04 r

02 r

0.0 ! ! !

Fig. 3: (Color online) Density of cooperators pc in dependence
on 7 (the dash-dotted diagonal splitting the upper right
quadrant in fig. 2) for 7 =1. Arrows mark sampling values of
r for which temporal curses of pc are presented in fig. 4. Note
that by oscillatory solutions, starting at r = 0.50 (arrow b) via
a second-order continuous phase transition and ending at r =
0.732 (arrow d) via a first-order discontinuous phase transition,
both the minima and the maxima of pc are depicted. The
vertical dashed connecting lines at » = 0.732 indicate that these
states are unstable and transient either to the oscillatory or
the steady-state solution (see fig. 4(d) and the pertaining main
text).

increase fast beyond the transition point (arrow c). As r
increases further, the oscillations terminate abruptly via
a first-order discontinuous phase transition at r =0.732
(arrow d), and again settle onto a stationary state.
Temporal behaviors of pc at these characteristic values
of r are depicted in fig. 4.

From the dynamical point of view, particularly notable
is fig. 4(d), where the coexistence of steady-state and
oscillatory solutions, characteristic for some first-order
discontinuous phase transitions, is depicted. We note here
that the exact sequence of bifurcations is difficult to
determine in the absence of a low-dimensional model
or the use of coarse-graining techniques (see [38] for a
related study). The basin of attraction of the steady-
state solution is caught if the initial value of pc is
close enough to the stationary value (initially pc =0.6;
dashed blue), but otherwise the oscillatory solution is
chosen (initially pc = 0.2; solid red). From the viewpoint
of strategy evolution, results presented in figs. 3 and 4
outline a Red Queen mechanism for the sustenance of
cooperation in the snowdrift game, similarly as has been
reported previously if a third strategy, such as loners, was
introduced to evolutionary games (see, e.g., [39,40]). Since
oscillations are possible only if the system has at least two
independent variables, presently the obvious candidate
for the second, first being pc, is the network structure.
Indeed, by defining p;; as the density of players whose
degree belongs to the lower class (e.g., k < (kmaz/3)) and
measuring it in dependence on time, it can be verified
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Fig. 4: (Color online) Temporal evolutions of pc for r corre-
sponding to the arrows in fig. 3; (a) r=0.42, (b) r=0.50,
(¢) r=0.64, and (d) »=0.732. In panel (d), the coexistence
of steady-state (dashed blue line) and the oscillatory solution
(solid red line) at the first-order discontinuous phase transition
is demonstrated (see text for details).

that it changes with the same oscillation frequency as
pc, but with a m/2 phase shift, as shown in fig. 5. We
thus argue that the tides of cooperation are evoked by
the emergence of robust cooperative clusters that can
form around players having high degree, similarly as
reported previously for scale-free networks [9]. However,
since according to the coevolutionary rule the links of
these players are dissolved as soon as they reach k,qz,
the cooperative clusters disintegrate, in turn enabling the
defectors to win and thus resulting in the downfall of p¢.
Simultaneously, the density of players having small (large)
degree rises (falls), as evidenced by the dashed blue line
in fig. 5. The process starts anew when frequent additions
of new links due to a low 7 value temporarily restore the
difference between influential players having degree close
to kmar and the followers who have comparatively low
degree, thus inducing a new oscillation cycle.
Remarkably, when the time scale separation between
link deletions and additions increases, the strength of
cooperation promotion also increases substantially, as
evidenced in fig. 6 obtained for 7=>500. Note that
the complete dominance of cooperators (pc=1) now
spans over an extensive T-S region, encompassing the
entire traditional snowdrift (0 <7 <1; see, e.g., [9]) and
weak prisoner’s dilemma (1<7<2, R=1, P=S=0;
see, e.g., [2]) parametrization. Moreover, the stag-hunt
dilemma is resolved very satisfactory as well, with
defectors dominating only by extremely harsh conditions
that are characterized with high T and extensively
negative S < —0.6. If compared to results presented in
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Fig. 5: (Color online) Temporal evolutions of pc (solid red line)
and the density of players belonging to the low-degree class pji
(dashed blue line) obtained for r=0.7 (equivalently T'=1.7
and S =0.3) and 7 =1. Note the anti-phase synchronization
between pc and the fraction of players having small degree.

fig. 2 (7 =1), the improvement in terms of cooperation
promotion in fig. 6 is obvious, and it can also be observed
that the mixed (C + D) and oscillatory (O) phases vanish.
We thus conclude that the mechanism responsible for
the promotion of cooperation changes as well, which may
be attributed to two crucial differences compared to the
7 =1 case. First, due to the slower addition of new links,
the cooperative domains can grow larger and stronger
around players having high degree since they prevail over
longer periods of time, i.e., the k,,,; threshold is not
reached so fast. And second, the slow additions of new
links facilitate the emergence of highly influential players,
with comparatively very high degrees if compared to the
majority, to which the followers cannot catch up easily.
These two facts result in a transition from the Red Queen
mechanism of cooperation promotion by the snowdrift
game and the predominantly heterogeneity-based promo-
tion of cooperation in the prisoner’s dilemma and the
stag-hunt game at 7=1 to a powerful group selection
mechanism that emerges by all three social dilemmas for
higher 7, as we will demonstrate next.

Figure 7 shows temporal courses of pc from the snow-
drift quadrant at » = 0.85 for increasing values of 7. Most
importantly, we point out the emergence of time intervals
during which pc is constant. This cascade-like feature
becomes increasingly pronounced as 7 increases. Namely,
at 7 =1 (solid red line) and 7 = 50 (dashed green line) it is
practically absent, whereas at 7 =500 (dash-dotted black
line) the cumulative duration of dormancy of pc surpasses
that of active phases. We argue that the reason for the
emergence of these time intervals of inactivity lies in the
introduced coevolutionary process, which if 7 is sufficiently
large, meaning that new links are added slowly, leads
to the emergence of homogeneous and virtually isolated
groups of players. These groups remain inactive for as long
as it takes for the newly added links to reconnect them
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Fig. 6: (Color online) Full T-S phase diagram obtained for
7=>500. Solid red line denotes the sharp border between full
cooperator dominance (C' phase) and full defector dominance
(D phase). Dashed green lines depict borders between the social
dilemma types.

with one another, of which duration is roughly equivalent
to 7 (see fig. 7). It is important to note that during the
inactive phase, there are practically no strategy transfers
taking place, and thus the main source of link deletions
is disabled. Consequently, the addition of new links can
gradually reconnect the detached groups, which then
again triggers an avalanche of strategy adoptions, which
in turn starts the whole process again, until an absorbing
state is reached. Thus, the temporal plots in fig. 7 arguably
evidence the spontaneous emergence of group selection due
to the introduction of the proposed coevolutionary rule by
high values of 7. Moreover, since the slow additions of new
links facilitate the emergence of highly influential players,
the cooperators flourish within the isolated groups whereas
defectors weaken. Note that influential defectors are
exposed to a negative feedback effect that sets in as soon
as the neighbors adopt the defecting strategy. Then there
is nobody left to exploit, and such clusters become vulner-
able to cooperators. Thus, as soon as the two types of
groups reestablish a sufficiently strong interconnectedness,
cooperators can successfully invade the defectors, thereby
gradually increasing the cooperative domains. The latter
processes manifest as rather steep jumps in the temporal
traces of pc by large enough 7, which are then again
followed by dormancy since the many strategy adoptions
anew lead to isolation of homogeneous groups of players
and restart the outlined group selection mechanism.

Summary. — In sum, we show that evolving random
networks constitute an optimal environment for the
evolution of cooperation provided the time scale sepa-
ration between the deletions and additions of links is
large enough. A powerful group selection mechanism
then emerges spontaneously, which is able to warrant
full cooperator dominance across an extensive 7-S region
covering all major types of social dilemmas. However, if
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Fig. 7: (Color online) Temporal evolution of pc at r=0.85
(equivalently T'=1.85 and S =0.15) for 7 =1 (solid red line),
7=>50 (dashed green line), 7=200 (dotted blue line) and
7=>500 (dash-dotted black line). Steps in the temporal evolu-
tion (time intervals during which pc is constant) that can
be observed by larger values of 7 indicate the emergence of
group selection in the snowdrift game. Qualitatively identical
results can also be obtained for the other two considered social
dilemma types.

the additions of new links are frequent, the formation of
isolated homogeneous groups is hindered and the suste-
nance of cooperators relies either on the heterogeneity
of random interaction networks, or as demonstrated for
the snowdrift game, on a Red Queen mechanism which
emerges due to the interplay between the oscillatory
changes of the network structure and the density of
cooperators. The complexity of this process is under-
lined by the first-order discontinuous phase transition
responsible for the termination of the oscillatory phase
that postulates coexistence of steady-state and oscillatory
solutions which are chosen in dependence on the initial
conditions, thus indicating the option of bistability in
coevolutionary games. Notably, the existence of multiple
equilibria has recently been reported also for IN-person
stag-hunt dilemmas [41], whereas oscillatory solutions in
the context of evolutionary games have been presented
in [42]. Simple strategy-independent coevolutionary rules,
entailing both additions of new as well as deletions of
existing links, can thus favor cooperative behavior beyond
the levels of static complex networks, and seem to offer
a rich plethora of mechanisms to tackle this formidable
challenge. Thereby processes such as making new friends,
punishment or aging, which may all account for the
adaptations of interaction networks, are an integral
part of everyday life, and it therefore seems natural to
incorporate them into the framework of evolutionary
game theory in order to aid the evolution of cooperation.
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