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Controlling the spontaneous spiking regularity via channel
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Abstract – We investigate the regularity of spontaneous spiking activity on Newman-Watts
small-world networks consisting of biophysically realistic Hodgkin-Huxley neurons with a tunable
intensity of intrinsic noise and fraction of blocked voltage-gated sodium and potassium ion channels
embedded in neuronal membranes. We show that there exists an optimal fraction of shortcut
links between physically distant neurons, as well as an optimal intensity of intrinsic noise, which
warrant an optimally ordered spontaneous spiking activity. This doubly coherence resonance-like
phenomenon depends significantly on, and can be controlled via, the fraction of closed sodium
and potassium ion channels, whereby the impacts can be understood via the analysis of the firing
rate function as well as the deterministic system dynamics. Potential biological implications of
our findings for information propagation across neural networks are also discussed.

Copyright c© EPLA, 2009

Introduction. – Information processing within the
nervous system involves noisy components [1]. One major
source of noise within neurons is due to the stochas-
tic dynamics of voltage-gated ion channels embedded
in neuronal membranes [2]. Voltage-gated ion channels
are involved in generating and propagating electrical
signals through neuronal membranes. Hodgkin and Huxley
(HH) [3] first introduced conductance-based models of
these channels. However, the original HH model does not
take into account the stochastic dynamics of voltage-gated
channels, but provides a deterministic description of the
membrane potential, which is valid only within the limit
of very large cell sizes. When the population of ion chan-
nels is finite, the stochastic dynamics of voltage-gated ion
channels (or ion channel noise) causes subthreshold fluc-
tuations in the membrane voltage [2], and can have signif-
icant impacts on the neuronal dynamics [4–11].
The intensity of the channel noise is related to the

number of ion channels, but its actual impact is deter-
mined by the number of channels that are open near the
threshold for spike firing. Schneidman et al. [6] showed
that there is a short distance in terms of the number of
open channels between firing and non-firing stable states,

and that fluctuations due to only a few channels are
responsible for the transition between these two stable
states. They also reported that this spontaneous transi-
tion is the cause for the missing spikes, the subthreshold
membrane voltage, as well as spontaneous spikes. There-
fore, controlling the number of working ion channels for a
given membrane patch is of great importance, particularly
to understand the impact of a specific ion channel type
on neuronal dynamics. In this context, some toxins such
as tetraethylammonium (TEA), tetradotoxin (TTX) and
saxitoxin (STX) are widely used in experiments to block or
reduce the number of specific ion channels [12]. It is also
possible to examine the effects of changing the number
of specific ion channels on neuronal dynamics through
computational models. Schmid et al. [13,14] investigated
the regularity of spontaneous spiking activity of a stochas-
tic HH model at a single neuron level, and showed that
it is possible to either increase or decrease the regularity
of spontaneous spike trains by blocking some portion of
either potassium or sodium ion channels. Recently, Gong
et al. [15] extended the subject by examining the effects
of channel blockage on the collective spontaneous spik-
ing activity of coupled stochastic HH neurons, and found
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that the latter can be reduced or enhanced by blocking
the sodium or potassium channels within small or large
cell sizes. They constructed the interaction network as an
array of bi-directionally coupled neurons. However, small-
world (SW) networks, combining high clustering with scat-
tered long-range connections [16] have been suggested as
an attractive option to search for connectivity informa-
tion of both anatomical and functional networks in the
brain, mainly because this topology can support both local
and distributed information processing [17]. Therefore,
SW networks have been widely used to understand how
neuronal circuitry generates complex patterns of activ-
ity [18–22].
Our aim in this letter is to extend the subject by

using SW networks as the underlying interaction topol-
ogy between neurons, and to investigate the impact of
sodium and potassium channel blockage on the sponta-
neous collective spiking regularity as a function of the
network structure and cell size in a manner that more
closely mimics actual conditions.

Mathematical model and setup. – Within this
study we use the HH model of neuronal dynamics as the
basic building block of the investigated system, whereby
the time evolution of the membrane potential for coupled
neurons on an arbitrary network in the absence of deter-
ministic external stimuli is given as follows:

CmdVi/dt= GNa(mi, hi)(VNa−Vi)+GK(ni)(VK −Vi)
+GL(VL−Vi)+

∑

j

εij(Vj −Vi). (1)

Here Vi denotes the membrane potential of neuron i=
1, . . . , N (N being the system size), Cm = 1µFcm

−2 is
the membrane capacity, and GNa, GK and GL represent
sodium, potassium and leakage conductances, respectively.
VNa = 50mV, VK =−77mV and VL =−54.4mV are the
reversal potentials for the sodium, potassium and leakage
channels, respectively. Moreover, εij denotes the coupling
strength between neurons i and j, whereby we set εij = ε
if the two are connected or εij = 0 otherwise. In the model,
the leakage conductance is assumed to be constant, equal-
ing GL = 0.3mScm

−2, while the sodium and potassium
conductances change dynamically according to the follow-
ing two equations:

GNa(mi, hi) = g
max
Na xNam

3
ihi, GK(ni) = g

max
K xKn

4
i . (2)

Here gmaxNa = 120mScm
−2 and gmaxK = 36mScm−2 are the

maximal sodium and potassium conductances, respec-
tively. Moreover, m and h denote the activation and
inactivation gating variables for the sodium channel,
respectively, whereas the potassium channel includes an
activation gating variable n. In eq. (2) we also introduce
two scaling factors, xNa and xK , which are the fractions
of non-blocked ion channels to the total number of sodium
(NNa) or potassium (NK) ion channels within the patch
area, respectively [13–15]. These factors are confined to
the unit interval.

In the HH model, activation and inactivation gating
variables, mi, ni and hi, change over time in response to
the membrane potential following first-order differential
equations within the limit of very large cell sizes. However,
when the population of ion channels is finite, the stochastic
behavior of voltage-gated ion channels (or ion channel
noise) must be taken appropriately into account. In this
study, we follow the approach in previous works related to
the channel block [13–15], and use the algorithm proposed
by Fox [23]. In the Fox’s algorithm, variables of stochastic
gating dynamics are described with the corresponding
Langevin generalization

dxi/dt= αx(1−xi)−βxxi+ ξxi(t), xi =mi, ni, hi, (3)

where αx and βx are rate functions for the gating variable
xi. The probabilistic nature of the channels appears as a
source of noise ξxi(t) in eq. (3), which is an independent
zero mean Gaussian noise whose autocorrelation function
is given as follows [23]:

〈ξm(t)ξm(t′)〉= 2αmβm
NNaxNa(αm+βm)

δ(t− t′), (4)

〈ξh(t)ξh(t′)〉= 2αhβh
NNaxNa(αh+βh)

δ(t− t′), (5)

〈ξn(t)ξn(t′)〉= 2αnβn
NKxK(αn+βn)

δ(t− t′), (6)

where the factors, xNa and xK , are used again to disre-
gard the blocked channels, which do not contribute to the
intrinsic channel noise. Given the assumption of homoge-
neous sodium and potassium ion channel densities, chan-
nel numbers are calculated via NNa = ρNaS, NK = ρKS
where ρNa = 60µm

−2 and ρK = 18µm−2 are the sodium
and potassium channel densities, respectively, whereas S
represents the total membrane area or the cell size [23].
Equations (1)–(6) constitute the stochastic HH model,
where the cell size S determines the intrinsic noise level
through the number of ion channels NNa and NK . When
S is large stochastic effects related to the channel noise
are negligible due to large numbers of ion channels in
eqs. (4)–(6), and thus the intrinsic channel noise appearing
in eq. (3) for the gating variables vanishes. Accordingly,
the stochastic model then approaches the deterministic
description. However, when the number of ion channels (or
the cell size S) is small, stochastic effects have a significant
impact on the membrane dynamics [13–15,23,24].
Furthermore, the interaction network is comprised of

identical HH neurons, initially each having connectivity
k= 2, with the system size set to N = 60. Following the
Newman-Watts model [25], we start with a regular ring
(see fig. 1(a)) and make a random draw of two neurons.
Subsequently, if they are not already connected, we add a
non-directed link between them. This process is repeated
until a total of M new links are added (see fig. 1(b)),
finally resulting in a network which is equivalent to the
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(a) (b)

Fig. 1: Examples of considered network topologies. For clarity
regarding k and p only N = 25 vertices are displayed in each
panel. (a) Regular ring characterized by p= 0 with periodic
boundary conditions. Each vertex is connected to its k= 2
nearest neighbors. (b) Realization of Newman-Watts small-
world topology via randomly adding M new links (in this case
6 new links were added, hence p= 0.02).

one obtained if new edges would be added with probability
p= 2M/[N(N − 1)].
In order to asses the system’s dynamics, we measured

the collective temporal behavior of the network by first
calculating the average membrane potential, Vavg(t) =

N−1
∑N
i=1 Vi(t), corresponding to the mean field of the

network, and then quantifying the spontaneous collective
spiking regularity by the coefficient of variation (CV ) of
the inter-spike intervals (ISIs) according to

CV =
σISI

〈ISI〉 =
√〈ISI2〉− 〈ISI〉2

〈ISI〉 . (7)

Here “spike” times were defined by the upward crossing
of Vavg(t) past a detection threshold of 0mV (referred
to below as “network spikes”), whereas 〈ISI〉 and 〈ISI2〉
denote the mean and the mean squared inter-spike inter-
vals, respectively. Notably, CV is characterized by smaller
values for more ordered spike trains and vanishes for a
deterministic signal. In the results presented below, for
any given set of the remaining network parameters (scaling
factor, noise level, coupling strength), quantitative results
repooled from simulations of 10 realizations of the network
for any given value of p.

Results and discussion. – In what follows, we
systemically analyze the impact of sodium and potassium
ion channel block on the spontaneous collective spiking
regularity of the network as a function of the network
topology and cell size (thus, ion channel noise). First, we
investigate how CV changes with the scaling factors, xNa
or xK , as a function of the network topology by a fixed cell
size S = 6µm2 and coupling strength ε= 0.1. Thereby we
vary the density of one channel type (either xNa or xK)
while keeping the other equal to one. Obtained results
are presented in fig. 2(a) for sodium and in fig. 2(b) for
potassium ion channel block. Notably, we did not consider
xNa < 0.8 because then the average membrane potential
Vavg did not include spikes. For all values of xNa and
for all xK > 0.5 considered in fig. 2, the CV exhibits a
well-expressed minimum by an optimal fraction of random
shortcuts p, at which the spontaneous collective spiking
is most regular. Moreover, it is evident that there exists
an optimal p independent of the scaling factors, thus
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Fig. 2: The dependence of the spontaneous spiking regularity
(CV ) on p obtained by a fixed patch area S = 6µm2 and
coupling strength ε= 0.1. (a) Different levels of sodium channel
block. (b) Different levels of potassium channel block.

indicating the robust existence of topology-dependent
coherence resonance [26–29]. Interestingly, an optimal
topology is obtained at p≈ 0.15 for both the sodium
as well as the potassium channel blocks, indicating the
existence of a universally optimal network structure.
However, as xK decreases to xK � 0.5, the minimal values
of CV are obtained already by slightly lower values of
p, yet after reaching the minimum, the regularity of
Vavg becomes constant and virtually independent of the
network topology. Indeed, the level of xK in the range
� 0.5 plays a rather insignificant role for the temporal
regularity of the average membrane potential for all
p� 0.075, as can be inferred from the bottom two curves
depicted in fig. 2(b).
Furthermore, it is worth noting that the reduction of

working sodium channels (decrease of xNa in fig. 2(a))
decreases the collective spiking regularity, whereas a
reduction of working potassium channels (decrease of xK
in fig. 2(b)) increases it by a fixed cell size, as reported
also in [13,14] for a single neuron. Notably, Gong et al. [15]
found that sodium or potassium channel blocks can either
enhance or reduce the collective spiking regularity of
an array of bi-directionally coupled neurons, depending
on the cell size. In our case, however, for p≈ 0.15 the
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Fig. 3: The dependence of the mean firing rate (Fr) on
p obtained by a fixed patch area S = 6µm2 and coupling
strength ε= 0.1. (a) Different levels of sodium channel block.
(b) Different levels of potassium channel block.

collective regularity is very high for all values of xK and
xNa > 0.9 if compared to the values reported in [15] for
the same cell size and scaling factors (see figs. 1 and 2
in [15]). This indeed strongly supports the fact that
the fine-tuning of the network structure via p is able to
significantly facilitate the spontaneous spiking regularity
of neurons in the presence of either sodium or potassium
ion channel block.
To gain more insight into the dependence of the collec-

tive spiking regularity on p and the scaling factors, we
further calculate the mean firing rate (Fr) for different
values of p and xNa or xK . Obtained results are presented
in fig. 3(a) for sodium and in fig. 3(b) for potassium
ion channel block. In case of sodium channel block, the
mean firing rate exhibits a resonance-like behavior with
a distinct maximum appearing by the optimal fraction of
random shortcuts equaling approximately p≈ 0.15. Potas-
sium channel block leads to similar behavior, but only
when xK→ 1. As xK decreases below 0.95, the maxima
are achieved by fewer added shortcuts (lower values of p).
Thus, the outlay of CV presented in fig. 2 follows the char-
acteristics of the firing rate, and moreover, decreases with
higher Fr (compare figs. 2 and 3). In this sense, results

presented in fig. 3 are consistent with those presented in
fig. 2 for both types of ion channel blockage. In partic-
ular, the refractory period of spike generation postulates
a certain minimal time that needs to elapse between two
spikes. Thus, as the firing frequency increases, the mean
ISI decreases and can approach the refractory period [14].
In other words, as the firing frequency increases, the refrac-
tory period becomes more significant relative to the dimin-
ishing ISI, contributing to the reduction of the output
CV [30,31]. We therefore argue that the network topology
affects the regularity of spontaneous neuronal spiking by
means of serving as a scaling factor for the firing rate.
Related to the above argumentation, it is interesting

to elaborate further on the results obtained for xK � 0.5.
There a further increase in p, past the optimal value for
which the maximal firing rate is obtained, decreases the
mean firing rate fairly slightly (see the upper two curves
in fig. 3(b)). As shown in the bifurcation diagram for the
deterministic autonomous HH model in [14] (see their
fig. 1(b)), with decreasing the potassium conductance
via xK in eq. (2), a sub-critical Hopf bifurcation occurs
at xK = 0.549, after which the system enters a region
of stable oscillatory spiking solutions within the purely
deterministic description [13,14]. We calculated the firing
rate of the deterministic network by considering just
the conductance reductions xK = 0.5 and xK = 0.25, and
found them equaling 51Hz and 61Hz, respectively. These
values are almost equal to those obtained for the model
with stochastic components as p approaches to its upper
boundary (all-to-all connected network) (see fig. 3(b)).
This suggests that the stochastic dynamics has little
effect on the spontaneous regularity for the potassium
channel block if xK � 0.5. It also suggests that the network
connectivity has a negligible impact on the firing rate
(or CV ) for all xK � 0.5 as p→ 1. Importantly however,
for small values of p the firing rate reaches a maximum
above its deterministic value, indicating the existence of
an optimal small-world topology that warrants the best
regularity of spontaneous collective spiking activity even
in a region with a purely deterministic description, which
then again disappears as p→ 0 (regular nearest-neighbor
network).
Following above investigations, where we found that

the CV exhibits a well-expressed minimum at an optimal
p≈ 0.15 by a fixed cell size S = 6µm2, we investigate now
how the regularity by the optimal value of p changes
with the cell size for different values of the scaling factors
determining the non-blocked channel densities xNa and
xK . Obtained results are presented in fig. 4(a) for sodium
and in fig. 4(b) for potassium ion channel block. We find
that the spontaneous collective spiking regularity depends
strongly on the cell size for all values of xNa and for all
xK > 0.5, with the best regularity emerging for small, but
non-zero cell sizes of around S = 2–4µm2 constituting a
specific intensity of intrinsic noise. For this range of S
values, the regularity changes slightly depending on xK ,
whereas it may change rather substantially depending on
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Fig. 4: The dependence of the spontaneous spiking regularity
(CV ) on the patch area S obtained by the coupling strength
ε= 0.1 and p= 0.15. (a) Different levels of sodium channel
block. (b) Different levels of potassium channel block.

xNa. However, for larger cells (large S) the CV differs
slightly depending on xNa while it differs substantially
depending on xK .
On the other hand, for xK � 0.5 an increase in the

cell size beyond a value of around S = 2µm2 almost
does not improve the regularity of the output, albeit a
small improvement in CV can be inferred for xK = 0.25
if compared to xK = 0.5. This collective behavior seems
similar to that of a single HH neuron reported in [13,14],
where the spontaneous regularity was found to increase as
the cell size increased for xK � 0.5. However, we show here
that this increase is larger for a single neuron if compared
to that of the whole network. Also, we note that the
behavior of an array of bi-directionally coupled neurons
reported in [15] was found to be rather different, where
indeed the regularity decreased as the cell size increased
past S � 2µm2.
Notably, we also investigated the CV dependencies

presented in fig. 4 via the mean firing rate (not shown),
and arrived at the findings that are in agreement with
the above-established link between the ISI and the firing
rate when interpreting results presented in figs. 2 and 3.
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Fig. 5: The dependence of the spontaneous spiking regularity
(CV ) on p for three different coupling strengths ε obtained
by a fixed patch area S = 6µm2. (a) Sodium channel block is
xNa = 0.95. (b) Potassium channel block is xK = 0.85.

The latter support the fact that, not only does the
network topology affect the regularity of spontaneous
neuronal spiking by means of serving as a scaling factor
for the firing rate, but the regularity by the optimal
SW topology is affected also by the intensity of intrinsic
noise, similarly as reported earlier for the internal-noise
coherence resonance. These two facts combined yield a
doubly coherence resonance-like phenomenon [32,33] in
our case, related to the regularity of spontaneous neuronal
spiking, that is brought about by the fine-tuning of both
p and S.
In order to further extend and conclude the study, we

investigate the dependence of the spontaneous collective
regularity on p for three different coupling strengths ε, by
a fixed cell size S = 6µm2, and two different cases of ion
channel block xNa = 0.95 and xK = 0.85. The two values
were selected so as to lead to a coherence resonance in CV
against p. Obtained results are presented in fig. 5. From
them we arrive at two findings that are independent of
the type of the ion channel block. First, the resonance-like
outlay of CV in dependence on p is similar for all coupling
strengths and its overall minimum does not change.
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Second, the coupling strength is inversely correlated with
the value of p that yields the minimum CV . Accordingly,
as ε increases the minimum CV is obtained by fewer and
fewer added shortcuts (by lower values of p). However,
these correlations are not completely valid for the total
span of p, because irrespective of ε, the spontaneous
collective regularity becomes very low for extreme values
of p (i.e. p→ 0 or p→ 1). Nevertheless, the findings
are consistent with previous results related to different
subjects but to the same network structure [22,34].

Summary. – In sum, we show that the regularity of
spontaneous spiking activity can be resonantly enhanced
via fine-tuning of both p and S. The extent of improved
regularity is thereby maximal by high xNa and low
xK values. Solely by potassium ion channel blockage
constituted by xK � 0.5 the resonant dependence on p
vanishes and the first occurrence of the minimal CV
occurs already by somewhat lower values of p. There also
exists an optimal intensity of internal noise, constituted by
cell sizes spanning S = 2–4µm2, by which the regularity
of spontaneous spiking activity on small-world networks
is maximal. Such cell sizes may correspond to so-called
“hot spots” [35] or otherwise spatially restricted regions
in dendritic or axonal trees [36,37]. Both resonant-like
dependencies by different values of xNa and xK can be
nicely corroborated by the analysis of the firing rate as
well as the deterministic model dynamics. Finally, we show
that the resonant outlay of the CV dependence on p
prevails irrespective of the coupling strength, although the
minima shift in accordance with some previous findings.
Although the present model considers the intrinsic noise
stemming from the stochastic dynamics of ion channels,
our study also provides some indication towards the
potential impact of synaptic noise because the latter
may be approximated by a non-zero mean Gaussian
white noise [38]. We hope our study will prove useful
in striving towards the understanding of the importance
of structure [39–42] and uncertainty in active neuronal
networks.
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