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Abstract
The fact that relatively simple entities, such as particles or neurons, or even
ants or bees or humans, give rise to fascinatingly complex behaviour when
interacting in large numbers is the hallmark of complex systems science.
Agent-based models are frequently employed for modelling and obtaining a
predictive understanding of complex systems. Since the sheer number of
equations that describe the behaviour of an entire agent-based model often
makes it impossible to solve such models exactly, Monte Carlo simulation
methods must be used for the analysis. However, unlike pairwise interactions
among particles that typically govern solid-state physics systems, interactions
among agents that describe systems in biology, sociology or the humanities
often involve group interactions, and they also involve a larger number of
possible states even for the most simplified description of reality. This begets
the question: when can we be certain that an observed simulation outcome of
an agent-based model is actually stable and valid in the large system-size
limit? The latter is key for the correct determination of phase transitions
between different stable solutions, and for the understanding of the underlying
microscopic processes that led to these phase transitions. We show that a
satisfactory answer can only be obtained by means of a complete stability
analysis of subsystem solutions. A subsystem solution can be formed by any
subset of all possible agent states. The winner between two subsystem solu-
tions can be determined by the average moving direction of the invasion front
that separates them, yet it is crucial that the competing subsystem solutions are
characterised by a proper composition and spatiotemporal structure before the
competition starts. We use the spatial public goods game with diverse
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tolerance as an example, but the approach has relevance for a wide variety of
agent-based models.

Keywords: phase transition, pattern formation, Monte Carlo method, public
goods game, evolution, human cooperation

(Some figures may appear in colour only in the online journal)

1. Introduction

The total is more than just the sum of all the parts. This old adage applies as well to anthills as
it does to neurons that form our brain, and in simple terms it describes the essence of complex
systems. The often beautiful and fascinating collective behaviour that emerges as a result of
interactions between a large number of relatively simple entities has been brought to the point
by the physicist and Nobel laureate Philipp Anderson in his paperMore is different [1], which
is often cited as the birthstone of complex systems science, at least for physicists. An
important point is that the collective behaviour entails emergent phenomena that can hardly, if
at all, be inferred from the properties of the individual parts [2, 3]. In the decades past,
however, the words complex and complexity have been used to describe all kinds of systems
and phenomena, within and outside of physics, from computer science to politics, to the point
today where what exactly is complex systems science is anything but easy to put shortly.
Thankfully, a recent review by Yurij Holovatch, Ralph Kenna and Stefan Thurner titled
Complex systems: Physics beyond physics [4] reaffirms what ought to be the essence of
complex systems from a physicist point of view, and it clarifies what makes them con-
ceptually different from systems that are traditionally studied in physics. Further to that effect,
we have the Focus on Complexity collection to be published in the European Journal of
Physics, to which this paper belongs.

Regardless of the definitions, it is thoroughly established that methods of statistical
physics, in particular Monte Carlo methods and the theory of collective behaviour of inter-
acting particles near phase transition points—a classical subject that is thoroughly covered in
comprehensive reviews [5–7] and books [8–11]—have proven to be very valuable for the
study of complex systems. In fact, these methods have been applied to subjects that, in the
traditional sense, could be considered as out of scope of physics. Statistical physics of social
dynamics [12, 13], of human cooperation [14, 15], of spatial evolutionary games [16–21], of
crime [22], and of epidemic processes and vaccination [23, 24] are all examples of this
exciting development. The advent of network science as an independent research field can
also be considered as an integral part of this development [25–33], providing models and
methods that have revived not just statistical physics, but also helped complex systems
science to grow.

Agent-based models constitute a red thread through much of complex systems research.
The obvious idea is that agents interact with one another, typically through an interaction
network. And while agents themselves are simple entities that can typically choose only
between a couple of different states, their interactions give rise to collective behaviour that
could not possibly be anticipated from the simplicity of each individual agent. Agent-based
modelling has been used for simulating and studying human and social systems [34, 35],
ecological systems [36], economic systems [37, 38], as well as evolution and cooperation
[39, 40], to name just some examples. There are reviews [4] and tutorials [41] available,
which cover the subject in much detail.

Eur. J. Phys. 39 (2018) 014001 M Perc

2



We are here concerned with a much too frequently overlooked but, especially from the
viewpoint of physics, very important aspect of agent-based modelling, namely the validity
and stability of observed simulation outcomes. In principle, any agent-based model is fairly
easy to simulate with a Monte Carlo simulation method. Realistically, however, the acqui-
sition of correct results requires a careful approach that is seldomly used and advocated for.
The root of the problem lies in the fact that any subsystem solution can be the solution of the
whole system. Subsystem solutions are simply solutions that are formed by a subset of all
possible agent states. Evidently, if an individual agent can choose between three or more
different states (not just two, like spin up/down), the number of possible subsystem solutions
increases fast, and therewith also the severity of the problem. To determine the stability of
subsystem solutions, and thus to determine the most stable system-wide solution, we must
perform a systematic stability check between all unique pairs of subsystem solutions, as
determined by the average moving direction of the invasion front that separates them. Only
then can we be certain that the simulation outcome of an agent-based model is actually stable
and valid in the large system-size limit, and we can proceed with the determination of phase
transitions that separate different stable solutions, and with the determination of the
responsible microscopic processes. Since this approach has relevance for a wide variety of
agent-based models—in fact for all agent-based models where there are more than two
possible agent states or competing strategies—the methodology is of the utmost importance
for those that teach as well as for those that learn and practice this aspect of complex systems
research.

In what follows, we first introduce the spatial public goods game with diverse tolerance
as the example agent-based model in section 2, which we will then use to didactically
demonstrate the stability of subsystem solutions in section 3. Lastly, we sum up and discuss
the relevance of the described approach for agent-based models in different fields of research
in section 4.

2. Public goods game with diverse tolerance

The public goods game is simple and intuitive [42], and it is in fact a generalisation of the
pairwise prisoner’s dilemma game to group interactions [43]. In a group of agents, each one
can decide whether to cooperate or defect. Cooperators contribute c=1 to the common pool,
while defectors contribute nothing. The sum of all contributions is multiplied by a multi-
plication factor r 1> , which takes into account synergistic effects of cooperation. In part-
icular, there is an added value to a joint effort that is often more than just the sum of
individual contributions. After the multiplication, the resulting amount of public goods is
divided equally amongst all group members, irrespective of their strategy. In a group g
containing G agents the resulting payoffs are thus

rN G 1, 1C
g

CP = - ( )

rN G, 2D
g

CP = ( )

where NC is the number of cooperators in the group. Evidently, the payoff of a defector is
always larger than the payoff of a cooperator, if only r G< . With a single parameter, the
public goods game hence captures the essence of a social dilemma in that defection yields
highest short-term individual payoffs, while cooperation is optimal for the society as a whole.

To add tolerance to this basic setup, we have, in addition to cooperators (C) and defectors
(D), also loners (L) and tolerant agents (Mi) [44, 45]. Loners are agents that simply abstain
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from the game and settle for a small but secure payoff 1s = . Tolerant agents, on the other
hand, either cooperate or abstain from the game depending on the number of defectors i
within a group. There are as many levels of tolerance as there are possible defectors in the
group, so that i G0, , 1= ¼ - . If the number of defectors in a group is smaller than i the
agent Mi acts as a cooperator. Otherwise it acts as a loner. Accordingly, the higher the value
of i, the higher the number of defectors that are tolerated by the corresponding agent within a
group. As the two extreme cases, i=0 implies that the agent will always act as a loner, while
i G 1= - indicates that the agent will act as a loner only if all other group members are
defectors. Importantly, regardless of the choice an Mi agent makes, it always bears the cost

0g > as a compensation for knowing the number of defectors in a group, i.e. the cost of
inspection. Also importantly, the r 1> factor is applied only if there are at least two con-
tributions made to the common pool from within the group. Otherwise, a lonely contributor is
unable to utilise on the synergistic effect of a group effort, and hence r=1 applies.

For the mathematical formulation of the payoffs, it is convenient to introduce 0id = if
N iD  and 1id = if N iD < , where ND is the number of defectors in a group. The total
number of contributors to the common pool then becomes

T N N , 3C
i

G

i M
0

1

iå d= +
=

-

( )

where Ns denotes the number of agents in the group who follow strategy s. By using this
notation, the payoff values of the competing strategies obtained from each group g are

r
T

N T
, 4D

g

D
P =

+
( )

1, 5C
g

DP = P - ( )

, 6L
g sP = ( )

1 . 7M
g

i C ii
d d s gP = P + - -( ) ( )

The public goods game is here staged on a square lattice with periodic boundary con-
ditions where L2 agents are arranged into overlapping groups of size G=5 such that
everyone is connected to its G 1- nearest neighbours [42]. Accordingly, each individual
belongs to g = 1,K,G different groups. With these choices, we thus have an agent-based
model where each agent can choose between n=8 different states/strategies, namely C, D,
L, M0, M1, M2, M3 and M4. In order to determine the number of all possible subsystem
solutions, we have to determine the number of combinations without repetition when the
number of strategies in a subsystem can be any between k1 8  . We thus have a total of

8 28 56 70 56 28 8 1 255k
n n

k n k1å = + + + + + + + == -
!

!( )!
possible subsystem solu-

tions, and no less than 32 385 unique pairs to compete against each other in a round-robin
tournament. Thankfully, apart from single-state subsystem solutions, which are all trivially
stable, the large majority of other k-state subsystem solutions, where k 1> , turn out to be
unstable in the r g– parameter plane. This significantly reduces the effort that is needed to
determine the most stable system-wide solutions and the phase transitions that separate them.

Monte Carlo simulations are carried out comprising the following elementary steps. A
randomly selected agent x with strategy sx plays the public goods game in all the g = 1,K,G
groups where it is member. Its overall payoff sxP is the sum of all the payoffs s

g
x

P acquired in
each individual group. Next, one randomly chosen neighbour of agent x also acquires its
payoff syP in the same way. Lastly, player y adopts the strategy from player x with a
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probability given by the Fermi function

w s s K1 1 exp , 8x y s sy x
 = + P - P( ) { [( ) ]} ( )

where K = 0.5 quantifies the uncertainty by strategy adoptions [46], implying that the
strategies of agents with higher payoffs are readily adopted, although the opposite is not
impossible either. In agreement with the random sequential update, each full Monte Carlo
step (MCS) gives a chance to every player to change its strategy once on average. The
average fraction of each state/strategy in the system ( sx

r ) is determined in the stationary state
after a sufficiently long relaxation time is discarded, that is when the average fraction of the
strategies becomes time independent.

3. Results

Before turning to the stability of subsystem solutions, a note concerning initial conditions is in
order. It is often written that strategies are initially distributed uniformly at random over a
lattice to give each of them the same chance of evolutionary success. Evidently, this has to do
with the fact that random initial conditions make certain that each strategy occupies about the
same amount of space in a population. But this alone does not confer equal chances of
survival to all strategies, except if the competing strategies are only two. If the competing
strategies are more than two, it is actually quite impossible to engineer ‘fair’ initial conditions
because stable subsystem solutions are not made up solely of single strategies, but could also
be formed by two-strategy, three-strategy, four-strategy, and so on, combinations. Impor-
tantly, these subsystem solutions first have to form, i.e. attain their actual spatiotemporal
structure (for example travelling or target waves, checkerboard patterns, compact clusters,
etc) before they would begin competing against each other. But the formation of different
subsystem solutions is in general characterised by different, and sometimes very different,
time scales. So what random initial conditions, if paired with a very large system size, actually
do accomplish, is that they give a chance to each subsystem solution to emerge somewhere
locally in the population. If using small system sizes, however, only those subsystem solu-
tions can evolve whose characteristic formation times are sufficiently short.

Since we have no way of knowing which initial configuration of strategies will yield a
stable subsystem solution, our best option is thus to use random initial conditions with a very
large system size, and hope for all of them to emerge at some point in time. After we identify
them, however, it is much more efficient and fair in terms of equal survival chances to use
prepared initial states, and to do a proper stability analysis of subsystem solutions, as we
describe next on an example.

We begin in reversed order, showing first the phase diagram of the public goods game in
figure 1, which would normally be the final result of a proper subsystem stability analysis.
Different generally valid observation can be made. In the first place, it can be observed that
the higher the value of r, the higher the tolerance can be, and vice versa. Secondly, if the cost
of inspection is too high, or if the value of the synergy factor is either very low or very high,
tolerant players cannot survive. Thirdly, strategies M0 and M4 never survive, indicating that
fully intolerant or overly tolerant strategies are not evolutionary viable. Several more precise
observations can be made, but these are presently outside of scope. For details we refer to
[45], where the public goods game with diverse tolerance levels was presented and stu-
died first.

For a concrete example of the stability analysis of two subsystem solutions, we pick the
DCL DCM M1 2 discontinuous phase transition and show how the precise value of r at

Eur. J. Phys. 39 (2018) 014001 M Perc

5



which the transition occurs is determined. In general, the procedure is particularly useful (and
often needed) in the vicinity of discontinuous phase transition, which can otherwise be
quickly determined wrongly as a consequence of random extinctions that are due to the usage
of too small system sizes. Continuous phase transitions are in this regard somewhat less
demanding.

The analysis begins by first partitioning the square lattice in half, such that strategy
changes across the vertical border are prohibited. Instead, periodic boundary conditions are
applied from the middle of the lattice towards the left and right edge, respectively. More
precisely, each separated part of the lattice (each half) has its own periodic boundary con-
ditions. There are thus no interactions with the players from the other half, not in terms of the
determination of payoffs, and also not in terms of strategy transfer. Only when the vertical
border is removed (see below) do the traditional periodic boundary conditions across the
whole lattice apply. Each half of the lattice is populated uniformly at random only with the
strategies that form the subsystem solution of which stability we wish to determine. This is
demonstrated in the leftmost panel of figure 2, where in the left half of the lattice we have
agents D, C and L, while in the right half we have agents D, C, M1 and M2, randomly
distributed in both cases. After a sufficiently long transient, which depends on their formation
time scales, the two subsystem solutions attain their actual spatiotemporal structure, as
denoted by DCL and DCM M1 2 subscripts on top of the middle panel of figure 2. In the three-
strategy phase strategies D, C and L dominate each other cyclically. The existence of the
D C L D   closed loop of dominance is also evident from the spatiotemporal
structure that manifests itself as travelling spiral-like structures in the left half of the middle
panel of figure 2. Conversely, the four-strategy DCM M1 2 phase depicted in the right half of
the middle panel of figure 2 is somewhat more static. In fact, there typical compact clusters of
cooperative strategies (especially of C and M1) that are exploited by more or less isolated
defectors can be observed.

Figure 1. Phase diagram of the 8-strategy agent-based model on the r g– parameter
plane. Red dashed (blue solid) lines denote discontinuous (continuous) phase
transitions. Of particular interest is the DCL DCM M1 2 discontinuous phase
transition, which we will focus on in figures 2 and 3.
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After the subsystem solutions are formed, the vertical border can be removed to deter-
mine the average moving direction of the invasion front that separates the two subsystem
solutions, i.e. to effectively determine the winner of the competition and thus the most stable
system-wide solution. In our example depicted in figure 2, we obtain the upper right snapshot
for r = 2.80 and 0.35g = , where the DCL phase will turn out to be the winner, while for
r = 2.81 and 0.35g = we obtain the lower right snapshot, where the DCM M1 2 phase will turn
out victorious. Importantly, for both values of r the two formed subsystem solutions in the
middle panel are qualitatively exactly the same, and can thus be used as the starting point of
the competition in both cases. In other words, both the DCL and the DCM M1 2 subsystem
solutions are individually stable regardless of which value of r is used. The performed
subsystem stability analysis reveals, however, that for r = 2.80 the most stable system-wide
solution is the DCL phase, while for r = 2.81 the most stable system-wide solution is the
DCM M1 2 phase. This also exactly determines the critical value of r at which the discontinuous

Figure 2. Subsystem stability analysis of two individually stable solutions, namely the
three-strategy DCL (red, blue and green agents) and the four-strategy DCM M1 2 (red,
blue, yellow and dark yellow agents) phase, which are separated by a discontinuous
phase transition in figure 1. The leftmost panel shows the initial setup, where the square
lattice is vertically partitioned, such that strategy changes across the border are not
allowed. In the left half we have agents D, C and L, and in the right half we have agents
D, C, M1 and M2—in both cases distributed uniformly at random. After 20 000 MCS
the two subsystem solutions attain their actual spatiotemporal structure, as denoted by
DCL and DCM M1 2 subscripts on top of the middle panel. From here on the vertical
border can be removed to determine the average moving direction of the invasion front
that separates the two subsystem solutions. If we use r = 2.80 and 0.35g = , we obtain
the upper right snapshot, where the DCL phase will turn out to be the winner.
Conversely, if we use r = 2.81 and 0.35g = , we obtain the lower right snapshot,
where the DCM M1 2 phase will turn out to be the winner. Importantly, for both values of
r the two formed subsystem solutions in the middle panel are qualitatively exactly the
same, i.e. both phases are individually stable regardless of which value of r is used.
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phase transition occurs for the applied value of 0.35g = . Evidently, to obtain the complete
phase diagram shown in figure 1, this procedure should be applied in the vicinity of all phase
transition points for a sufficiency fine mesh of values across the r g– parameter plane.

We emphasise that finite-size effects can easily play an obstructive role in the described
stability analysis of subsystem solutions . If we start the evolution from a random initial state
using a small system size, it can easily happen that we observe a misleading evolutionary
outcome, simply because the phase that would be a stable solution at a large system size has
no chance to emerge—for example, one of the strategies that would be necessary to form it
dies out beforehand due to the small system size. But that is not the only caveat. Even if we
use prepared initial states for the stability analysis as depicted in the leftmost panel of figure 2,
we should be careful because the part of the lattice allocated to each subsystem solution

Figure 3. Time evolution of the fraction of strategies, corresponding to the snapshots
depicted in figure 2. The upper panel uses r = 2.80 and 0.35g = , where the winner is
the DCL phase. The lower panel uses r = 2.81 and 0.35g = , where the DCM M1 2 phase
wins. The arrow in both panels at 20 000 MCS denotes the time point when the vertical
border that separates the two subsystem solutions is removed and the two start
competing for space. We have used a 2400×2400 square lattice in this case, although
the snapshots in figure 2 present just a 200×200 cutoff of the whole population for
clarity (that is also why periodic boundary conditions cannot be inferred there).
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should be large enough for the latter to actually form. In fact, the fluctuations of strategies in
the cyclically dominated DCL phase could be extremely large, which is generally valid for
agent-based models that are governed by cyclic dominance, especially close to phase tran-
sitions [47]. Therefore this subsystem solution alone requires a large system size to avoid an
accidental extinction of a strategy, upon which the closed loop of dominance would be broken
and the subsystem solution could of course no longer emerge.

It is lastly instructive to corroborate the presented subsystem stability analysis with time
courses of strategy fractions that correspond to the snapshots presented in figure 2. To that
effect, we show in the upper panel of figure 3 how the fractions of strategies C, D, L, M1 and
M2 change over time when using r = 2.80 and 0.35g = . As reported above, for these
parameter values the winning subsystem solution is the DCL phase that is governed by cyclic
dominance. It can be observed that, as soon as the vertical border at 20 000 MCS is removed
(arrow), the fractions of strategiesM1 andM2 start declining. Evidently, the invasion front that
separates the two subsystem solutions is moving into the DCM M1 2 phase, thus indicating that
the DCL will eventually win. Indeed, at around 50 000 MCS the two tolerant strategies die
out. Conversely, the lower panel of figure 3 shows how the fractions of the five strategies
change over time when using r = 2.81 and 0.35g = . Here at 20 000 MCS (arrow) the
fraction of strategy L starts declining, until it eventually vanishes completely at around 55 000
MCS. The fraction of strategy C also starts declining when the border is removed, but as soon
as the strategy L dies out, it saturates to a non-zero value, thus giving rise to the victory of the
DCM M1 2 phase. Results presented in figure 3 thus demonstrate how the time courses reveal
the average moving direction of the invasion front, and thus help determine the winner
between two subsystem solutions.

4. Discussion

To sum up, we have presented the concept of stability of subsystem solutions in agent-based
models. We have argued for the necessity of this frequently overlooked approach for the
correct and accurate determination of phase transitions, in particular discontinuous phase
transitions, in agent-based models where the competing states or strategies each agent can
choose from are more than two. Since a subsystem solution can be formed by any subset of all
possible agent states, the stability of subsystem solutions is key for attaining certainty that an
observed simulation outcome of an agent-based model is actually stable and valid in the large
system-size limit. The latter is crucial for the correct determination of phase transitions
between different system-wide stable solutions, and for the understanding of the underlying
microscopic processes that lead to these phase transitions. We emphasise that the described
methodology is of the utmost important for teachers and students of complex systems
research, and as such should find entry into the appropriate physics curricula at the graduate
and, where applicable, also at the undergraduate level.

By using the spatial public goods game with diverse tolerance as an example, we have
shown that the eight competing strategies could form as many as 255 unique subsystem
solutions, with no less than 32 385 unique pairs to compete against each other in a round-robin
tournament. While this is of course an impossible task, it turns out that subsystem solutions that
are formed by two or more strategies are rarely individually stable, which significantly reduces
the effort that is needed to determine the most stable system-wide solutions and the phase
transitions that separate them. We have also emphasised that, before the competition between
two individually stable subsystem solutions begins, the two should be fully formed in the sense
that they acquire their characteristic spatiotemporal structure (for example travelling or target
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waves, checkerboard patterns, compact clusters, etc). A sufficiently long relaxation time is
therefore required that must take into account the formation time of both competing subsystem
solutions—this is important because the formation of different subsystem solutions is in general
characterised by different, and sometimes very different, time scales. Once these conditions are
met, representative snapshots of the lattice and time courses of strategy fractions reveal the
average moving direction of the invasion front that initially separates the two subsystem
solutions, and thus help determine the most stable system-wide solution.

Although the present example draws on spatial evolutionary games and should be of
interest to contemporary statistical physics research on the subject [48–63], the concept of
stability of subsystem solutions in agent-based models goes far beyond disciplinary bound-
aries. Whether agents are humans, firms, ants, or ecological entities, whenever more than two
states compete in a structured population (represented by a lattice or a network), the stability
of subsystem solutions is crucial for a correct and relevant analysis. This is in fact a key
distinction that separates ‘simulation research’ from statistical physics research concerning
agent-based models and complex systems in general. With today’s computers and pro-
gramming software, practically any agent-based model is easy to simulate, but the acquisition
of correct results requires a careful approach that is seldomly used and advocated for. The
current research literature is awash with inaccurate simulation results. The root of the problem
lies in overlooked system-size effects and the random extinctions that stem from this, and in
particular in the false belief that strategies compete against each other only individually rather
than also as subsystem solutions. We hope that this paper will help teachers, students, and
practitioners in their future simulation attempts, and that it will also help make the resulting
theses and research fit for a physics venue. The time is certainly ripe for the leaps of progress
in computer technology and programming software to be followed up by more rigorous
simulation practices of agent-based models.
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