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Abstract. We study the phenomenon of stochastic resonance on small-world networks consisting of bistable
genetic regulatory units, whereby the external subthreshold periodic forcing is introduced as a pacemaker
trying to impose its rhythm on the whole network through the single unit to which it is introduced.
Without the addition of additive spatiotemporal noise, however, the whole network remains forever trapped
in one of the two stable steady states of the local dynamics. We show that the correlation between the
frequency of subthreshold pacemaker activity and the response of the network is resonantly dependent on
the intensity of additive noise. The reported pacemaker driven stochastic resonance depends significantly
on the asymmetry of the two potential wells characterizing the bistable dynamics, which can be tuned
via a single system parameter. In particular, we show that the ratio between the clustering coefficient
and the characteristic path length is a suitable quantity defining the ability of a small-world network to
facilitate the outreach of the pacemaker-emitted subthreshold rhythm, but only if the asymmetry between
the potentials is practically negligible. In case of substantially asymmetric potentials the impact of the
small-world topology is less profound and cannot warrant an enhancement of stochastic resonance by units
that are located far from the pacemaker.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.45.-a Non-
linear dynamics and chaos – 87.16.A- Theory, modeling, and simulations – 89.75.Hc Networks and ge-
nealogical trees

1 Introduction

Stochastic resonance [1] was introduced as a possible
mechanism for the recurring occurrence of ice ages [2]
and has since been established as an important phe-
nomenon throughout natural sciences. Within the seminal
works stochastic resonance was reported for bistable sys-
tems [3–5], but subsequently excitability [6] and proximity
to special bifurcation points [7–9], especially in the con-
text of related coherence resonance [10–14], have received
substantial attention as well. Moreover, insights obtained
for individual dynamical systems were latter on general-
ized for coupled systems [15–19], notably spatiotempo-
ral stochastic resonance and spiral waves were first pre-
sented in [20], and eventually non-trivial effects of noise,
such as array-enhanced stochastic [21] and coherence res-
onance [22], diversity induced resonance [23], and system
size resonance [24,25] have been reported. Effects of noise
on spatially extended systems have recently been reviewed
in [26].

Complex networks [27] have also been identified as
important entities influencing noise induced phenomena
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in nonlinear systems. Both stochastic [28,29] and coher-
ence [30–32] resonance phenomena were already studied in
networks with small-world topology [33,34], as were pat-
tern formation and spatial order of spiral waves [35,36].
Stochastic resonance has also been reported on scale-free
networks for coupled threshold elements [37] and the Ising
model [38]. Recently an interesting study about the ampli-
fication of weak signals on scale-free networks of bistable
oscillators has been published [39], and slightly earlier in-
sightful findings regarding the synchronization on complex
networks have been presented [40–42].

Our goal presently is to extend the subject by study-
ing the stochastic resonance phenomenon on small-world
networks in the presence of localized weak rhythmic ac-
tivity only, whereby we use a bistable genetic regulatory
model [43] as the underlying dynamical system. Various
sources of stochasticity in genetic regulatory mechanisms
have thus far been identified [44,45], but foremost it is
the relatively small number of molecules constituting pro-
cesses of gene expression that gives the strongest noisy
component [46–48]. Besides experimental studies, theo-
retical analyses confirmed that the impact of noise on ge-
netic regulatory models is significant and worthy of further

http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2009-00070-2


148 The European Physical Journal B

investigations [49,50]. From a more technical point of view,
the presently used genetic regulatory model has a tuneable
asymmetry of the bistable potential that can be adjusted
via a single parameter, which makes it a good candidate
for investigating the importance of such an asymmetry.
Notably, the impact of asymmetric potentials on stochas-
tic resonance has been researched in the past [51–54], and
in general, a detrimental effect on stochastic resonance due
to the asymmetry has been reported. Here we examine the
possibility of stochastic resonance on paced small-world
networks where the constitutive units have either a prac-
tically symmetric bistable potential or an asymmetric one.
We show that the correlation between the periodic driving
and the response of the system depends resonantly on the
noise intensity, whereby the detailed impact of the small-
world topology varies substantially in dependence on the
asymmetry of the bistable potential. Namely, there exists
an optimal fraction of rewired links, determined by the
clustering coefficient and the characteristic path length of
the underlying small-world network, at which the noise-
induced spreading of pacemaker activity is pronounced
best if the potential is symmetric. However, this feature
is absent in case of an asymmetric bistable potential. We
thus contribute to the existing literature studying the im-
pact of pacemakers, which are isolated units in the system
that dictate neighboring units the operating rhythm, on
extended nonlinear dynamical systems [55–61].

The paper is structured as follows. In Section 2 we de-
scribe the genetic regulatory model and basic characteris-
tics of its dynamics, as well as the considered small-world
networks and other mathematical methods presently in
use. Results are presented in Section 3, and in the last
Section we summarize the results and briefly comment on
the applicability of our findings.

2 Mathematical model and setup

The genetic regulatory model to be used presently was
presented by Smolen et al. [43], and incorporates signal
activated transcription and positive feedback on the rate
of the transcriptional activator x. Due to the minimalist
nature, the model can be described by a single ordinary
differential equation of the form

dxi

dt
=

αx2
i

x2
i +H

−κxi+β+
∑

j

εij(xj − xi)+
√

2Dξi(t), (1)

whereby the last two terms account for the coupling
amongst the units and additive noise, respectively. Note
that εij is the coupling strength and 2D is the variance
of Gaussian noise with zero mean and autocorrelation
〈ξi(t)ξj(t′)〉 = δijδ(t − t′). Furthermore, α and κ are the
saturation and degradation rate, respectively, H the dis-
sociation constant, and β the basal synthesis rate of x. For
further details about the model we refer the reader to the
original work [43], while here we proceed by presenting
some of its basic dynamical characteristics. Throughout
this work we will, for simplicity, consider all quantities

Fig. 1. Potential ψ(x) of a single genetic regulatory unit for
two different values of the saturation rate α in dependence on
x. At α = 5.6352 the bistable potential is practically symmet-
ric, as additionally emphasized by the horizontal dashed line,
whereas for α = 5.71 the asymmetry is pronounced markedly.

as dimensionless and treat H = 10, κ = 1, β = 0.4 and
εij = ε = 0.4 as constants, whereas α and D will vary.
If we introduce ẋ = −∂ψ(x)/∂x, and omit the coupling,
the noise terms as well as the index i from equation (1),
the potential function of an individual unit ψ(x) can be
written explicitly as

ψ(x) = −αx+ α
√
H arctan

(
x/

√
H

)
+ κx2/2 − βx. (2)

The outlay of ψ(x) is depicted in Figure 1 for two differ-
ent values of α. It can be observed that for α = 5.6352
the bistable potential is practically symmetric, whereas
for α = 5.71 the asymmetry is pronounced markedly. Note
that for α = 5.6352 the symmetry is not perfect, yet the
depth of both wells is the same (see horizontal dashed line
in Fig. 1); hence we often refer to the potential as being
practically symmetric. Thus, each constitutive unit of the
network to be introduced below is characterized by two
stable steady states, and depending on α, the potential
wells characterizing them are either symmetric or asym-
metric. The two cases depicted in Figure 1 will be studied
separately in the next section.

To explore the possibility of stochastic resonance, we
introduce a subthreshold pacemaker of the form fr(t) =
A cos(ωt) to a single genetic regulatory unit i = r of
the network, which remains exposed to the periodic forc-
ing during the whole simulation period. Throughout this
study we use A = 0.08 and ω = π/300, which warrant
that in the absence of noise (D = 0) the pacemaker is
subthreshold, meaning it cannot by itself induce transi-
tions between the two stable steady states; not by the unit
which is directly exposed and neither by any other con-
stitutive unit of the network. However, small-amplitude
intra-well motion is evoked even if D = 0, yet this does
not significantly influence the main stochastic resonance
phenomenon reported below.

Moreover, we consider small-world networks constitut-
ing the interactions amongst coupled units, which we ob-
tain via the procedure described in [33] by starting from a
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Fig. 2. Examples of considered network topologies. For clarity
regarding k and p only 25 vertices are displayed in each panel.
(a) Regular ring characterized by p = 0 with periodic bound-
ary conditions. Each vertex is connected to its k = 4 nearest
neighbors. (b) Realization of small-world topology via random
rewiring of a certain fraction p of links (in this case 4 out of
all 100 were rewired, hence p = 0.04).

regular ring with periodic boundary conditions, compris-
ing N = 200 vertices each having connectivity k = 4, as
shown in Figure 2a. In this scheme each vertex (or unit)
corresponds to one noise driven bistable genetic regulatory
unit. The probability of rewiring a link is denoted by p
and can occupy any value from the unit interval, whereby
p = 0 constitutes a regular graph while p = 1 results in
a random network. For 0 < p < 1, as exemplified in Fig-
ure 2b, the resulting network may have small-world prop-
erties in that the normalized characteristic path length L
between distant units is small, i.e. comparable with that
of a random network, while the normalized clustering co-
efficient C is still large, i.e. comparable with that of a
regular nearest-neighbor graph constituting diffusive in-
teractions amongst coupled units. According to [33], the
characteristic path length is defined as the average num-
ber of edges in the shortest path between any two vertices,
while the clustering coefficient is the average fraction of all
ki(ki − 1)/2 allowable edges that actually exist amongst
vertex i and all its ki neighbors. Note that by small-world
networks the degree inhomogeneity follows a Poissonian
distribution (in the limit p → 1) that is presently cen-
tered around k = 4, and thus due to their relative sta-
tistical homogeneity, especially if compared to networks
with a scale-free degree distribution, the particular plac-
ing of the pacemaker within such networks is not crucial.
If by a given value of p vertices i and j are connected
then εij = εji = ε but otherwise εij = εji = εii = 0 in
equation (1). It is worth noting that the average degree of
the network, presently equaling kavg = 4, is not affected
by p and therefore the normalization of εij with kavg in
equation (1) does not yield qualitatively different results
(we could simply use ε→ kavgε).

Finally, for each set of the three main parameters α,
D and p the temporal output of each unit is recorded
for NT = 1000 periods of the pacemaker, and the cor-
relation of each series with the frequency of the pace-
maker ω = 2π/T is computed via the Fourier coefficients

Qi =
√
R2

i + S2
i according to:

Ri =
2

TNT

TNT∫

0

xi sin(ωt)dt,

Si =
2

TNT

TNT∫

0

xi cos(ωt)dt. (3)

Since the Fourier coefficients are proportional to the
square of the spectral power amplification, we presently
use Qi as the measure for stochastic resonance. To eval-
uate the response of the whole network by different D,
the average of Qi over all oscillators, defined as S =
N−1

∑
Qi, will be used. Importantly, the final results pre-

sented in the figures below were obtained by averaging Qi

over 100 different realizations of small-world configura-
tions and initial conditions for each set of parameters to
account for the inherent stochasticity that underlies the
generation of such complex networks.

3 Results

We start by presenting Qi in dependence on D and i by
different α and p. Figure 3 features the resulting color
maps for increasing values of p from top to the bottom
panel. First we focus on the α = 5.6352 case (left column
in Fig. 3), which is characterized by a practically symmet-
ric potential, as demonstrated in Figure 1. Clearly, there
exist an optimal value of D by which the response of the
network is optimally correlated with the localized sub-
threshold periodic forcing, thus indicating stochastic res-
onance in the examined system. Although the stochastic
resonance phenomenon is better expressed for units that
are in the immediate proximity of i = r = 100 that is un-
der the direct influence of the pacemaker, the fine-tuning
of p has the ability to optimally facilitate the outreach of
the localized subthreshold periodic forcing. In particular,
by p = 0.16 all units of the network feature the best ex-
pressed bell-shaped dependence of their respective Qi on
D, while by smaller and larger p this feature deteriorates
substantially. Dashed lines on the left-hand side in the ap-
propriate panel additionally mark this feature, although
a clearer graphical presentation will be given below. Re-
sults presented in Figure 3 hence indicate that, besides
an optimal D, there also exists an optimal small-world
topology for the transmission of localized rhythmic activ-
ity across a noisy array of bistable genetic regulatory units
with a symmetric potential. Panels on the right-hand side
of Figure 3, on the other hand, while still showing signs of
stochastic resonance, do not depict a similar dependence
of Qi on p. Indeed, it seems that in case of an asymmet-
ric potential given by α = 5.71 (see Fig. 1) the network
topology is mostly of secondary importance, in particular
since the color maps on the right of Figure 3 show very
little deviation from top to bottom.

To study the above-outlined features more precisely,
and to give a better quantitative view of presented re-
sults, we examine characteristic cross-sections of above
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Fig. 3. (Color online) Color-coded Qi in dependence on D and i for different p, obtained if α = 5.6352 (left column) and
α = 5.71 (right column). In all panels the pacemaker has been introduced to the middle oscillator i = r = 100 and the color
profile is linear, white marking minimal and black maximal values of Qi. The intervals of Qi from top to bottom left are: 0.0–
0.076, 0.0–0.065, 0.0–0.056, 0.0–0.048; and the intervals from top to bottom right are: 0.0–0.058, 0.0–0.052, 0.0–0.046, 0.0–0.043.
Note that the maximum of Qi decreases continuously as p increases irrespective of α, and that the asymmetric potential (right
column) yields lower maxima by a given value of p if compared to the practically symmetric case (left column). Moreover, Qi=r

does not drop exactly to zero for D = 0 (note that the gray shading extends across the whole span of D) since the periodicity
through the driven periodic responses within a potential well has not been subtracted.

color maps. Figure 4 features cross sections for α = 5.6352.
Panel (a) shows Qi in dependence on D only for the oscil-
lator that is under the direct influence of the pacemaker.
This is the unit of the network by which the most corre-
lated response with respect to the subthreshold periodic
driving sets in, and accordingly, the overall maximal Qi

is obtained. It can be observed that the optimal D in-
creases continuously as p increases, and simultaneously,
the peak values of Qi decrease. This decrease is related to
the spread of the pacemaker impact to more distant units
of the network, which is triggered by the additional short-
cut links. Indeed, Figure 4b showing Qi across the array
for the optimal D, confirms this reasoning as the optimal
p = 0.16 warrants notably higher Qi especially for the
units that are relatively far from i = r = 100. However,
this feature is bounded with respect to p since both higher
and lower values fail to deliver the same enhancement of

Qi across the whole array. Thus, there exists and optimal
p that warrants the best outreach of the localized rhyth-
mic activity to distant units (distant from the location
of the pacemaker). This fact is additionally demonstrated
in Figure 4c, where the overall network response S (the
average over all Qi by a given D) obtained for p = 0.16
shows a clear enhancement if compared to p = 0.08 and
p = 0.32. Nevertheless, the increase in Qi by units far
from the pacemaker (see Fig. 4b) still cannot make fully
up for the simultaneous decrease in Qi by the unit (and
its immediate neighbors) that is under the direct influence
of the pacemaker (see Fig. 4a), and thus the overall maxi-
mal S is obtained by p = 0.04. In terms of the response of
distant units, however, p = 0.16 gives the optimal small-
world topology.

Before explaining the impact of different values of p
on the stochastic resonance in case the bistable potential
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Fig. 4. (Color online) Characteristic cross-sections of color maps presented in the left column (α = 5.6352; practically symmetric
bistable potential) of Figure 3. Panel (a): Qi in dependence on D for the oscillator i = r = 100 that is under the direct influence
of the pacemaker. Panel (b): Qi in dependence on i by the value of D warranting the peak S by a given p in the panel (c). Panel
(c): S (response of the whole network; see Sect. 2) in dependence on D. Error bars in all panels equal maximally two times the
height of symbols in up and down directions from the depicted data points.

Fig. 5. (Color online) Characteristic cross-sections of color maps presented in the right column (α = 5.71; asymmetric bistable
potential) of Figure 3. Panel (a): Qi in dependence on D for the oscillator i = r = 100 that is under the direct influence of
the pacemaker. Panel (b): Qi in dependence on i by the value of D warranting the peak S by a given p in the panel (c). Panel
(c): S (response of the whole network; see Sect. 2) in dependence on D. Error bars in all panels equal maximally two times the
height of symbols in up and down directions from the depicted data points.

is symmetric, we examine also the results obtained for
α = 5.71, yielding a notably asymmetric bistable poten-
tial. Figure 5 presents cross sections of color maps pre-
sented in the right column of Figure 3. As in Figure 4a,
results for the unit that is directly perturbed by the pace-
maker indicate that the optimal D increases and the peak
values of Qi decrease continuously as p increases. How-
ever, unlike by the α = 5.6352 case, here this decrease
is not accompanied by a notable increase of Qi by the
units that are far from the pacemaker. In fact, results
presented in Figure 5b show that Qi by the remote units
decrease also as p increases. Both these features of the
two cross sections depicted in panels (a) and (b) man-
ifest clearly also in the overall network response, which
decreases steadily as additional shortcuts replace nearest-
neighbor links (see Fig. 5c). This leads to the conclusion
that asymmetric bistable potentials are not susceptible for
an enhancement of pacemaker-driven stochastic resonance
via the fine-tuning of small-world topology, and that in-
deed strictly diffusive interactions in such a case might
constitute an optimal interaction topology. Moreover, it
can be observed that in Figure 5c the peaks of S are

broader and lower than in Figure 4c, which is also a conse-
quence of the asymmetric potential that might play a sig-
nificant role in deteriorating the phenomenon of stochastic
resonance [51].

Worthy of notice, the asymmetric bistable potential
does evoke an additional feature that can be observed for
small D in Figure 5a (and partially also in panel (c)).
Namely, the so-called subharmonic stochastic resonance
peak evoked by small D mainly by the unit that is directly
paced and its immediate neighbors, similarly as reported
previously in [5]. Presently, however, this feature is not of
foremost importance but solely supplements the array of
phenomena that can be observed if small-world networks
of asymmetric bistable units are weakly paced and driven
by additive noise.

Finally, aiming to explain the existence of the above-
established optimal small-world topology for the symmet-
ric potential, we employ classical measures such as the
normalized characteristic path length L and the normal-
ized clustering coefficient C [33], as defined in Section 2.
While L is often the more appraised quantity (echoing
in the name “small-world” describing such networks), the
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Fig. 6. (Color online) Normalized clustering coefficient C
(squares), normalized characteristic path length L (circles),
and the ratio R = C/L (triangles) in dependence on p for
a network consisting of N = 200 vertices having average con-
nectivity k = 4. Results were averaged over 100 different real-
izations of each network, and the ratio R was rescaled to the
unit interval (the shape of the dependence on p was completely
preserved) for better comparisons of all three curves. Lines are
solely guides to the eye, while error bars are smaller than the
size of symbols of the depicted data points.

clustering coefficient is presently also crucial since it quan-
tifies to what extend local interactions are intact or bro-
ken. In particular, C = 1 means that the cliquishness of
nearest neighbors is perfect, while C = 0 means that the
neighbors connected to a given unit of the network are dis-
connected from one another. Since the effectiveness of the
pacemaker to transmit its rhythm also to units that are
not within its immediate proximity relies both on effective
nearest-neighbor interactions as well as on the ability to
reach physically distant units towards which information
might get lost via the diffusive route, we propose the ra-
tio between the normalized clustering coefficient and the
characteristic path length R = C/L as the quantity defin-
ing the optimal properties of a network to facilitate the
spreading of localized pacemaker-emitted rhythmic activ-
ity. The higher the value of R, the better the network
structure is adapted to enforce the pacemaker activity on
the distant units. A high value of R suggests that the
nearest-neighbor interactions are largely intact, while at
the same time considerable benefits in terms of informa-
tion propagation may be expected from long-range con-
nections. On the other hand, a low value of R indicates ei-
ther that nearest-neighbor interactions are largely broken
or that long-range connections are sparse, whereby any of
these two properties would act detrimental on the ability
of a pacemaker to enforce its rhythm on distant units of
the network. Results for the presently employed network
(N = 200, k = 4) are shown in Figure 6. Indeed, the
peak value of R is obtained by roughly the same value of
the small-world connectivity, equaling p ≈ 0.15, that also
warrants the best outreach of the pacemaker to units that
are not in its immediate proximity. Importantly, in terms

of the network structure p ≈ 0.15 significantly shortens
the path length between pairs of vertices (see circles in
Fig. 6) while simultaneously keeping the clustering coeffi-
cient fairly high (see squares in Fig. 6), thus constituting
the optimal network topology in terms of the ratio R as
argued above. This result confirms our reasoning and in-
troduces a compact measure for assessing the ability of a
small-world network topology to promote the spreading
of localized rhythmic activity to units that are located far
from the pacemaker.

4 Summary

We study the phenomenon of stochastic resonance on ge-
netic regulators small-world networks subject to a sub-
threshold periodic driving. If the potential characterizing
the local dynamics is symmetric, the stochastic resonance
in units that are far from the pacemaker can be enhanced
by an appropriate small-world topology. Thereby the ratio
between the clustering coefficient and the shortest path
appears to be a suitable quantity for assessing the net-
work’s ability to facilitate the outreach of the pacemaker.
On the other hand, if the potential is asymmetric, bene-
fits from a carefully adjusted small-world topology cannot
be expected, and thus diffusive interactions seem to be
optimal. Notably, the subharmonic stochastic resonance,
which is evoked by small noise intensities, can be observed
provided the asymmetry is sufficiently pronounced. Due to
the significant importance of pacemakers in various net-
works connecting natural systems [62–64], we hope our
study will be applicable in realistic genetic regulatory ex-
periments, and foster the understanding of processes by
which weak pacemakers play a key role.

M. Perc acknowledges support from the Slovenian Research
Agency (grant Z1-9629).
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