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Abstract—In this paper, some efficient criteria for finite-time
consensus of a class of nonsmooth opinion dynamics over a
digraph are established. The lower and upper bounds on the
finite settling time are obtained based respectively on the maxi-
mal and minimal cut capacity of the digraph. By using tools of the
nonsmooth theory and algebraic graph theory, the Carathéodory
and Filippov solutions of nonsmooth opinion dynamics are ana-
lyzed and compared in detail. In the sense of Filippov solutions,
the dynamic consensus is demonstrated without a leader and
the finite-time bipartite consensus is also investigated in a signed
digraph correspondingly. To achieve a predetermined consensus,
a leader agent is introduced to the considered agent networks. As
an application, the nonsmooth compartmental dynamics in the
presence of a leader is embedded in the proposed continuous-
time protocol to solve the distributed optimization problems over
an unbalanced digraph. The convergence to the optimal solution
by using the proposed distributed algorithm is guaranteed with
appropriately selected parameters. To verify the effectiveness of
the proposed protocols, three numerical examples are performed.

Index Terms—Distributed optimization (DO), finite-time con-
sensus (FTC), nonsmooth control, opinion dynamics, signed
digraph.
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I. INTRODUCTION

RECENTLY, the consensus problem of multiagent system
(MAS) with locally interactive dynamics has been stud-

ied extensively. This is partly due to its applications in many
areas, such as sensor network [1], smart grid [2], [3], and
distributed constrained optimization [4]–[9]. A well known lin-
ear consensus algorithm proposed for a general digraph G is
represented by Laplacian flow dynamics [15]

ẋ(t) = −Lx(t) (1)

where L is the (in-)Laplacian matrix of G and xi(t), i.e., the ith
component of vector x, represents the value of the ith agent’s
opinion, such as position and frequency, −Lx(t) is usually
called protocol. It has been shown in [18] that the static con-
sensus of opinion dynamics (1) is achieved asymptotically if
and only if G contains a directed spanning tree. When the
considered network is a signed digraph represented by Gs in
which both the positive and negative weights on edges can
exist, the dynamics (1) can be used to model the collective
behaviors arose from a group of cooperative or antagonistic
actors in a social network [19]. It has been shown in [19] that
the bipartite consensus will be ensured for network dynam-
ics (1) with a strongly connected signed digraph Gs if and only
if Gs is structurally balanced.

To achieve finite-time consensus (FTC), numerous
continuous-time distributed protocols have been provided
for the first-order MAS in [21]–[25]. In [21], the effects of
neighbors’ states were considered together in one term with
fractional power, i.e., the local protocol of the ith agent is
formulated as

ẋi(t) = ui
1(x, α) := −sign(Li·x)α (2)

with 0 < α < 1, sign(y)α � sign(y)|y|α and Li· being the ith
row of L. However, the discontinuous case (i.e., α = 0) was
not considered in [21]. In [22] and [23], the intersections with
neighbor agents were designed pairwisely, i.e., the protocol of
the ith agent is designed as

ẋi(t) = ui
2(x, α) :=

N∑

i=1

aijsign
(
xj − xi

)α (3)

in which aij represents the weight of edge (j, i). The
protocol (3) was further applied in [24]–[26] for differ-
ent considerations. Note that the controllers (2) and (3)
were also extended for the finite-time bipartite consensus
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(FTBC) with signed digraphs [27] and FTC of second-order
MAS in [28]–[31].

For discontinuous protocols, the finite-time protocols (2)
and (3) with α = 0 were studied in [32] and [33] by using
nonsmooth analysis, respectively. Besides, the discontinuous
protocol u2(x, 0) is also used for finite-time synchronization
problem of switched neural networks in [34]. Generally, com-
pared with the continuous protocol u1(x, α) and u2(x, α) with
α ∈ (0, 1), the discontinuous protocols u1(x, 0) and u2(x, 0)

are easier for real-time implementation with lower computa-
tion complexity and more robust to the computational error
and external disturbances since only signs of components of
relative state vector are used. Particularly, the result on the
static consensus of [32] over undirected graph was revisited
and generalized in [35], where it was pointed out that the
MAS with protocol u1(x, 0) could behave dynamic consen-
sus. This unwanted phenomenon could be avoided by some
smoothing techniques as given in [35, Th. 19], for which only
asymptotical consensus was achieved as a sacrifice. In [36],
the discontinuous protocol u1(x, 0) with all edge weights being
one was used for FTC of MAS with bounded disturbances over
digraph. However, the convergence rate of MAS with protocol
u1(x, 0) over general weighted digraph has not been reported
in existing literature.

When L is the out-Laplacian matrix of a digraph, −L is a
compartmental matrix (see [16, Definition 2.10]). In this case,
the linear MAS (1) becomes a linear compartmental system,
which is a popular opinion dynamics characterized by conser-
vation laws and the energy or mass flow between neighboring
compartments. Examples of compartmental systems can be
found in transportation, economics, epidemiology, pharmacol-
ogy, as well as ecological and biological networks [15]–[17]. It
has been shown in [17] that the trajectory of the compartmen-
tal system (1) is asymptotically stable and positively invariant
in the non-negative orthant. It is interesting and important to
ensure finite-time convergence to equilibrium point for solu-
tions of compartmental systems (1) by redesigning the protocol
and to show the positively invariant property of solutions
of such systems in the non-negative orthant. To the best of
our knowledge, these two challenging issues have not been
answered in existing related works. Partly motivated by these
observations, the finite-time convergence to the equilibrium
point and the positively invariant property for the nonsmooth
compartmental system with the form of ẋ(t) = −sign(Lx) are
proven and analyzed in this paper.

As an application, the Laplacian flow dynamics (1) with
L being the in- or out-Laplacian matrix has been introduced
in the algorithm design of distributed optimization (DO) on
digraph. Although a number of discrete or continuous-time
protocols for DO have been proposed, they mainly focus
on the cases with communication network being undirected
or weight-balanced [4]–[14]. In [14], the proposed adap-
tive continuous-time algorithm was also extended over an
unbalanced digraph assuming that the left eigenvector of the
in-Laplacian matrix corresponding to zero eigenvalue was
known. However, how to obtain such a left eigenvector from a
fully distributed manner is still an unsolved issue. For a more
general topology, a push-sum method has been put forward

in the design of DO algorithms over strongly connected
digraph [37]–[41], in which a time-diminishing time-step or
parameter is used for the purpose of algorithm convergence,
resulting in a slow and conservative convergence performance.

Motivated by the above observations, the FTC of the nons-
mooth opinion dynamics with discontinuous protocol u1(x, 0)

is studied in this paper, which is further applied in the DO
problems over strongly connected and unbalanced digraphs.
The main contributions are listed as follows.

1) Based on the nonsmooth theory and Lyapunov methods,
the Carathéodory and Filippov solutions of the consid-
ered opinion dynamics with discontinuous protocols are
analyzed and compared. For such a nonsmooth dynam-
ics, it has been shown that any Carathéodory solution is
also a Filippov solution, and the Carathéodory solution
does not always exist for specific digraphs and initial
points. The finite-time dynamic consensus of the nons-
mooth opinion dynamics has been demonstrated without
a leader agent, for which the finite settling time is esti-
mated based on the maximal and minimal cut capacity
of the digraph. Furthermore, less conservative sufficient
conditions on the FTC of the nonsmooth dynamics in
presence of bounded disturbances are also provided.

2) The FTBC in a signed digraph is investigated. It has been
shown that the FTBC can be achieved when the signed
digraph owns a rooted spanning tree and is structurally
balanced. The settling time is also estimated based on
the cut capacity of the associated classic digraph.

3) To guarantee a predetermined consensus, a leader agent
is introduced in the opinion dynamics of MAS. Several
criteria are derived for the FTC of the nonsmooth
dynamics. The finite-time static consensus can be also
obtained by introducing a leader agent with a constant
state.

4) The nonsmooth compartmental dynamics is applied in
the algorithm design of DO problems over an unbal-
anced digraph. It is an extension of [4, Th. 5.4],
which only deals with weight-balanced digraphs. It has
been shown that the DO problems can be solved in
a distributed mode by the proposed algorithm with
appropriately selected parameters.

The remainder of this paper is structured as follows. In
Section II, some concepts of graph theory and nonsmooth
analysis are presented. The problem of nonsmooth opinion
dynamics is formulated in Section III. The FTC analysis of (7)
is provided in Section IV with and without a leader, respec-
tively. In Section V, the nonsmooth compartmental dynamics
is introduced in the protocol design for DO problems over
unbalanced digraphs. Three numerical examples are demon-
strated in Section VI to verify the effectiveness of the proposed
protocols. The conclusions are included in Section VII.

II. PRELIMINARIES

A. Basic Notations

R
n represents the n-dimensional real vector space. R

n+ and
R

n++ denote the sets of n-dimensional vectors with non-
negative and positive elements, respectively. Let 1n (resp. 0n)
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∈ R
n be the vector with all entries being ones (resp. zeros), and

In be an n-dimensional identity matrix. For a given matrix L ∈
R

n×n, Li· and L·j represent the ith row and jth column vector of
L, respectively. For x = [x1, . . . , xn]T ∈ R

n, the 2- and 1-norm
of vector x are denoted by ‖x‖ = √

xTx and ‖x‖1 = ∑n
i=1 |xi|,

respectively, and sign(x) = [sign(x1), . . . , sign(xn)]T. For vec-
tor z = [z1, . . . , zn]T ∈ R

n and y = [y1, . . . , yn]T ∈ R
n++,

x = z/y = [x1, . . . , xn]T with xi = zi/yi, for i = 1, . . . , n. Let
I be an index set and xi ∈ R

ni , i ∈ I, and [xi]i∈I stands for
col{x1, . . . , x|I|} ∈ R

∑
i∈I ni . The operator ⊗ is the Kronecker

product. For an arbitrary set S ⊂ R
n, co{S} and co{S} repre-

sent the convex closure and hull of S, respectively. Let σ ∈ R
n,

diag(σ ) is a diagonal matrix with σi being the diagonal entries.

B. Graph Representation

A classic weighted digraph is represented by G(V, E, A)

with node set V = {1, 2, . . . , N} and edge set E ⊆ V × V .
A = [aij] ∈ R

N×N is the weighted adjacency matrix defined
as: aij > 0 if and only if ( j, i) ∈ E and aij = 0, otherwise.
When ( j, i) ∈ E , it means that the information of agent j can
be accessed by i. The in- and out-neighbor set of agent i are
defined as N in

i = {j : ( j, i) ∈ E} and N out
i = {j : (i, j) ∈ E},

respectively. The weighted in- and out-degree of agent i are
given by din

i = ∑N
j=1 aij and dout

i = ∑N
j=1 aji, respectively, and

the degree of node i is di = din
i + dout

i . For a digraph G, the
maximum degree is defined as dmax = max{di : i ∈ V} and the
maximum out-degree as dout

max = max{dout
i : i ∈ V}. Let Din =

diag([din
1 , . . . , din

N ]) and Dout = diag([dout
1 , . . . , dout

N ]) be the
in- and out-degree matrix, respectively. Then, the in-Laplacian
matrix is defined by Lin = Din − A satisfying Lin1N = 0.
Correspondingly, the out-Laplacian matrix is defined as Lout =
Dout − A satisfying 1T

NLout = 0. If G has a directed spanning
tree, it means that there exists a root node r, for which one can
find a directed path from it to any other node. If there exists a
directed path connecting any pair of nodes, then digraph G is
strongly connected.

A signed digraph is represented by Gs(V, E, As), which
is defined similar to G except that the element aij in the
signed adjacency matrix As = [aij] ∈ R

N×N can be posi-
tive or negative, representing the cooperative or competitive
relationship between neighboring agents i and j. For a signed
digraph Gs, the Laplacian matrix Ls(Gs) = [lij]N×N is defined
as: lii = ∑

j∈Ni
|aij| and lij = −aij, ∀i, j ∈ V . Let B =

{−1, 1} and σ ∈ BN . The signed digraph Gs is structurally
balanced (associated with σ ) if there exists a bipartition
{V1,V2} of the node set V such that aij > 0 if and only
if ( j, i) ∈ (Vk × Vk) ∩ E (k ∈ {1, 2}), which is equivalent
to the case that there exists a diagonal matrix D = diag(σ )

such that DAD ≥ 0. Otherwise, it is called structurally
unbalanced. For the simplicity of representation, we denote
G(V, E, A) as the classic weighted digraph associated with
Gs(V, E, As) with A = |As|.

Let {S,S} be a partition of V , i.e., V = S∪S , and S∩S = ∅.
For the partition {S,S}, (S,S) is defined as a cut of G if
(S×S)∩E �= ∅. The capacity of the cut (S,S) is denoted by
c(S,S) = ∑

(i,j)∈(S,S)
aji. Let C(G) represent the collection of

all cuts of G. Then, the minimum and maximum cut capacity

of G are given, respectively, as

cmin(G) = min(
S,S

)
∈C(G)

c
(
S,S

)
> 0

cmax(G) = max(
S,S

)
∈C(G)

c
(
S,S

)
> 0

which represent the minimum and maximal flow passing from
the subset S to S among all cuts, respectively.

The transpose of a weighted digraph G(V, E, A) is another
weighted digraph GT(V, ET, AT) with the same set of vertices
satisfying that (i, j) ∈ ET if and only if ( j, i) ∈ E and AT is the
transpose of A. For G and GT, one can verify that Lout(GT) =
(Lin)T(G), Lin(GT) = (Lout)T(G), cmin(G) = cmin(GT), and
cmax(G) = cmax(GT). If GT has a spanning tree, then there
exists a unique non-negative vector π ∈ R

N+ with ‖π‖1 = 1
such that Lπ = 0 for L = Lout(G). Furthermore, if the digraph
G is strongly connected, the above vector π ∈ R

N++.
A matrix M = [Mij]N×N is Metzler if Mij ∈ R+ for all

i �= j ∈ V . A digraph G(V, E, A) is called M-induced digraph
if it satisfies that ( j, i) ∈ E with aij = Mij if and only if Mij > 0
for i �= j. If the Metzler matrix M also satisfies that 1T

NM ≤
0N , then it is called compartmental matrix. It is obvious that
−Lin(G) is Metzler and −Lout(G) is compartmental.

C. Nonsmooth Analysis

Consider the following differential system:

ẋ(t) = f (x(t)) (4)

for which x(t) ∈ R
n and the map f : R

n → R
n is not necessary

continuous everywhere. When f (x) is discontinuous, the solu-
tions of (4) will be investigated in the sense of Carathéodory
or Filippov solution, see Definitions 1 and 2. For a given
nonsmooth dynamics, the sets of Carathéodory and Filippov
solutions are denoted as C and F , respectively.

Definition 1: For an interval I ⊂ R, an absolutely continu-
ous map ϕ : I → R

n is called a Carathéodory solution of (4)
if it satisfies ϕ̇(t) = f (ϕ(t)) a.e. on I.

Definition 2: For an interval I ⊂ R, an absolutely contin-
uous map ϕ : I → R

n is called a Filippov solution of (4) if
it satisfied the differential inclusion ϕ̇(t) ∈ F[ f ](ϕ(t)) a.e. on
I, where the Filippov set-valued map F[ f ] : R

n → 2R
n

is
defined as

F
[

f
]
(x) �

⋂

ε>0

⋂

m(S)=0

co{f (B(x, ε)\S)} (5)

in which B(x, ε) is an open ball of radius ε > 0 with center
at x, m(S) means the Lebesgue measure of S.

Some sufficient criteria on the vector field f (x) to guar-
antee the existence of Carathéodory solution of (4) can
be found in [43]–[45]. If f (x) is measurable and locally
essentially bounded, then a Filippov solution exists for any
initial point [50]. Detailed discussion and comparison of
Carathéodory, Filippov, and other solutions can be found
in [46], [47], and references therein. A Filippov/Carathéodory
solution is said to be maximal if it cannot be extended over
time. If for any initial point x(0) chosen in the set S, at least
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one (resp. every) maximal solution of (4) is contained in S,
S is weakly invariant (resp. strongly invariant).

Some main concepts and results for nonsmooth analysis are
recalled as below.

Let V : R
n → R be a locally Lipschitz continuous map and

F : R
n → 2R

n
be a set-valued map. The generalized gradient

of V is defined by

∂CV(x) � co{limk→+∞∇V(xk)|xk → x, xk /∈ �V ∪ S}
where �V ⊂ R

n denotes the set of points that ∇V(x) does not
exist satisfying that m(�V) = 0 and S ⊂ R

n is an arbitrary set
with m(S) = 0. The set-valued Lie derivative L̃FV : R

n →
2R

n
of V with respect to F at x is defined as

L̃FV(x) �
{
a ∈ R|∃ϑ ∈ F(x) with ξTϑ = a,∀ξ ∈ ∂CV(x)

}
.

Proposition 1: Let V : R
n → R be locally Lipschitz con-

tinuous and regular (see [48] for detailed definition) and
ϕ(t) : I → R

n be a Filippov solution of (4) on I, then V(ϕ(t))
is absolutely continuous and [dV(ϕ(t))/dt] ∈ L̃FV(ϕ(t)) a.e.
on I, where F(x) denotes F[ f ](x) defined in (5).

III. PROBLEM FORMULATION

Consider a group of N agents in a directed network. The
ith agent’s opinion xi ∈ R, i ∈ V is evolving according to the
following nonsmooth interconnected dynamics:

ẋi(t) = −sign

⎛

⎝
N∑

j=1

lijxj

⎞

⎠, i ∈ V := {1, . . . N} (6)

for which the digraph G is induced by |L|, e.g., Lout(G) or
Lin(G). By stacking all the local states as x = [xi]i∈V , one
obtains the dynamics of the network system as

ẋ(t) = −sign(Lx). (7)

For system (7), the following three questions will be
investigated in the later parts.

1) What is the relationship between C and F .
2) Does the Carathéodory solution of (7) always exist.
3) What are the conditions for guaranteeing FTC (FTBC)

of system (7) over (signed) digraph G (Gs)? How to
measure the convergence rate.

As the function f = −sign◦L : R
N �→ {±1, 0}N is bounded

and measurable, then there exists at least one Filippov solu-
tion of (7) for any x(0) ∈ R

N . However, it is not a trivial task
to show that the Carathéodory solutions of (7) exist for an
arbitrary matrix L ∈ R

N×N , even for the Laplacian matrix of a
digraph. In the latter part, when a Carathéodory solution of (7)
is mentioned, it is only in the case that the Carathéodory solu-
tion exists for (7). As reported in [46], no general relationship
exists between Carathéodory and Filippov solutions. However,
for dynamics (7) with general matrix L, the following result
is provided to the first question.

Theorem 1: For the nonsmooth dynamics (7) with a con-
stant matrix L ∈ R

N×N , it holds that f (x) ∈ F[ f ](x).
Hence, any Carathéodory solution of (7) is a Filippov solution,
i.e., C ⊆ F .

Proof: For any x ∈ R
N , we define

I0 = {
j ∈ V : Lj·x = 0

}
.

It is obvious that fi(x) = vi for all v ∈ F[ f ](x) if fi is continu-
ous at x. Denote Ic = V\I0 and fI0 = [ fj]j∈I0 . By the product
rule of Filippov set-valued map [46], it can be derived that

F
[

f
]
(x) =

∏

i∈Ic

{fi(x)} × F
[

fI0

]
(x)

after reordering the node set V . Then, it remains to show that
0 ∈ F[ fI0 ](x). Consider a finite collection of the open and
disjoint regions of R

N as {�r : r = 1, . . . , s} separated by
a group of hyperplanes H = {Hj : j ∈ I0}, for which the
jth hyperplane is defined as Hj = {x ∈ R

N : Lj·x = 0}.
Then, it follows that R

N = ∪s
r=1�r and fI0 is a piecewise

continuous vector fields. Note that each region �r can be
represented by a vector vr ∈ {−1, 1}|I0| with element vr

j
determined by its position to Hj, i.e., vr

j = sign(Lj·x) for
any x ∈ �r. Then, one gets that F[ fI0 ](x) = co{vr : r =
1, . . . , s}. Since every hyperplane crosses the origin, then
each region has a symmetric region respect to the origin.
For any pair of symmetric regions (�r1 ,�r2), it can be
easily verified that vr1 = −vr2 . Consequently, one gets that
0 ∈ F[ fI0 ](x). Therefore, f (x) ∈ F[ f ](x) for all x ∈ R

N .
By Definitions 1 and 2, we conclude that any Carathéodory
solution of (7) is also a Filippov solution, i.e., C ⊆ F .

Under Theorem 1, the Filippov solution will be studied in
the most cases. The FTC of the system (7) will be considered
for the third question according to Definition 3, which implies
that the FTC is equivalent to the FTC with respect to π = 1N .

Definition 3: For an MAS with coupling dynamics, the FTC
is achieved if it holds that

∃T∗ ∈ R+ : xi(t) = r(t), ∀t ≥ T∗, ∀i ∈ V

in which xi represents the local state of agent i and r(t) is
a continuous reference trajectory defined on [T∗,+∞). The
FTC with respect to π ∈ R

N is achieved if it holds that

∃T∗ ∈ R+ : xi(t) = πir(t), ∀t ≥ T∗, ∀i ∈ V.

Particularly, if r(t) is constant (resp. time-varying) after
T∗, then the finite-time static (resp. dynamic) consensus
is achieved. The finite-time static/dynamic consensus with
respect to π can be defined similarly. In this paper, the FTBC
of a signed digraph Gs associated with σ ∈ BN is defined as
FTC with respect to σ .

IV. FINITE-TIME CONSENSUS ANALYSIS

Let us denote that

zi =
N∑

j=1

lijxj, pi(zi) = sign(zi), i = 1, . . . , N. (8)

Then, one has that pi(zi) ∈ {±1, 0} and p(z) = [pi(zi)]i∈V ∈
{±1, 0}N . For system (7), the following two assumptions will
be considered, respectively, L = Lin(G) and L = Lout(G).

Assumption 1: The digraph G(V, E, A) contains at least a
rooted directed spanning tree and L = Lin(G).
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(a) (b) (c)

Fig. 1. Weighted (a) directed graph and (b) and (c) undirected graph for
Examples 1–3.

Assumption 2: The transpose digraph GT(V, ET, AT) con-
tains at least a rooted directed spanning tree and L = Lout(G).

For Assumption 1, let S1 = ker(L) = span{a1N |a ∈ R}
denote the associated consensus or equilibrium surface of
system (7). For the system (7) with Assumption 2, the asso-
ciated equilibrium surface is represented by S2 = ker(L) =
span{aπ |a ∈ R}, in which π ∈ R

N is the unique non-negative
(right-)eigenvector of L corresponding to 0 with ‖π‖1 = 1.

A. FTC Without Leader

The following lemma is a generalization of
[36, Proposition 2.1] for a weighted digraph G(V, E, A),
and also an extended result for L = Lout(G).

Lemma 1: Let Assumption 1 (resp. 2) hold. If x /∈ S1 (resp.
S2), then it holds that

cmin(G) ≤ pT(z)Lp(z) ≤ 4cmax(G). (9)

Furthermore, if G is strongly connected, one gets that

2cmin(G) ≤ pT(z)Lp(z) ≤ 4cmax(G). (10)

Proof: See Appendix A.
The lower or upper bound provided in Lemma 1 cannot be

improved as shown below.
Example 1: Consider three graphs presented in Fig. 1.

Suppose L = Lin(G) and x = [0, 2, 4]T. Then, one can calcu-
late that pT(z)Lp(z) = cmin(G) = 1 for Fig. 1(a), pT(z)Lp(z) =
2cmin(G) = 2 for Fig. 1(b), and pT(z)Lp(z) = 6 > 2cmin(G)

for Fig. 1(c). The same results hold when L = Lout(G). For
another side, let x = [1, 2, 1]T and L = Lin(G) or Lout(G).
It can be verified that pT(z)Lp(z) = 8 = 4cmax(G) for both
Fig. 1(b) and (c).

By the virtue of Lemma 1, the FTC of nonsmooth dynam-
ics (7) to the equilibrium surface S1 or S2 is given as
below.

Theorem 2: Let Assumption 1 (resp. 2) hold and
x(t) : R+ → R

N be any Filippov solution of the nons-
mooth dynamics (7) with initial state x(0) ∈ R

N . Then, the
FTC (resp. with respect to π) of x(t) is achieved on sliding
surface S1 (resp. S2) at settling time T∗ ∈ T1 with

T1 �
[ ‖z(0)‖1

4cmax(G)

‖z(0)‖1

cmin(G)

]
. (11)

If G is strongly connected, it can be further estimated that
T∗ ∈ T2 with

T2 �
[ ‖z(0)‖1

4cmax(G)

‖z(0)‖1

2cmin(G)

]
. (12)

Proof: Denote z = [zi]i∈V = Lx. Let us define V�= = {i ∈
V : zi �= 0} and V0 = {i ∈ V : zi = 0}. Consider the candidate
Lyapunov function as

V(z(t)) = ‖z(t)‖1 =
∑

i∈V
|zi(t)| (13)

which is convex and hence locally Lipschitz and regular. Partly
inspired by the discussions in [36, Th. 3.3], the derivative of
V(z(t)) along (7) becomes

d

dt
[V(z(t))] =

∑

i∈V �=

sign(zi)żi +
∑

i∈V0

sign(zi)żi

= p(z(t))TLẋ(t)

= −p(z(t))TLp(z(t)).

The last equality holds by keeping the terms for i ∈ V0 since
sign(zi) = 0. If x /∈ S1 (resp. S2), according to Lemma 1, one
gets that V(z(t)) > 0 and

d

dt
[V(z(t))] ∈ [−4cmax(G) − cmin(G)].

On the other hand, if x ∈ S1 (resp. S2), it can be derived
that V(z(t)) = 0 and (d/dt)[V(z(t))] = 0. Hence, x(t) will
converge to the consensus surface S1 (resp. S2) in finite-time
T∗ ∈ T1 under Assumption 1 (resp. 2). Furthermore, if G is
strongly connected, it follows that T∗ ∈ T2.

Remark 1: To get a tighter bound on the finite settling
time T∗ in a strongly connected network, one can design G
to minimize the value of ‖L‖1/cmin(G) because ‖z(0)‖1 ≤
‖L‖1‖x(0)‖1. Since ‖L‖1 = maxj∈V

∑N
i=1 |lij|, then one gets

that

‖L‖1 = max
i∈V

{
din

i + dout
i

}
= dmax, for L = Lin(G)

‖L‖1 = max
i∈V

2dout
i = 2dout

max, for L = Lout(G).

As a result, it remains to minimize dmax/cmin(G) for L =
Lin(G), and dout

max/cmin(G) for L = Lout(G).
Theorem 2 can also be extended to the MAS in presence

of bounded disturbances, i.e.,

ẋ(t) = −δsign(Lx) + � (14)

in which δ > 0 is to be designed for expected conver-
gence rate, � is assumed to be measurable and bounded by
‖�‖1 ≤ b with a known constant b > 0. With a appropri-
ately designed parameter δ, the FTC (with respect to π ) for
the perturbed system (16) can be also achieved, which is an
extension of [36, Th. 3.3] for a weighted digraph, and also for
L = Lout(G).

Theorem 3: Let Assumption 1 (resp. 2) hold. Suppose
that {x(t) : t ≥ 0} is any Filippov solution of the non-
smooth dynamics (16) with initial state x(0) ∈ R

N . If
δ ≥ [(dmaxb + ρ)/cmin(G)] (resp. [(2dout

maxb + ρ)/cmin(G)])
with ρ > 0, then the FTC (resp. with respect to π ) of (16)
is achieved at settling time T∗ ≤ ‖z(0)‖/ρ. Furthermore, the
condition on δ can be replaced by δ ≥ [(dmaxb + ρ)/2cmin(G)]
(resp. [(2dout

maxb + ρ)/2cmin(G)]) with ρ > 0 if G is strongly
connected.
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Proof: The proof can follow the line of [36, Th. 3.3] with
the help of Lemma 1, and is omitted here.

Remark 2: It has been shown in [36, Proposition 2.1] that,
for a classic (in-)Laplacian matrix (lij = −1, ( j, i) ∈ E),
pT(z)Lp(z) ≥ 1 if x /∈ S1, which is implied by (9) in Lemma 1.
By Example 1, it has been shown that the bounds in (9) can-
not be further improved in some cases. In [36, Th. 3.3], the
finite-time convergence analysis of the dynamics (16) was also
investigated. Compared with [36, Th. 3.3], a less conserva-
tive condition is given for δ in Theorem 3 with the help of
Lemma 1. In [35], the asymptotical stability to a sliding con-
sensus set was shown for L = Lin(G), which is generalized
to FTC in Theorem 2 with the explicit bounds on the settling
time. Since the existing literature only consider the case with
L = Lin(G), the FTC with respect to π for L = Lout(G) is
studied here for the first time.

Theorems 2 and 3 show that every Filippov solution of
(7) or (16) converges to the sliding surface S1 or S2 at finite-
time T∗ under some mild conditions on the topology. However,
the dynamic consensus may emerge after T∗, for which the
solution can go to infinite value because of the possible dis-
continuity of the right side of (7). For the specific example to
illustrate this unwanted behavior, one can refer to the following
example provided in [35].

Example 2: Consider the dynamics of (7) defined on an
undirected graph presented in Fig. 1(c). Suppose x(0) ∈ S1,
then by Definition 2, one derives that

F
[

f
]
(x(0)) = co{±ϑ1,±ϑ2,±ϑ3}

of which f = −sign◦L, ϑ1 = [−1, 1, 1]T, ϑ2 = [1,−1, 1]T, and
ϑ3 = [1, 1,−1]T. Then, any solution formed as x(t) = θ(t)13
with θ̇ (t) a.e. ∈ [−(1/3), (1/3)] ⊂ F[ f ]((x(0)) is a Filippov
solution, such as x(t) = (1/3)t13.

To achieve static consensus, several alternative condi-
tions are imposed on the components of the function f in
[35, Th. 7], in which only the asymptotical convergence to a
fixed consensus point is proven. The following corollary shows
that the MAS will reach finite-time static consensus over the
digraph with a unique root node.

Corollary 1: Let Assumption 1 hold. Suppose that digraph
G contains a unique root node r, then every Filippov solution
of (7) with initial state x(0) ∈ R

N will reach static consensus
at x∗ = xr(0)1N in finite-time T∗ ∈ T1.

Proof: The finite-time static consensus is implied
by Theorem 2 and the fact that xr(t) ≡ xr(0)

since ẋr(t) ≡ 0.
If there exists a Carathéodory solution for (7), the static

consensus is also obtained.
Corollary 2: Under the conditions of Theorem 2. If C �= ∅,

then for any x(t) ∈ C , x(t) will converge to a fixed point
x∗ ∈ S1 (resp. S2) in finite-time T∗.

Proof: The proof is directly implied by Theorem 2 and
Definition 1 since the right side of (7) will remain zero on
S1 (resp. S2) after T∗.

Particularly, for some special systems, the Carathéodory
solution of (7) will concise with the Filippov solution as shown
in Propositions 2 and 3.

(a) (b)

Fig. 2. (a) One-way weighted digraph and (b) two-way weighted digraph
used for Propositions 2 and 3.

Proposition 2: Let Assumption 1 hold and N = 2. A unique
solution of (7) exists for any x(0) ∈ R

2, i.e., C = F = {x(t)}
with x(t) defined in (15). Specifically, the finite-time static
consensus of x(t) to a fixed point x∗ ∈ S1 is guaranteed at
settling time T∗ according to (15) satisfying that: 1) x∗ =
x1(0)12 and T∗ = |x1(0) − x2(0)| if G is shown as Fig. 2(a)
and 2) x∗ = (1T

2 x(0)/2)12 and T∗ = (|x1(0) − x2(0)|/2) if G
is shown in Fig. 2(b)

x(t) =
{

x(0) − sign(Lx(0))t, if t ∈ (0, T∗)
x∗, if t ∈ [T∗,+∞).

(15)

Proof: Suppose that x(0) /∈ S1. If G is shown as Fig. 2(a),
it can be easily verified that the dynamics of x(t) will behave
according to (15) by Corollary 1.

For the second case, one can easily show that x(t) behaves
according to (15) for t ∈ [0, T∗), and converges to x∗ ∈ S1 at
T∗ and keeps in S1 thereafter by Theorem 2. We next show
that x(t) will not depart from x∗ after T∗. Consider the lin-
ear Lyapunov candidate V(x) = x1 + x2. By Proposition 1, it
holds that dV/dt ∈ L̃FV(x(t)) over [T∗,+∞) with respect to
F[ f ](x(t)) = co{[−1, 1]T, [1,−1]T}. Since ϑT∇V(x) = 0 for
any ϑ ∈ F[ f ](x(t)) for x(t) ∈ S1, it follows that:

dV/dx ∈ L̃FV(x(t)) = {0} a.e.
[
T∗,+∞)

.

As a result, it holds that V(x(t)) ≡ V(x(T∗)) and x(t) ∈ {x ∈
R

2 : 1T
2 x = 1T

2 x(0)} ∩ S1 = {x∗} for t ≥ T∗.
From the above discussions, the solution x(t) given by (15)

is the only possible trajectory of system (7) and is absolutely
continuous. Then, we conclude that C = F = {x(t)}.

Proposition 3: Let Assumption 2 hold and N = 2. A
unique solution of (7) exists for any x(0) ∈ R

2, i.e.,
C = F = {x(t)} with x(t) defined in (15). Specifically,
the finite-time static consensus of x(t) to a fixed point
x∗ ∈ S2 is guaranteed at settling time T∗ satisfying that:
1) x∗ = [0, 1T

2 x(0)]T and T∗ = |x1(0)| if G is shown as
Fig. 2(a) and 2) x∗ = [1T

2 x(0)/(a12 + a21)][a12, a21]T and
T∗ = [|a21x1(0) − a12x2(0)|/(a12 + a21)] if G is shown in
Fig. 2(b).

Proof: The proof follows the second case of Proposition 2.
However, the Carathéodory solution of (7) does not always

exist as shown below.
Example 3: Consider the solution of (7) for a digraph pre-

sented in Fig. 1(a). Let L = Lin(G) and x(0) = [1, 0, 0]T.
Then, there exists a unique Filippov solution of (7), i.e.,
x1(t) ≡ 1, x2(t) = x3(t) = t for t ∈ [0, 1) and x(t) ≡ 13 for
t ≥ 1. Obviously, x(t) is not a Carathéodory solution of (7)
since the right side of ẋ3 is always equal to zero for t ≥ 0.



SHI et al.: FTC OF OPINION DYNAMICS AND ITS APPLICATIONS TO DO OVER DIGRAPH 3773

Assumption 3: The signed digraph Gs(V, E, As) is struc-
turally balanced associated with σ ∈ BN and contains at least
a rooted directed spanning tree.

Remark 3: Let L = Ls(Gs) and denote the consensus sur-
face as Ŝ1 = span{aσ |a ∈ R}. In fact, the results obtained in
this section can be directly extended to analyzing the opin-
ion dynamics over signed digraph by replacing Assumption 1
with Assumption 3 and replacing S1 by Ŝ1. Then, the FTC
with respect to σ (FTBC) of the MAS can be obtained with
the same settling time as estimated in Theorem 1. It can be
shown from the fact that the dynamics (7) with L = Ls(Gs)

can be equivalently transformed into the following equivalent
system:

˙̂x(t) = −sign
(̂
Lx̂
)

(16)

where x̂ = Dx and L̂ = DLD = Lin(G) with D = diag(σ )

and G being the classic digraph associated with Gs. For the
equivalent system (16), FTBC can be transformed to the FTC
over classic digraph G. Then, under Assumption 3, the FTBC
on sliding surface Ŝ1 is achieved for the system (7) with L =
Ls(Gs) over a signed digraph Gs.

B. FTC With Leader

Assumption 4: The digraph G is strongly connected. Let r
be an arbitrary node in V and π ∈ R

N++ be the unique positive
(right-)eigenvector of Lout(G) corresponding to 0 satisfying
‖π‖1 = 1.

Assumption 5: s(x, t) is measurable and bounded by
|s(x, t)| ≤ K with a known constant K > 0.

Under Assumptions 4 and 5, the FTC of a revised version
of primary system (7) with leader r will be investigated, i.e.,

ẋi =
{

s(t, xr), if i = r
−δsign(Li·x), if i ∈ V \ {r} (17)

where δ > 0 is to be designed for expected convergence
rate. For the sake of analysis, we define an auxiliary matrix
L̃ = [l̃ij]N×N with L̃i· = Li· if i �= r and L̃r· = 0T

N . Denote
z̃(t) = L̃x(t) and G̃ as the (−L̃)-induced digraph. It is obvi-
ous that G̃ has a spanning tree with a unique root (leader) r.
Actually, G̃ is generated by removing all the in-edges to leader
r. Under Assumptions 4 and 5, the FTC (with respect to π )
of dynamics (17) is provided in Theorems 4 and 5.

Theorem 4: Let Assumptions 4 and 5 hold and L = Lin(G).
If δ ≥ [(dout

r K + ρ)/cmin(G̃)] with ρ > 0, then FTC is
achieved for any solution x(t) of system (17) at T∗ ≤
‖z̃(0)‖/ρ, i.e.,

xi(t) = xr(t), ∀t ≥ T∗, ∀i ∈ V.

Proof: See Appendix B.
Theorem 5: Let Assumptions 4 and 5 hold and L = Lout(G).

If δ ≥ [(2dout
r K + ρ)/cmin(G)] with ρ > 0, then FTC with

respect to π is achieved for any solution x(t) of system (17)
at T∗ ≤ ‖z(0)‖/ρ, i.e.,

xi(t) = πixr(t)/πr, ∀t ≥ T∗, ∀i ∈ V.

Proof: See Appendix C.

Specifically, the finite-time static consensus on S2 can be
obtained by introducing a leader with time-invariant state as
in Corollary 3, implied directly by Lemma 1 and Theorem 5.

Corollary 3: With the conditions of Theorem 5, suppose
that s(xr, t) ≡ 0 and δ = 1, the finite-time static consensus
to a fixed point x∗ = (xr(0)π/πr) is achieved at settling time
T∗ ∈ T1.

The node r in (17) can be regarded as a leader with contin-
uous right-side dynamics, which drives the whole system to
a desired trajectory as expected by designers. In addition, the
positively invariant property of the nonsmooth dynamics (17)
is given in Theorem 6, which is presented for a generalized
system.

Theorem 6: Let M = −L be a Metzler matrix and G be an
M-induced digraph. Assume there exists a spanning tree in G
with a root r ∈ V and the system state x evolves according
to (17). If the dynamics of xr is positively invariant in R++,
then S = R

N++ is strongly invariant for dynamics (17).
Proof: Let x(0) ∈ S = R

N++. In the next, we will proof the
strong invariance of S by contradiction. Suppose that there
exists a maximal Filippov solution {x(t) : t ≥ 0} not contained
in S and define

t0 := min{t ∈ R+ : ∃i ∈ V such that xi(t) = 0}
I0 := {i ∈ V : xi(t0) = 0}.

Since xr(t) is positively invariant in R++, it follows that
xr(t0) > 0. Let i be the node in I0 which has the shortest
path from root r. Then, there exists a node j ∈ N in

i such that
xj(t0) = b > 0. Because x(t) is absolutely continuous, one
can choose ε > 0 such that xj(t) > 0 and Mi·x(t) > 0 for
t ∈ [t0 − ε, t0]. It follows that:

xi(t0) = xi(t0 − ε) + εδ · sign(Mi·x(t)) > 0

which is a contradiction. Therefore, S = R
N++ is strongly

invariant for (17).
Since both in- and out-Laplacian matrices of G are Metzler

matrices, then Theorem 6 holds by setting L = Lin(G) or
Lout(G). Consequently, the trajectory of (17) considered in
Theorems 4 and 5 is positively invariant in R

N++ if xr is pos-
itively invariant in R++. In the next section, the nonsmooth
compartmental dynamics (17) with L = Lout(G) in presence
of a leader with constant state will be applied to solve DO
problems over an unbalanced digraph.

V. APPLICATION IN DISTRIBUTED OPTIMIZATION OVER

AN UNBALANCED DIGRAPH

For a communication digraph composed of N agents,
consider the following DO problem:

min
x

f (x) =
N∑

i=1

f i(x), x ∈ R
m (18)

in which f i : R
m → R is the local convex and differential cost

function of agent i, i ∈ V . The objective of (18) is to achieve
the global minimum of system-wide function f (x) coopera-
tively with the designed protocols, by which an individual
agent can only exchange information with its neighbor agents.
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Assume that xi is the local estimation of the global state x
in (18), then the task is to design a distributed algorithm in a
digraph G to achieve that

lim
t→∞

∥∥xi(t) − x∗∥∥ = 0, ∀i ∈ V (19)

where x∗ ∈ R
m belongs to X ∗, i.e., the set of optimal solutions

to (18).
Let L = Lout(G) = [lij]N×N and choose an arbitrary node

r ∈ V as a root. By introducing an auxiliary matrix L̃ defined
in Section IV-B, the local continuous-time protocol of agent i
is provided as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẇi = ∑N
j=1 lijθ j

θ̇ i = −∇f i
(
xi
)− γ

∑N
j=1 lijθ j −∑N

j=1 lijwj

ẏi = −sign
(∑N

j=1 l̃ijyj
)

xi = θ i/yi

(20)

with initial point yi(0) ∈ R++ and γ > 0. For the convenience
of analysis, the system dynamics equipped with protocol (20)
are rewritten into a vector form⎧

⎪⎪⎨

⎪⎪⎩

ẇ = Lθ

θ̇ = −∇f (x) − γ Lθ − Lw
ẏ = −sign

(̃
Ly
)

x = θ/(y ⊗ 1m)

(21)

with x = [xi]i∈V , θ = [θ i]i∈V , w = [wi]i∈V , y = [yi]i∈V ,
∇f (x) = [∇f i(xi)]i∈V and L = L ⊗ Im.

Remark 4: Since only the in-neighbors’ information is used
in (21), the protocol can be implemented in a distributed man-
ner and the digraph G is not necessary to be balanced. The
variable y with dynamics (17) is introduced to obtain the pos-
itive distribution vector π in finite time, which is used to scale
θ for the final consensus of state xi since the digraph under
consideration is unbalanced. As the dynamics of y evolves
according to (17) with ẏr ≡ 0, then it is positively invariant
in R

N++ and will converge to the final distribution vector π in
finite time by Corollary 3.

For the sake of optimality analysis, the relationship between
the optimal solution of (18) and the equilibrium point of (21)
in a strongly connected digraph is provided as follows.

Lemma 2: Under Assumption 4, x∗ ∈ X ∗ if and only if
there exists an equilibrium point (x∗, y∗, θ∗, w∗) of (21) with
x∗ = θ∗/(y∗ ⊗ 1m) = 1N ⊗ x∗ and y∗ = (yr(0)π/πr).
Proof: First, one can easily show that x∗ ∈ X ∗ if and only
if x∗ = 1N ⊗ x∗ is an optimal solution to the following
constrained optimization:

min
x

f (x) =
N∑

i=1

f i(xi) s.t. L�x = 0 (22)

with � = diag(�π) ⊗ Im and � > 0. By the optimal con-
ditions, it holds that (1T

N ⊗ Im)∇f (x∗) = 0. Since 1T
NL = 0

and rank(L) = N − 1 by Assumption 4, then there exists a
Lagrange multiplier vector w∗ satisfying ∇f (x∗) = −Lw∗. Set
ρ = yr(0)/πr, y∗ = �π and θ∗ = �x∗. Then, (x∗, y∗, θ∗, w∗)
is an equilibrium point of (21) satisfying x∗ = θ∗/(y∗⊗1m) =
1N ⊗ x∗.

Conversely, let (x∗, y∗, θ∗, w∗) be an equilibrium point
of (21). Then, one can deduce that y∗ = (yr(0)π/πr) and

θ∗ ∈ span{π ⊗υ} with υ ∈ R
m, which implies that there exists

a vector x∗ ∈ R
m such that x∗ = θ∗/(y∗ ⊗ 1m) = 1N ⊗ x∗.

Furthermore, since

(
1T

N ⊗ Im
)(−∇f

(
x∗)− γ Lθ∗ − Lw∗) = 0 (23)

it implies that
∑N

i=1 ∇f i(x∗) = 0 and x∗ ∈ X ∗.
Assumption 6: The gradient of each local cost function

f i(·), i ∈ V is κ-Lipschitz continuous with a common con-
stant κ > 0, i.e.,

∥∥∇f i(θ) − ∇f i(x)
∥∥

2 ≤ κ‖θ − x‖2 for all
θ, x ∈ R

m.
The following result provided for general strongly con-

nected digraphs is an extension of [4, Th. 5.4], which only
deals with weight-balanced digraphs.

Theorem 7: Let Assumptions 4 and 6 hold. Then, there
exists β∗ > 0 such that for all β ∈ (0, β∗), the trajectory
{xi(t) : t ≥ 0} will asymptotically converge to the optimal
solution of (18) with γ = (β2 + 2)/β.

Proof: By Lemma 2, there exists an equilibrium point
(x∗, y∗, θ∗, w∗) of (21) with x∗ = θ∗/(y∗ ⊗ 1m) = 1N ⊗ x∗
and y∗ = (yr(0)π/πr). Denote � = diag(�π) ⊗ Im and � =
yr(0)/πr. Consider the Lyapunov function V(ξ) = (1/2)ξTPξ

with

ξ =
[

θ − θ∗
w − w∗

]
, P =

[
β2 + 1 β

β 1

]
⊗ �−1. (24)

With Corollary 3, it can be concluded that y(t) will converge
to a fixed point y∗ = (yr(0)π/πr) in finite time T∗. Since
{y(t) : t ≥ 0} is absolutely continuous and positively invariant
in R

N++ by Theorem 6, then the right side of dynamics (21)
is always continuous and thus appropriately defined. In the
follows, only the dynamics of (21) after T∗ is investigated for
the simplicity of analysis. Then, system (21) becomes

{
ẇ = Lθ

θ̇ = −∇f
(
�−1z

)− γ Lθ − Lw.
(25)

Along the solution of (25), the Lie derivative of V(ξ(t))
becomes

V̇ = −
(
β2 + 1

)(
θ − θ∗)T�−1

(
∇f
(
�−1θ

)
− ∇f

(
�−1θ∗))

−
(
β2 + 1

)(
θ − θ∗)T�−1L

(
w − w∗)

− 1

2

(
β2 + 1

)(
θ − θ∗)T(�−1L + LT�−1

)(
θ − θ∗)T

+ (
w − w∗)T�−1L

(
θ − θ∗)

+ β
(
θ − θ∗)T�−1L

(
θ − θ∗)

− β
(
∇f
(
�−1θ

)
− ∇f

(
�−1θ∗))T

�−1(w − w∗)

− γβ
(
θ − θ∗)TLT�−1(w − w∗)

− β
(
w − w∗)TLT�−1(w − w∗).

Letting γ = (β2 + 2)/β, it follows that:

V̇ = 1

2
ξTQξ − β

(
w − w∗)T�−1

(
∇f
(
�−1θ

)
− ∇f

(
�−1θ∗))

−
(
β2 + 1

)(
θ − θ∗)T�−1

(
∇f
(
�−1θ

)
− ∇f

(
�−1θ∗))
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Fig. 3. Weighted (signed) digraph for simulations.

where matrix Q is given as follows:

Q = −
[

β3 + β2+2
β

+ β 1 + β2

1 + β2 β

]
⊗
(
�−1L + LT�−1

)
.

Denoting η = (ξ ,∇f (�−1θ) − ∇f (�−1θ∗)), by
Assumption 6, we get that V̇ ≤ (1/2)ηTQ̂η with

Q̂ =
⎡

⎣
Q11 Q12 0
Q21 Q22 −β�−1

0 −β�−1 − 2
κ

(
1 + β2

)
INm

⎤

⎦.

Partially inspired by the proof of [4, Th. 5.4], we express Q
as

Q = N

[
Q̃ 0
0 − 2

κ

(
1 + β2

)
INm

]
NT

where Q̃ and N are presented as

Q̃ = Q + κβ2

2
(
1 + β2

)
[

0 0
0 �−2

]

N =
⎡

⎢⎣
INm 0 0
0 INm

κβ

2(1+β2)
�−1

0 0 INm

⎤

⎥⎦.

To guarantee that V(·) is nonincreasing along (25), it is
sufficient if all the eigenvalues of Q̃ are less than zero.
Let λ∗(Q) denotes the nonzero eigenvalue of Q with small-
est absolute value and π = min{πi : i ∈ V} > 0.
Then, all nonzero eigenvalues of Q̃ are bounded by g(β) =
λ∗(Q)+(κβ2/[2(1 + β2)ρ2π2]). Therefore, β can be designed
such that g(β) < 0. With the discussions in the proof of
[4, Th. 5.4], there exists β∗ > 0 satisfying g(β∗) = 0 such
that g(β) < 0 for all β ∈ (0, β∗). By using LaSalle invariance
principle, it can be shown that NTη will asymptotically con-
verge to ker(Q̃)×{0}. Since ker(Q̃) = {π⊗v : v ∈ R

m}, then we
have θ = θ∗ +π ⊗v and ∇f (�−1θ)−∇f (�−1θ∗) = 0, which
implies that x = �−1θ is an optimal solution of (22). Thus,
we have shown that the trajectory {xi(t) : t ≥ 0} will achieve
consensus at the optimal solution of (18) asymptotically.

Remark 5: Actually, the global Lipschitz conditions on the
gradient of each local function f i can be relaxed as locally
Lipschitz if the initial point of (21) is contained in a com-
pact set C which belongs to the attract region of the given
equilibrium point.

VI. SIMULATIONS

To validate the effectiveness of the proposed protocols, three
numerical simulations are performed over a weighted (signed)
digraph G (Gs) as shown in Fig. 3. The first one is conducted

Fig. 4. Trajectory of xi by protocol (7) with L = Ls(Gs).

Fig. 5. Trajectory of xi by protocol (17) with L = Lin(G).

for protocol (7) over a structurally balanced signed digraph
Gs(V, E, As) associated with σ = [ − 1,−1, 1, 1,−1]. The
adjacency matrix of Gs is given as (26). The second and third
case studies are for protocols (17) and (21), respectively, which
are simulated on a classic digraph G(V, E, A) associated with
Gs, i.e., A = |As|. It can be easily calculated that cmin(G) = 1,
cmax(G) = 2 and π = (1/7)[2, 1, 1, 1, 2] for Theorem 1. For
the last two case studies, node 1 is assigned as the leader r,
which is used to drive the states of other nodes to an expected
trajectory

As =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 1
1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 1 0 −1 0

⎞

⎟⎟⎟⎟⎠
. (26)

A. FTBC Over Signed Digraph

In the first case study, the initial points for the protocol (7) is
set as x0 = [ − 3, 3,−3,−2,−4]. Then, the trajectory of state
xi is given in Fig. 4, which shows that x converges to the final
state [ − 0.5,−0.5, 0.5, 0.5,−0.5] in finite time. It means that
the FTC with respect to σ (FTBC) is achieved at the settling
time T∗ ∈ T2 = [2.625, 10.5] estimated in Theorem 1.

B. FTC With Leader

In the second case study, the dynamics of leader r
is given as: ẋr = s(t, xr) with s(t, xr) = sin(t). To
verify Theorem 4, we set L = Lin(G) and σ =
[(dout

r K + ρ)/cmin(G̃)] = 2 with ρ = 1 since K = 1 and
dout

r = 1. Let the initial state be x0 = [5, 4, 3, 2, 1]. Then,
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Fig. 6. Trajectory of xi by protocol (17) with L = Lout(G).

Fig. 7. Values of error e(y) with protocol (20).

Fig. 8. Trajectory of yi with protocol (20).

the simulation results by using protocol (17) are presented in
Fig. 5, which shows that the dynamics of x reaches consen-
sus in finite-time T∗ ≤ ‖z̃(0)‖/ρ = 7. To verify Theorem 5,
another simulation is conducted for L = Lout(G) and σ =
[(2dout

r K + ρ)/cmin(G)] = 3 with ρ = 1. By considering the
same initial point, the simulation results are provided in Fig. 6,
which shows that FTC with respect to π is achieved. From
Figs. 5 and 6, it can be seen that the dynamics of x is positively
invariant in R

N++, which also verifies Theorem 6.

C. DO Over an Unbalanced Digraph

In the third case study, the proposed protocol (21) is tested
on an unbalanced digraph G in Fig. 3, in which the local
cost functions for five agents are designed as follows: f 1(x) =
ex, f 2(x) = (x − 2)2, f 3(x) = (x + 2)2, f 4(x) = ln(1 + x2),
and f 5(x) = 2 + x for x ∈ R. All the gradients of the local
functions are globally Lipschitz except that of f 1, which is

Fig. 9. Trajectory of θ i with protocol (20).

Fig. 10. Trajectory of xi with protocol (20).

locally Lipschitz. Let the initial point be yi(0) = 1, wi(0) =
θ i(0) = xi(0) = 0 for each i ∈ V and γ = 3. Then, the
protocol (20) is performed in a distributed mode by assigning
node 1 as the leading node r. For the dynamics of collective
state y, it can be proven analytically that there exists a unique
Filippov solution {y(t)} which reaches a final equilibrium point
y∗ = [1, 0.5, 0.5, 0.5, 1]T at finite-time T∗ = 2/3 s and stays
at y∗ after T∗.

Denote the error function of y as e(y) = ‖Ly‖1. The sim-
ulation results for e(y) and states yi, θ i, and xi of each agent
are presented in Figs. 7–10, respectively. From Fig. 7, one
can see that e(y) drops to zero at T∗ with slope being −3.
Fig. 8 shows that the collective state y converges to a fixed
equilibrium point [1, 0.5, 0.5, 0.5, 1.0]T in finite time T∗. Note
that a conservative bound is given by T∗ ∈ T1 = [0.25 2] in
Corollary 3. After that, the state θ converges to a new equilib-
rium point −[0.30, 0.15, 0.15, 0.15, 0.30]T asymptotically as
in Fig. 9. Meanwhile, the consensus of the primal states xi on
an optimal solution x∗ = −0.298 is achieved in Fig. 10.

VII. CONCLUSION

In this paper, the FTC of a class of nonsmooth opin-
ion dynamics is investigated. Both the case with a leader
and without any leader have been studied by considering the
in- and out-Laplacian matrix of a digraph, respectively. A
less conservative bound on the finite settling time has been
obtained based on the cut capacity of the digraph. It has
been shown that it is sufficient to minimize the ratio of the
maximum degree or maximum out-degree to the minimal cut
capacity in order to obtain a smaller finite-time settling time.
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Some criteria on the FTC of MAS in presence of bounded
disturbance and FTBC with signed digraphs are also pro-
vided. Furthermore, the nonsmooth compartmental dynamics
by considering the out-Laplacian matrix are embedded into the
proposed continuous-time protocol for DO problems over an
unbalanced digraph. It has been shown that the DO problems
can be solved by the proposed algorithms with appropriately
selected parameters. Finally, three numerical examples are per-
formed to validate the effectiveness of the proposed finite-time
protocols. In the future work, the FTC of general nonsmooth
opinion dynamics with time-varying graphs will be considered.

APPENDIX A
PROOF OF LEMMA 1

First, we define three disjoint node sets as a partition
of V as

V− = {i ∈ V : pi = −1}
V+ = {i ∈ V : pi = 1}
V0 = {i ∈ V : pi = 0}. (27)

1) Let Assumption 1 hold. Since G contains at least a rooted
directed spanning tree and L = Lin(G), one gets that rank(L) =
N − 1 and S1 = ker(L). By the fact that x /∈ S1, one gives
that Lx �= 0, i.e., p �= 0. It follows that V+ �= ∅ or V− �= ∅.
If V+ �= ∅ and V− = ∅, one has that zi ≥ 0 for all i ∈ V . Let
π̃ = [π̃i]i∈V be the unique non-negative left-eigenvector of L
corresponding to 0 satisfying ‖π̃‖1 = 1. Then, we get that
π̃Tz = π̃TLx = 0, which implies that zi = 0 for any π̃i > 0
and thus V0 �= ∅. In the same way, one can show that V0 �= ∅
if V+ = ∅ and V− �= ∅. Consequently, it can be concluded
that one of the following two cases must hold: 1) V+ �= ∅ and
V+ = V− ∪ V0 �= ∅ and 2) V− �= ∅ and V− = V+ ∪ V0 �= ∅.

Consider the expanded form of pTLp as

pTLp =
∑

( j,i)∈E

{
aijp

2
i − aijpipj

}
=

∑

( j,i)∈E
fij
(
pi, pj

)
(28)

where function fij(pi, pj) = aijp2
i − aijpipj. It can be easily

verified that fij(pi, pj) ∈ {0, aij, 2aij} and fij(pi, pj) = 0 if and
only if i ∈ V0 or nodes i, j belong to the same subset such
as V+,V−. It is further assumed that fij(pi, pj) = aij = 0 if
( j, i) /∈ E . Then, (28) can be rewritten as

pTLp =
∑

i∈V+

∑

j∈V+

fij
(
pi, pj

)+
∑

i∈V−

∑

j∈V−

fij
(
pi, pj

)
. (29)

Let the first case hold, i.e., V+ �= ∅ and V+ = V−∪V0 �= ∅.
In the next, we will show that the cut (V+,V+) �= ∅ by
contradiction. If (V+,V+) = ∅, then there exists a root in
V+ since G owns a directed spanning tree. Consider the sub-
graph G1 induced by node set V+ and denote the in-Laplacian
matrix of G1 as L1, which is a submatrix of L corresponding
to row and column index in V+. Then, G1 has a rooted span-
ning tree, and thus there exists a none-zero vector π̃1 ∈ R

|V+|
+

such that π̃1L1 = 0. Let zV+ = [zi]i∈V+ and xV+ = [xi]i∈V+ .
Then, one can derive that π̃1L1xV+ = π̃1zV+ = 0, which

is a contradiction since zV+ ∈ R
|V+|
++ . Similarly, one can

show that (V−,V−) �= ∅ for the second case. By the above
observation, (29) can be relaxed as

pTLp ≥ c
(
V+,V+

)+ c
(
V−,V−

) ≥ cmin(G).

Furthermore, if G is strongly connected, then we have that
π̃ ∈ R

N++ and π̃Lx = π̃z = 0, which implies that V+ �= ∅ and
V− �= ∅ for x /∈ S1. Moreover, it holds that (V+,V+) �= ∅ and
(V−,V−) �= ∅. Then, (29) can be estimated as

pTLp ≥ c
(
V+,V+

)+ c
(
V−,V−

) ≥ 2cmin(G).

2) Let Assumption 2 hold. Since GT contains at least a
rooted directed spanning tree and L = Lout(G) = (Lin)T(GT),
one gets that rank(L) = N−1 and S2 = ker(L) = span{aπ |a ∈
R}. By the fact that x /∈ S2, one obtains that Lx �= 0, i.e.,
p �= 0. Consider the partition of V presented by (27). Since
1T

Nz = 1T
NLx = 0, it follows that V+ �= ∅ and V− �= ∅. Because

GT contains a rooted directed spanning tree, it follows that the
cut (V+,V+) �= ∅ or (V−,V−) �= ∅.

Consider the expanded form of pTLp as

pTLp =
∑

(i,j)∈E

{
ajip

2
i − ajipipj

}
=

∑

(i,j)∈E
f̃ij
(
pi, pj

)
(30)

of which f̃ij(pi, pj) = ajip2
i − ajipipj, and one can check that

f̃ij(pi, pj) ∈ {0, aji, 2aji} and f̃ij(pi, pj) = 0 if and only if i ∈ V0
or nodes i, j belong to the same subset such as V+,V−. It is
further assumed that f̃ij(pi, pj) = aji = 0 if (i, j) /∈ E . As a
result, (30) can be relaxed as

pTLp =
∑

i∈V+

∑

j∈V+

f̃ij
(
pi, pj

)+
∑

i∈V−

∑

j∈V−

f̃ij
(
pi, pj

)
(31)

≥ c
(
V+,V+

)+ c
(
V−,V−

) ≥ cmin(G).

Furthermore, if G is strongly connected, then (V+,V+) �= ∅
and (V−,V−) �= ∅. Then, (28) and (30) can be further
estimated as

pTLp ≥ c
(
V+,V+

)+ c
(
V−,V−

) ≥ 2cmin(G).

From (29) and (31), it can be easily derived that

pTLp ≤ 4cmax(G)

for both cases.

APPENDIX B
PROOF OF THEOREM 4

Following the proof of Theorem 2, the nonsmooth Lyapunov
function of new variable z̃(t) is considered as

V(z̃(t)) = ‖z̃(t)‖1.

Furthermore, the derivative of V(z̃(t)) can be calculated in
the same way as

d

dt

[
V(z̃(t))

] = p(z̃(t))TL̃ẋ(t)

= −δp(z̃(t))TL̃p(z̃(t)) + p(z̃(t))TL̃·rφs

where φs ∈ F[s](t, xr) defined as

F[s](t, xr) �
⋂

ε>0

⋂

m(S)=0

co{s(t,B(xr, ε)\S)}. (32)
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It is obvious that |φs| ≤ K for all φs ∈ F[s](t, xr). If
V(z̃(t)) �= 0, i.e., x(t) /∈ S1, then V̇(z̃(t)) can be further
relaxed as

d

dt

[
V(z̃(t))

] ≤ −δcmin
(
G̃
)+ dout

r K ≤ −ρ

for δ ≥ [(dout
r K + ρ)/cmin(G)] with ρ > 0. Then, the FTC is

achieved at T∗ ≤ ‖z̃(0)‖/ρ.

APPENDIX C
PROOF OF THEOREM 5

Consider the same Lyapunov function V(z(t)) as in (13),
the derivative of which can be derived similarly as

d

dt
[V(z(t))] = p(z(t))TLẋ(t)

= −δp(z(t))TLp(z̃(t)) + p(z(t))TL·rφs

with φs ∈ F[s](t, xr) defined in (32).
Furthermore, one can derive that

p(z(t))TLp(z̃(t)) =
∑

(i,j)∈E
aji
(
pi − pj

)
p(z̃i(t))

=
∑

i∈V\{r}

∑

j∈N out
i

aji
(
pi − pj

)
pi

=
∑

i∈V\{r}

∑

j∈N out
i

f̃ij
(
pi, pj

)
(33)

with f̃ij defined in (30).
For the partition of V given as (27), it holds that V+ �= ∅

and V− �= ∅ for x /∈ S2 because 1T
Nz = 1T

NLx = 0. If r ∈ V−,
then (V−,V−) �= ∅ by the strongly connectivity of G. As a
result, (33) can be relaxed as

p(z(t))TLp(z̃(t)) ≥ c
(
V−,V−

) ≥ cmin(G). (34)

The same relaxation can be derived if r ∈ V+. If V(z̃(t)) �= 0,
i.e., x(t) /∈ S2, then V̇(z(t)) can be further relaxed as

d

dt
[V(z(t))] ≤ −δcmin(G) + 2dout

r K ≤ −ρ

for δ ≥ [(2dout
r K + ρ)/cmin(G)] with ρ > 0. Then, the FTC

with respect to π is achieved at T∗ ≤ ‖z(0)‖/ρ.
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