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Dynamical and Static Multisynchronization of
Coupled Multistable Neural Networks

via Impulsive Control
XiaoXiao Lv, Xiaodi Li , Jinde Cao , Fellow, IEEE, and Matjaž Perc

Abstract— This paper investigates the dynamical multisynchro-
nization and static multisynchronization problem for delayed
coupled multistable neural networks with fixed and switching
topologies. To begin with, a class of activation functions as well
as several sufficient conditions are introduced to ensure that every
subnetwork has multiple equilibrium states. By constructing
an appropriate Lyapunov function and by employing impulsive
control theory and the average impulsive interval method, several
sufficient conditions for multisynchronization in terms of linear
matrix inequalities (LMIs) are obtained. Moreover, a unified
impulsive controller is designed by means of the established
LMIs. Finally, a numerical example is presented to demonstrate
the effectiveness of the presented impulsive control strategy.

Index Terms— Average impulsive interval, coupled multistable
neural networks (CMNNs), impulsive control, linear matrix
inequality (LMI), multisynchronization.

I. INTRODUCTION

IN the past decades, neural networks have been exten-
sively studied due to their wide range of applications in

different fields, such as signal and image processing, pattern
recognition, parallel computation, and so on [1]–[4]. For
those applications, neural networks are closely dependent
on their dynamic behaviors, mainly on stability, dissipativ-
ity, and synchronization. Therefore, it is an important job
to investigate these dynamic behaviors of neural networks.
During the implementation of neural networks, time delays
would be introduced unavoidably because of finite switch
speeds of the amplifiers and inherent communication time
between neurons [5], [6]. As we know, time delays might
lead to undesired dynamics such as oscillation, instability, and
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some complex phenomenon [7], [8]. Consequently, the delayed
neural networks have become active research topics and
many interesting results have been proposed (see [9]–[14]).
Synchronization is an important dynamical behavior that is
widespread in nature and in artificial systems, such as fireflies
in the forest, migratory geese, applause, distributed computing
systems, chaos-based communication network, and so on.
In the past decade, synchronization of complex dynamic
networks has attracted increasing attention, which special
attention has been focused on the synchronization of delayed
neural networks [15]–[18]. The problem of event-triggered
network-based synchronization for a class of delayed neural
networks was investigated in [15] and a new approach to
design the controller gain was provided. Bao et al. [17] inves-
tigated the problem of adaptive synchronization of fractional-
order memristor-based neural networks with time delay.
Cao and Wan [18] studied the synchronization of master-
slave inertial bidirectional associative memory neural net-
works by utilizing matrix measure method. So far, many
effective control methods have been put forward to achieve
various synchronization problems, which include H∞ control
[19], [20], impulsive control [21], [28]–[31], sampled-data
control [22], [23], adaptive control [24]–[26], and fuzzy
control [27] and so on.

Impulsive control as a kind of discontinuous control method
is much attractive because it allows the control action on a
plant only at some discrete instances, and it has found appli-
cations in many areas such as banking and finance, biomedical
engineering, and medicine [28]– [31]. Compared with contin-
uous control, the impulsive control has many advantages such
as easy installation, high reliability, maintenance with low cost,
and high efficiency. In recent years, many researchers focused
their attention on impulsive synchronization of delayed neural
networks. This is quite different from the cases of impulsive
perturbation, which is a type of robustness problem, and
some attractive results have been presented in the literature
(see [32]–[41]). In [32], impulsive distributed control for
synchronization of complex dynamical networks with multiple
coupling delays were studied. Zhang et al. [33] studied the
synchronization of coupled memristor-based recurrent neural
networks with time-varying delays using a delay impulsive
differential inequality. Recently, He et al. [34] studied the
pinning synchronization of coupled neural networks with
both current-state coupling and distributed-delay coupling via
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impulsive control. Lu et al. [35] studied the synchroniza-
tion control of stochastic dynamical networks with nonlinear
coupling using the pinning impulsive control. It shows that
the whole state-coupled dynamical networks can converge
to some special trajectories by placing impulsive controllers
on a small fraction of nodes. In addition, in the process
of investigating neural network, parameter perturbation and
external disturbance are frequently encountered. Therefore,
the robust synchronization of delayed impulsive systems with
uncertainties has very important research significance in prac-
tical applications. In recent years, a series of research results
on robust synchronization of delayed impulsive systems have
been carried out [39], [41]. Utilizing the dual-stage impulsive
control method [39], the robust global exponential synchro-
nization and lag synchronization of uncertain chaotic delayed
neural networks was studied in which different parametric
uncertainties were considered. Tang et al. [41] investigated
the exponential synchronization of coupled Lur’e dynamical
networks with multiple time-varying delays and stochastic
disturbance by an effective distributed impulsive control pro-
tocol. It is worth noting that the above discussed systems have
only one equilibrium state. In fact, many systems in real appli-
cations, such as genetic regulatory systems, biological systems,
and coupled multistable neural networks (CMNNs), possess
multiple equilibrium states. Achieving multisynchronization
of CMNNs has attracted much attention and become more
challenging. Until now, some interesting work with respect
to multisynchronization have been reported (see [42]–[44]).
He et al. [42] focused on the collective dynamics of multisyn-
chronization among heterogeneous genetic oscillators under a
partial impulsive control strategy. It is worth noting that the
impulsive control for multistable complex systems is still in
early stage. Recently, the concept of dynamical multisynchro-
nization and static multisynchronization was proposed in [44]
and a unified impulsive controller was designed for both the
dynamical multisynchronization and static multisynchroniza-
tion of the delayed CMNNs with directed topology. Then,
Zhang [43] derived some algebraic conditions for achieving
the static multisynchronization of coupled fractional-order
neural networks with fixed or switching topologies based on
impulsive control schemes in which the multisynchroniza-
tion feature for multistable control systems are characterized.
However, the existing results, such as those in [43] and [44],
are based on the fact that the continuous dynamics are
destabilizing and the impulsive effects are stabilizing, and in
this case, it usually requires that the flows to be persistently
interrupted by impulsive signals. Thus, the upper bound of
the impulsive intervals is needed for impulsive multisynchro-
nization. Note that the disadvantage of those results lies in
that the multisynchronization control cannot be achieved if
there exist irregular impulsive signals, especially for impulsive
signals in low frequency. More methods and tools should
be explored and developed for multisynchronization con-
trol under irregular impulsive signals. These motivate this
paper.

In this paper, we aim to further investigate the dynam-
ical multisynchronization and static multisynchronization of
delayed CMNNs with directed topology by impulsive control

strategy. The main contributions include: first, we develop
the method of average impulse interval or average dwell
time for impulsive systems or switched systems [45], [46] to
CMNNs. Some average dwell-time based sufficient conditions
for dynamical multisynchronization and static multisynchro-
nization of delayed CMNNs with fixed or switching topologies
are derived, where the requirement on the upper bounds of the
impulsive intervals is fully removed. More exactly speaking,
as long as the average impulse interval constant satisfies
certain condition, it is not necessary to impose restrictions
on the upper bounds of impulsive signals. Second, in practical
communicating networks, uncertainty cannot be avoidable by
data pack loss in information transportation, modeling error,
external perturbation, or parameter fluctuation. Thus, the para-
metric uncertainties are fully considered when designing the
impulsive controller in this paper. Third, we do not impose
any restriction on differentiability of time-varying delays and
thus our designed controllers can be applied to the case that the
time delay cannot be exactly observed and the differentiability
of the time delay is unknown.

The remainder of this paper is organized as follows.
In Section II, we introduce some preliminary knowledge.
In Section III, some impulsive control results for dynami-
cal multisynchronization and static multisynchronization of
CMNNs with fixed and switching topologies are presented,
respectively. In Section IV, a numerical example and its
simulation are provided and a conclusion is finally given
in Section V.

II. PRELIMINARIES

Notations: Let R denote the set of real numbers, R+ is
the set of nonnegative real numbers, R

n is the n-dimensional
real spaces equipped with the Euclidean norm | · | and R

n×m

is the n × m-dimensional real spaces, Z+ is the set of
positive integer numbers, and λmax(A ) and λmin(A ) are the
maximum and minimum eigenvalue of matrix A , respectively.
A > 0 or A < 0 denotes that the matrix A is a symmetric
and positive or negative definite matrix. A ⊗ B denotes
Kronecker product of matrices A and B. In represents the
n-dimensional identity matrix, 1N is the N-dimensional vector
with its elements equal to one, and � = {1, 2, . . . , n}. For
any A,B ⊆ R

k(1 ≤ k ≤ n),C(A,B) = {ϕ : A → B is
continuous}, C1(A,B) = {ϕ : A → B is continuously
differentiable}. Notation � always denotes the symmetric block
in one symmetric matrix.

Consider a delayed CMNNs with parametric uncertainties,
which is described as

ẋi (t) = −(A +�A)xi(t)+ (B +�B) f (xi (t))

+(C +�C) f (xi (t − τ (t)))+ I (t) + ui (t) (1)

where xi(t) ∈ R
n is the state vector of the i th subnetwork at

time t , i = 1, 2, . . . , N, N ≥ 2 corresponds to the number
of identical subnetworks; A = diag{a1, a2, . . . , an} > 0 is the
self-feedback term; B = [b jk]n×n, C = [c jk]n×n, j, k ∈ �,
b jk and c jk represent the strength of connectivity between
the j th and the kth neuron of the i th subnetwork at time t
and at time t − τ (t), respectively, �A, �B,�C ∈ R

n×n
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are unknown matrices standing for parameter uncertainties;
f (xi(t)) = [ f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t))]T , where
f j (·), j ∈ � represent neuron activation function; ui (t) ∈ R

n

represent the control input, I (t) ∈ R
n is a continuous function

of period � ; and τ (t) is the transmission delay and satisfies
0 ≤ τ (t) ≤ τ, where τ is a given real constant.

In order to increase the number of equilibrium states of
the subnetwork, we present a class of nondecreasing piece-
wise linear activation functions [47], [48], which can be
described as

f j (s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1
j , −∞ < s < p1

j
u2

j − u1
j

q1
j − p1

j

(s − p1
j )+ u1

j , p1
j ≤ s ≤ q1

j

u2
j , q1

j < s < p2
j

· · · · · ·
ur+1

j − ur
j

qr
j − pr

j
(s − pr

j )+ ur
j , pr

j ≤ s ≤ qr
j

ur+1
j , qr

j < s < +∞

(2)

where r ≥ 1, {ul
j }r+1

l=1 is an increasing constant series,
pl

j , ql
j , l = 1, 2, . . . , r are constants with −∞ < p1

j <

q1
j < p2

j < q2
j < · · · < pr

j < qr
j < +∞.

Remark 1: The standard activation function of neural net-
work is the saturation function, i.e., f j (s) = (|s + 1| −
|s − 1|)/2. However, this paper studies the multistable neural
networks, which require to ensure that every subnetwork has
multiple equilibrium states. Obviously, the activation func-
tion (2) can divide the R

n into (2r + 1)n parts, which can
store many more patterns or associative memories than the
saturated function. By Lemma 1 and Lemma 2 in [44], every
subnetwork of delayed CMNNs (1) with activation function (2)
has (2r + 1)n periodic orbits or equilibrium points. Among
them, (r + 1)n are locally exponentially stable and others are
unstable.

Let S1(t), S2(t), . . . , S(r+1)n (t) denote the (r + 1)n locally
exponentially stable periodic orbits or locally exponentially
stable equilibrium points of every subnetwork of the delayed
CMNNs (1). Thus, S(t) ∈ {Sl(t), l = 1, 2, . . . , (r + 1)n}
indicates that S(t) is one of the locally exponentially stable
periodic orbits or locally exponentially stable equilibrium
points of delayed CMNNs (1).

Definition 1 [44]: The CMNNs are said to achieve dynam-
ical multisynchronization if the following conditions hold.

1) For any initial value x(θ) = [x T
1 (θ), x T

2 (θ), . . . ,
xT

N (θ)]T , where xi (θ) ∈ C([−τ, 0],Rn), i = 1,
2, . . . , N, there exists S∗

l (t) ∈ R
n such that

limt→∞ xi (t) = S∗
l (t), l ∈ {1, 2, . . . , (r + 1)n} is a

certain positive integer, and 1N ⊗ S∗
l (t) is therefore

referred to as the synchronization manifold for the given
initial state.

2) There exist at least two different initial states x 
(θ)
and x 

(θ) such that the corresponding synchronization
manifolds, 1N ⊗ S∗

l (t) and 1N ⊗ S∗
k (t), satisfy the

following condition: there exists δ > 0 such that ∀x̄(t) ∈
{x(t), 0 < |x(t) − 1N ⊗ S∗

l (t)| < δ, x(t) ∈ R
Nn ,

t ≥ t0, } where x̄(t) is not a point on 1N ⊗ S∗
l (t).

Especially, if S∗
l (t) ≡ S∗

l with S∗
l being some constant,

the CMNNs are said to achieve the static multisynchronization.
Remark 2: The multiple synchronization manifolds are

denoted by set S = {1N ⊗ S∗
l , l = 1, 2, . . . , (r + 1)n},

where (r + 1)n is the number of multiple synchronization
manifolds. Due to the multiplicity and complexity of multiple
synchronization manifolds, little work currently focused on
them. The key features of dynamical multisynchronization
and static multisynchronization of delayed CMNNs (1) are
that there must be more than one synchronization manifold
in the delayed CMNNs (1), each synchronization manifold is
an independent individual, and there is no interaction effects
between them. But each synchronization manifold is closely
related to the initial state, the delayed CMNNs (1) will reach
complete synchronization when the initial state is given.

Assumption 1: The parameter uncertainties matrices
�A, �B, and �C satisfy

�AT�A ≤ k0 In, �BT�B ≤ k1 In, �CT�C ≤ k2 In

where k0, k1, and k2 are the three given positive constants.
Assumption 2: The activation function satisfies the

Lipschitz condition, i.e., there exist positive constants l f
j , and

∀u, v ∈ R, such that

| f j (u)− f j (v)| ≤ l f
j |u − v|, j ∈ �,

define L f
.=diag{l f

1 , l
f

2 , . . . , l
f

n }.
Definition 2 ( [45], [46]): The average impulsive interval

of the impulsive sequence ζ = {t1, t2, · · · } is equal to Ta ,
if there exist N0 ∈ Z+ and Ta > 0 such that

Nζ (T, t) ≥ T − t

Ta
− N0, ∀T ≥ t ≥ 0

where impulsive sequence ζ satisfying 0 = t0 < t1 < t2 <
· · · < tk < · · · , limk→∞ tk = ∞. Nζ (T, t) denotes the
number of impulsive times of the impulsive sequence ζ on
the interval [t, T ).

Lemma 1 [32]: Let 0 < τ(t) ≤ τ, F(t, u(t), u(t −τ (t))) :
R+ × R × R → R be nondecreasing in u(t − τ (t)) for each
fixed (t, u(t)) and Ik(u(t)) : R → R be nondecreasing in u(t).
Suppose that u(t), v(t) satisfy

{
D+u(t) ≤ F(t, u(t), u(t − τ (t))), t 
= tk
u(tk) ≤ Ik(u

(
t−k
)
), k ∈ Z+

and
{

D+v(t) > F(t, v(t), v(t − τ (t))), t 
= tk
v(tk) ≥ Ik(v

(
t−k
)
), k ∈ Z+.

Then, u(t) ≤ v(t) for −τ ≤ t < 0 implies that u(t) ≤ v(t)
for t > 0, where D+u(t) = limh→0+((u(t + h)− u(t))/h).

Lemma 2 [50]: Given matrices A, B , and C with
AT = A, CT = C, then

[
A B
� C

]

< 0

is equivalent to one of the following conditions.

1) A < 0 and C − BT A−1 B < 0.
2) C < 0 and A − BC−1 BT < 0.
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III. MAIN RESULTS

Before presenting the main results, we introduce the related
graph theory [49].

Graph Theory: Modeling the communication network by a
directed graph (or digraph), G = (V, E,A) with the vertex
set V = {v1, v2, . . . , vn}, the edge set E ⊆ V × V, and the
weighted adjacency matrix A = [ai j ]N×N with nonnegative
adjacency elements ai j . The i th agent is represented by vi and
an edge in G is illustrated by an ordered pair (v j , vi ). The i th
agent can receive information from the j th agent directly if
and only if (v j , vi ) ∈ E . A weighted adjacency matrix A =
[ai j ]N×N , where aii = 0 and ai j > 0 if there is (v j , vi ) ∈ E .

A directed path in G is an ordered sequence of vertices such
that any two consecutive vertices in the sequence is an edge
of the digraph G. TG = {VT , ET } is said to be a spanning
tree of G if VT = V and TG is a directed tree, in which there
exists one special agent without parent, and any other agents
can be connected to this agent through one and only one path.

The diagonal matrix D = diag(d1, d2, . . . , dN ) is called
the degree matrix of G with di = ∑N

j=1 ai j . Furthermore,
the matrix L = D − A is called the Laplacian matrix of G.
A very important property of the Laplacian matrix L is that
all the row sums of L are zero and 1N is a right eigenvector
associated with the zero eigenvalue. The eigenvalue 0 is a
simple eigenvalue of L and all the other eigenvalues have
positive real parts if G contains a spanning tree.

A. Delayed CMNNs With Fixed Topology

Consider the delayed CMNNs (1) with fixed topol-
ogy, a unified impulsive controller is designed in order
to achieve both dynamical multisynchronization and static
multisynchronization

ui (t) = d

⎡

⎣
N∑

j=1, j 
=i

ai j (x j (t)− xi (t))

⎤

⎦ δ(t − tk)

for t ∈ [tk, tk+1), k ∈ Z+, where d > 0 is the coupling gain
to be designed, ai j is the element of the weighted adjacency
matrix of the digraph G, and δ(·) is the Dirac delta function
with impulsive sequence ζ.

Assumption 3: The digraph G has a directed spanning tree.
By introducing the impulsive effects into system (1), one

can obtain the following model:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = −[IN ⊗ (A +�A)]x(t)+ [IN ⊗ (B +�B)]F(x)
+ [IN ⊗ (C +�C)]F(x(t − τ (t)))
+ (IN ⊗ In)I (t), t 
= tk

�x(tk) = −(dL ⊗ In)x
(
t−k
)
, k ∈ Z+

(3)

where x(t) = [xT
1 (t), x T

2 (t), . . . , xT
N (t)]T , L is the Lapla-

cian matrix associated with the digraph G, F(x(t)) =
[ f T (x1(t), f T (x2(t), . . . , f T (xN (t)]T and F(x(t − τ (t))) =
[ f T (x1(t − τ (t)), f T (x2(t − τ (t)), . . . , f T (xN (t − τ (t))]T ,
�x(tk) = x(tk) − x(t−k ), x(tk) = x(t+k ), and x(t−k ) =
limt→t−k

x(t).

By defining yi (t) = xi (t) − S(t), CMNNs (3) can be
transformed into the following form:
⎧
⎨

⎩

ẏ(t) = −[IN ⊗ (A+�A)]y(t)+[IN ⊗ (B+�B)]F(y(t))
+ [IN ⊗ (C+�C)]F(y(t − τ (t))), t 
= tk

�y(tk) = −(dL ⊗ In)y
(
t−k
)
, k ∈ Z+

(4)

where y(t) = [yT
1 (t), yT

2 (t), . . . , yT
N (t)]T and F(y(t)) =

F(x(t))− F(S(t)).
Moreover, let zi (t) = yi (t) − yN (t), i = 1, 2, . . . , N − 1,

then the system (4) can be further transformed into
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ż(t)

ẏN (t)

]

= − Ā

[
z(t)

yN (t)

]

+ B̄

[
F(z(t))
f (yN (t))

]

+ C̄

[
F(z(t − τ (t)))
f (yN (t − τ (t)))

]

, t 
= tk
[
�z(tk)
�yN (tk)

]

= −d

[
L1 0
L2 0

]

⊗ In

[
z
(
t−k
)

yN
(
t−k
)

]

k ∈ Z+
where

F(z(t)) = [ f T (z1(t)), f T (z2(t)), . . . , f T (zN−1(t))]T

f (zi (t)) = f (yi(t))− f (yN (t))

and

Ā =
[ [IN−1 ⊗ (A +�A)] 0

0 (A +�A)

]

B̄ =
[ [IN−1 ⊗ (B +�B)] 0

0 (B +�B)

]

C̄ =
[ [IN−1 ⊗ (C +�C)] 0

0 (C +�C)

]

L1 = [li j − lN j ](N−1)×(N−1), i, j = 1, 2, . . . , N − 1

L2 = [lN1, lN2, . . . , lN(N−1)].
Since zi (t) = yi (t)−yN (t) = xi (t)−S(t)−(xN (t)−S(t)) =

xi (t) − xN (t), i = 1, 2, . . . , N − 1, the synchronization of
system (4) is equivalent to the convergence property of the
following system:
⎧
⎪⎪⎨

⎪⎪⎩

ż(t) = −[IN−1 ⊗ (A +�A)]z(t)
+ [IN−1 ⊗ (B +�B)]F(z(t))
+ [IN−1 ⊗ (C +�C)]F(z(t − τ (t))), t 
= tk

�z(tk) = −(d L1 ⊗ In)z
(
t−k
)
, k ∈ Z+.

(5)

The initial condition of (5) is defined as

zi (s) = φi (s), s ∈ [−τ, 0], i = 1, 2, . . . , N − 1

where φi (t) ∈ C([−τ, 0],Rn) is the initial function with norm
is defined by �φi (s)�τ = sup−τ≤s≤0 |φi (s)|.

Based on the techniques of Lyapunov function, average
impulsive interval, and comparison principle [34], [35], the fol-
lowing conclusions can be derived.

Theorem 1: Suppose that Assumptions 1, 2, and 3 hold,
and the average impulsive interval of impulsive sequence
ζ = {t1, t2, . . .} equal to Ta . If for given five positive scalars
α < 1, γ , δ, ε1 and ε2, there exist an n × n matrix P > 0,
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two n × n diagonal matrices Si > 0, i = 1, 2, and coupling
gain d > 0 such that the following inequalities hold:

[−α IN−1 (IN−1 − d L1)
T

� −IN−1

]

≤ 0 (6)
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

� PB P P PC P
� −S1 0 0 0 0
� � −ε0 In 0 0 0
� � � −ε1 In 0 0
� � � � −S2 0
� � � � � −ε2 In

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (7)

L f (k2ε2 In + S2)L f ≤ γ P (8)

δ + ln α

Ta
+ γ

αN0
< 0 (9)

where � = −PA− AT P + L f (k1ε1 In + S1)L f +k0ε0 In −δP .
Then the system (1) will reach the dynamical multisynchro-
nization.

Proof: Construct the following Lyapunov function
candidate:

V (t) = zT (t)(IN−1 ⊗ P)z(t).

The derivative of V (t) with respect to t ∈ [tk, tk+1) along the
trajectories of the system (5) is

V̇ (t) = 2zT (t)(IN−1 ⊗ P)ż(t)

= zT (t)[IN−1 ⊗ (−PA − AT P)]z(t)
− 2zT (t)(IN−1 ⊗ P�A)z(t)

+ 2zT (t)[IN−1 ⊗ P(B +�B)]F(z(t))

+ 2zT (t)[IN−1 ⊗ P(C +�C)]F(z(t − τ (t))). (10)

Under the Assumption 1, inspired by [34], the following
inequality hold:

−2zT (t)(IN−1 ⊗ P�A)z(t)

≤ ε−1
0 zT (t)(IN−1 ⊗ PP)z(t)

+ ε0zT (t)(IN−1 ⊗�AT�A)z(t)

≤ ε−1
0 zT (t)(IN−1 ⊗ PP)z(t)

+ k0ε0zT (t)(IN−1 ⊗ In)z(t) (11)

2zT (t)(IN−1 ⊗ PB)F(z(t))

≤ zT (t)(IN−1 ⊗ PBS−1
1 BT P)z(t)

+ FT (z(t))(IN−1 ⊗ S1)F(z(t))

≤ zT (t)(IN−1 ⊗ PBS−1
1 BT P)z(t)

+ zT (t)(IN−1 ⊗ L f S1 L f )z(t) (12)

2zT (t)(IN−1 ⊗ P�B)F(z(t))

≤ ε−1
1 zT (t)(IN−1 ⊗ PP)z(t)

+ ε1 FT (z(t))(IN−1 ⊗�BT�B)F(z(t))

≤ ε−1
1 zT (t)(IN−1 ⊗ PP)z(t)

+ k1ε1zT (t)(IN−1 ⊗ L2
f )z(t). (13)

Similarly, it can be deduced that

2zT (t)(IN−1 ⊗ PC)F(z(t − τ (t)))

≤ zT (t)(IN−1 ⊗ PCS−1
2 CT P)z(t)

+ zT (t − τ (t))(IN−1 ⊗ L f S2 L f )z(t − τ (t)) (14)

2zT (t)(IN−1 ⊗ P�C)F(z(t − τ (t)))

≤ ε−1
2 zT (t)(IN−1 ⊗ PP)z(t)

+ k2ε2zT (t − τ (t))(IN−1 ⊗ L2
f )z(t − τ (t)) (15)

where ε1 > 0 and ε2 > 0 are given constants, S1 and S2 are
positive definite diagonal matrices.

Hence, it follows from (10)–(15) that:
V̇ (t) ≤ zT (t)[IN−1 ⊗�)z(t)+ zT (t − τ (t))

× [IN−1 ⊗ L f (k2ε2 In + S2)L f ]z(t − τ (t))

where � = −PA − AT P + PBS−1
1 BT P + P(ε−1

0 In + ε−1
1 In +

ε−1
2 In)P + PCS−1

2 CT P + L f (k1ε1 In + S1)L f + k0ε0 In .
It then follows from (7) and (8) that:

V̇ (t) ≤ δzT (t)(IN−1 ⊗ P)z(t)+ γ zT (t − τ (t))(IN−1 ⊗ P)

× z(t − τ (t))

= δV (t)+ γ V (t − τ (t)). (16)

Notice from (6) that
[−α IN−1 (IN−1 − d L1)

T

� −IN−1

]

≤ 0

⇔
[−α IN−1 + (IN−1 − d L1)

T (IN−1 − d L1) 0
� −IN−1

]

≤ 0

⇔ −α IN−1 + (IN−1 − d L1)
T (IN−1 − d L1) ≤ 0

which implies that

V (tk) = zT (tk)(IN−1 ⊗ P)z(tk)

= zT (t−k
)[(IN−1 − d L1)⊗ In]T (IN−1 ⊗ P)

× [(IN−1 − d L1)⊗ In]z(t−k
)

= zT (t−k
)[(IN−1 − d L1)

T (IN−1 − d L1)⊗ P]z(t−k
)

≤ αV
(
t−k
)
. (17)

For any ε > 0, let v(t) be a unique solution of the following
delayed impulsive system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v̇(t) = δv(t) + γ v(t − τ (t))+ ε, t 
= tk
v(tk) = αv

(
t−k
)
, k ∈ Z+

v(s) = λmax(P)
N−1∑

i=1

�φi (s)�2
τ , s ∈ [−τ, 0].

Note that v(t) ≥ V (t) for −τ ≤ t ≤ 0. Then it follows from
(16), (17), and Lemma 1 that 0 ≤ V (t) ≤ v(t), t > 0.

By the formula for the variation of parameters, v(t) can be
represented as

v(t) = W (t, 0)v(0) +
∫ t

0
W (t, s)[γ v(s − τ (t))+ ε]ds (18)

where W (t, s)(t, s ≥ 0) is the Cauchy matrix of the following
linear impulsive system:

{
ẇ(t) = δw(t), t 
= tk
w(tk) = αw

(
t−k
)
, k ∈ Z+.



LV et al.: DYNAMICAL AND STATIC MULTISYNCHRONIZATION OF CMNNs VIA IMPULSIVE CONTROL 6067

According to the representation of the Cauchy matrix, one may
derive the following estimation:

W (t, s) = eδ(t−s)
∏

s≤tk<t

α

= eδ(t−s)αNζ (t,s)

≤ eδ(t−s)α
t−s
Ta

−N0

= α−N0 e

(
δ+ lnα

Ta

)
(t−s)

. (19)

Let μ = α−N0λmax(P)
∑N−1

i=1 �φi (s)�2
τ , then it follows

from (18) and (19) that:

v(t) ≤ μe

(
δ+ ln α

Ta

)
t +

∫ t

0
α−N0 e

(
δ+ ln α

Ta

)
(t−s)

×[γ v(s − τ (t))+ ε]ds. (20)

Now define ψ(λ) = λ+δ+((lnα)/Ta)+α−N0γ eλτ , it follows
from (9) that ψ(0) < 0. Since ψ(+∞) = +∞ and ψ 
(λ) =
1 + τα−N0γ eλτ > 0, there exist a unique positive solution
ρ > 0 such that ψ(ρ) = ρ+δ+ ((ln α)/Ta)+α−N0γ eρτ = 0.
Let R = −(δ + ((ln α)/Ta))α

−N0 − γ , then it can be derived
from (9) that R > 0. Hence, it holds that

v(t) = λmax(P)
N−1∑

i=1

�φi (s)�2
τ

< μ < μe−ρt + ε

R
, −τ ≤ t ≤ 0.

In the following, we claim that:
v(t) < μe−ρt + ε

R
, t > 0. (21)

In fact, if the inequality (21) does not hold, then there exists
a t� > 0 such that

v(t∗) ≥ μe−ρt∗ + ε

R
(22)

and

v(t) < μe−ρt + ε

R
, 0 < t < t∗. (23)

It follows from (20) and (23) that:

v(t∗) ≤ μe

(
δ+ ln α

Ta

)
t∗ +

∫ t∗

0
α−N0 e

(
δ+ ln α

Ta

)
(t∗−s)

× [γ v(s − τ (t))+ ε]ds

≤ μe

(
δ+ ln α

Ta

)
t∗ +

∫ t∗

0
α−N0 e

(
δ+ ln α

Ta

)
(t∗−s)

×
[
γ
(
μe−ρ(s−τ ) + ε

R

)
+ ε

]
ds

≤ μe

(
δ+ ln α

Ta

)
t∗ + α−N0 e

(
δ+ ln α

Ta

)
t∗

×
∫ t∗

0
e
−
(
ρ+δ+ ln α

Ta

)
s
γμeρτds

+
(εγ

R
+ ε

) ∫ t∗

0
α−N0 e

(
δ+ lnα

Ta

)
(t∗−s)

ds

≤ μe

(
δ+ ln α

Ta

)
t∗ + μe

(
δ+ ln α

Ta

)
t∗
∫ t∗

0
e
−
(
ρ+δ+ ln α

Ta

)
s

×
[

−
(

ρ + δ + ln α

Ta

)]

ds + ε(γ + R)

R

×
∫ t∗

0
α−N0 e

(
δ+ ln α

Ta

)
(t∗−s)

ds

≤ μe

(
δ+ lnα

Ta

)
t∗ + μe−ρt∗ − μe

(
δ+ ln α

Ta

)
t∗

+
−ε

(
δ + ln α

Ta

)
αN0

R

α−N0

−
(
δ + ln α

Ta

)

(

1 − e

(
δ+ lnα

Ta

)
t∗
)

≤ μe−ρt∗ + ε

R
.

Thus,

v(t∗) ≤ μe−ρt∗ + ε

R

which is a contradiction with (22), and so (21) holds. Letting
ε → 0, one derives that

λmin(P)|z(t)|2 ≤ V (t) ≤ v(t) ≤ μe−ρt , t ≥ 0.

Hence, we finally obtain that

|z(t)| ≤
√

μ

λmin(P)
e− ρ

2 t

=
√
√
√
√ λmax(P)

λmin(P)αN0

N−1∑

i=1

�φi (s)�2
τ e− ρ

2 t → 0, t → ∞

namely

x1(t) = x2(t) = . . . = xN (t), t → ∞.

Therefore, the system (1) has reached complete synchroniza-
tion when the initial state is given.

Furthermore, consider the N th subnetwork
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋN (t) = −(A +�A)xN (t)+ (B +�B) f (xN (t))
+ (C +�C) f (xN (t − τ (t)))+ I (t), t 
= tk

�xN (tk) =
N−1∑

j=1

aN j
(
x j
(
t−k
)− xN

(
t−k
))
, k ∈ Z+.

(24)

It follows from (24) that �xN (tk) = 0 as t → ∞.
Therefore, the dynamical behavior of the N th subnetwork
can be described by the first equation of (24). According
to the above analysis, the N th subnetwork has (r + 1)n

locally exponentially stable periodic orbits, denoted by
{S1(t), S2(t), . . . , S(r+1)n (t)}. It is easy to obtained that
x1(t) = x2(t) = . . . = xN (t) = Sl(t), l ∈ {1, 2, . . . ,
(r + 1)n} as t → ∞ and Sl(t) is determined by the initial
condition. Thus, the dynamical multisynchronization of the
delayed CMNNs (1) with fixed topology has been reached.
This completes the proof.

Remark 3: In practical application, some deviations of
neural networks parameters may happen owing to the existence
of modeling errors, external disturbance, and parameter fluctu-
ation, which would cause the parameter uncertainty. Therefore,
in this paper, we take into account the parameter uncertainty
when investigating multisynchronization of CMNNs, in which
case, we can deal with the robust multisynchronization of
delayed CMNNs. In this sense, our development results are
more general than some existing results such as [43] and [44].
Moreover, note that the results in [43] and [44] are based
on the fact that the upper bound of the impulsive intervals
is needed, that is, supk∈Z+{tk+1 − tk} ≤ β, where β is
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a given constant. It implies that those results are invalid
for multisynchronization subjecting to impulsive signals in
low frequency. While in this paper, we develop the average
impulsive interval method to CMNNs such that the multi-
synchronization control are independent of the upper bound
of impulsive intervals. It is shown that the upper bound of
impulsive intervals can be large enough or small enough as
long as Ta is fixed. When utilizing the multisynchronization
schemes, we only need to design an impulsive sequence for a
given Ta . Therefore, from the impulsive effects point of view,
the obtained results are less conservative than [43] and [44].

Remark 4: References [32]–[41] dealt with the synchro-
nization problems of neural networks by impulsive control
strategy and derived some interesting impulsive synchroniza-
tion criteria. Compared with those results, the advantage of
this paper is that the multiple equilibrium states of delayed
CMNNs is addressed, which is different from the synchroniza-
tion criteria in [32]–[41] dealing with only one equilibrium
state. The multisynchronization process of delayed CMNNs
are intricate, but a unified impulsive controller is designed
to achieve multisynchronization of delayed CMNNs in this
paper. Our results show that the proper impulsive control may
contribute to the multisynchronization of neural networks with
multiple equilibrium states.

Assume that I (t) ≡ I, where I is an arbitrary constant
vector with appropriate dimensions. Based on Theorem 1,
the static multisynchronization of the delayed CMNNs (3)
with fixed topology is derived as follows.

Corollary 1: Consider the delayed CMNNs (3) with
I (t) ≡ I . Suppose that Assumption 1, 2, and 3 hold, and
the average impulsive interval of impulsive time sequence
ζ = {t1, t2, . . .} equal to Ta . If for given five positive scalars
α < 1, γ , δ, ε1 and ε2, there exist an n×n matrix P > 0, two
n × n diagonal matrices Si > 0, i = 1, 2, and coupling gain
d > 0 such that (6)–(9) hold, then the delayed CMNNs (3)
will reach the static multisynchronization.

B. Delayed CMNNs With Switching Topologies

Consider the delayed CMNNs with switching topologies,
we design a unified impulsive controller in the form of

ui (t) = dσ(t)

⎡

⎣
N∑

j=1, j 
=i

aσ(t)i j (x j (t)− xi (t))

⎤

⎦ δ(t − tk)

for t ∈ [tk, tk+1), k ∈ Z+, where σ(t) : [0,+∞) →
{1, 2, . . . ,m} is a right-continuous, piecewise constant func-
tion called the switching signal; dσ(t) > 0, σ (t) =
1, 2, . . . ,m, is the coupling gains to be designed, aσ(t)i j is
the element of the weighted adjacency matrix of the digraph
Gσ(t); δ(·) is the Dirac delta function and impulsive time
sequence ζ = {t1, t2, · · · } are mentioned above.

Assumption 4: The digraph Gi , i ∈ {1, 2, . . . ,m} has a
directed spanning tree.

Hence, the impulsively controlled CMNNs with switching
topologies can then be described by the following impulsive

differential equation:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = −[IN ⊗ (A +�A)]x(t)+ [IN ⊗ (B +�B)]F(x)
+ [IN ⊗ (C +�C)]F(x(t − τ (t)))
+ (IN ⊗ In)I (t), t 
= tk

�x(tk) = −(dσ(t)Lσ(t) ⊗ In)x
(
t−k
)
, k ∈ Z+

(25)

where Lσ(t) is the Laplacian matrix associated with the
digraph Gσ(t).

Based on the above analysis, the system (25) can be further
transformed into
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ż(t)

ẏN (t)

]

= − Ā

[
z(t)

yN (t)

]

+ B̄

[
F(z(t))
f (yN (t))

]

+ C̄

[
F(z(t − τ (t)))
f (yN (t − τ (t)))

]

, t 
= tk

[
�z(tk)
�yN (tk)

]

= −dσ(t)
[

Lσ(t)1 0
Lσ(t)2 0

]

⊗ In

[
z
(
t−k
)

yN
(
t−k
)

]

k ∈ Z+
where

Lσ(t)1 = [
lσ(t)i j − lσ(t)N j

]

(N−1)×(N−1), i, j = 1, 2, . . . , N − 1

Lσ(t)2 = [
lσ(t)N1 , l

σ(t)
N2 , . . . , l

σ(t)
N(N−1)

]
.

Since zi (t) = yi (t) − yN (t) = (xi(t) − S(t)) − (xN (t) −
S(t)) = xi(t)− xN (t), i = 1, 2, . . . , N − 1, the synchroniza-
tion of system (25) is equivalent to the convergence property
of the following system:
⎧
⎪⎪⎨

⎪⎪⎩

ż(t) = −[IN−1 ⊗ (A +�A)]z(t)
+ [IN−1 ⊗ (B +�B)]F(z(t))
+ [IN−1 ⊗ (C +�C)]F(z(t − τ (t))), t 
= tk

�z(tk) = −(dσ(t)Lσ(t)1 ⊗ In)z
(
t−k
)
, k ∈ Z+.

Theorem 2: Suppose that Assumption 1, 2, and 4 hold,
and the average impulsive interval of impulsive sequence
ζ = {t1, t2, . . .} equal to Ta . If for given five positive scalars
α < 1, γ , δ, ε1 and ε2, there exist an n × n matrix P > 0,
two n × n diagonal matrices Si > 0, i = 1, 2, and coupling
gains dσ(t) > 0, σ (t) = {1, 2, . . . ,m} such that (7)–(9) and
the following inequalities hold:

[−α IN−1
(
IN−1 − dσ(t)Lσ(t)1

)T

� −IN−1

]

≤ 0. (26)

Then the controlled CMNNs will reach the dynamical multi-
synchronization.

Proof: Consider the following Lyapunov function:
V (t) = zT (t)(IN−1 ⊗ P)z(t).

By Lemma 2, (26) is equivalent to

(IN−1 − dσ(t)Lσ(t)1 )T
(
IN−1 − dσ(t)Lσ(t)1

) ≤ α IN−1

which implies that

V (tk) = zT (tk)(IN−1 ⊗ P)z(tk)

= zT (t−k
)[(

IN−1 − dσ(t)Lσ(t)1

)⊗ In
]T
(IN−1 ⊗ P)

× [(
IN−1 − dσ(t)Lσ(t)1

)⊗ In
]
z
(
t−k
)

≤ αV
(
t−k
)
.
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By the method used in Theorem 1, it follows that the
dynamical multisynchronization of the controlled delayed
CMNNs (25) has been reached.

Assume that I (t) ≡ I, where I is an arbitrary constant
vector with appropriate dimensions. Based on Theorem 2,
the static multisynchronization of the controlled delayed
CMNNs (25) is derived as follows.

Corollary 2: Consider the delayed CMNNs (25) with
I (t) ≡ I. Suppose that Assumption 1, 2, and 4 hold, and
the average impulsive interval of impulsive time sequence
ζ = {t1, t2, . . .} equal to Ta . If for given five positive scalars
α < 1, γ , δ, ε1 and ε2, there exist an n×n matrix P > 0, two
n × n diagonal matrices Si > 0, i = 1, 2, and coupling gains
dσ(t) > 0, σ (t) = {1, 2, . . . ,m} such that (7)–(9) and (26)
hold, then the controlled delayed CMNNs will reach the static
multisynchronization.

IV. NUMERICAL EXAMPLES

In this section, a numerical example is given to demonstrate
the effectiveness of theoretical results.

Example 1: Consider the delayed CMNNs (1) with four
subnetwork and every subnetwork has two neurons, and
τ (t) = 2 − sin(t)

A =
[

2 0
0 1

]

, B =
[

5 −1
−0.5 4

]

, C =
[

0.5 0
0 1

]

I (t) =
[

0.8 sin(t)
cos(t)

]

, f j (s) = |s + 1| − |s − 1|
2

.

It is easy to verify that all conditions of Lemma 1 in [44]
hold, so every subnetwork has four locally exponentially stable
periodic orbits, as shown in Fig. 1(a). When I (t) is replaced by
I = [0.8 −0.8]T , the condition of Lemma 2 in [44] is satisfied,
therefore, every subnetwork has four locally exponentially
stable equilibrium points, as shown in Fig. 1(b).

Case I (Fixed Topology): The Laplacian matrix is

L =

⎡

⎢
⎢
⎣

1 −1 0 0
0 1 −1 0
0 0 1 −1

−1 0 0 1

⎤

⎥
⎥
⎦.

The impulsive sequence is considered by t6n−5 = 0.048n −
0.028, t6n−4 = 0.048n − 0.018, t6n−3 = 0.048n − 0.013,
t6n−2 = 0.048n − 0.008, t6n−1 = 0.048n − 0.003, and
t6n = 0.048n, n ∈ Z+, with T = 0.048 and Ta = 0.008.
Set N0 = 1, δ = 11, α = 0.91, γ = 0.6, k0 = k2 = 0.01,
k1 = 0.03, ε0 = ε1 = 1, and ε2 = 2. It is easy to check that
all conditions in Theorem 1 (or Corollary 1) hold using the
linear matrix inequality (LMI) toolbox of MATLAB, and the
feasible solution is given as

P =
[

0.2767 0.0095
0.0095 0.3081

]

, S1 =
[

1.3935 0
0 1.3935

]

,

S2 =
[

0.1223 0
0 0.1223

]

and the coupling gain is

d = 0.1760.

Fig. 1. (a) State trajectories of subnetwork with I (t) = [0.8sin(t), cos(t)]T .
(b) State trajectories of subnetwork with I = [0.8,−0.8]T .

Fig. 2. Complete synchronization of Example 1 with the given initial value.

Fig. 3. Dynamical multisynchronization of Case I.

The corresponding simulation is shown in Figs. 2–4.
Fig. 2 shows that the complete synchronization of Example 1
is achieved when the initial values φ = [−2, −0.25, 0.25, 2,
−1, −2, 0.5, 1]T . Under the designed impulsive controller,
the dynamical multisynchronization and static multisynchro-
nization of the system with fixed topology are achieved
(see Figs. 3 and 4), respectively, where the variable of the
initial values are randomly chosen in the interval [−4, 4].
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Fig. 4. Static multisynchronization of Case I.

Fig. 5. Nondynamical multisynchronization of Case I.

Fig. 6. Nondynamical multisynchronization of Case I.

In addition, under same conditions, if we consider
d = 0.086 < 0.1760, which is against our proposed criteria.
In this case, by simulation, one may find from the Fig. 5 that
the dynamical multisynchronization cannot be achieved, which
shows the advantage and efficiency of our proposed criteria.
On the other hand, under the same coupling gain d = 0.1760,
if we choose

L =

⎡

⎢
⎢
⎣

2 −2 0 0
0 2 −2 0
0 0 2 −2

−2 0 0 2

⎤

⎥
⎥
⎦.

In the case, it is obvious that Theorem 1 does not hold.
Fig. 6 tells us that the dynamical multisynchronization cannot
be achieved.

Case II (Switching Topology): Suppose that there are four
digraphs represented by G1, G2, G3, and G4 and the
Laplacian matrices of the four digraphs are

L1 =

⎡

⎢
⎢
⎣

1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 0

⎤

⎥
⎥
⎦ , L2 =

⎡

⎢
⎢
⎣

1 −1 0 0
0 1 −1 0
0 0 1 −1

−1 0 0 1

⎤

⎥
⎥
⎦

L3 =

⎡

⎢
⎢
⎣

2 −1 −1 0
0 1 −1 0

−1 0 2 −1
−1 0 0 1

⎤

⎥
⎥
⎦ , L4 =

⎡

⎢
⎢
⎣

2 −1 −1 0
0 2 −1 −1

−1 0 2 −1
−1 −1 0 2

⎤

⎥
⎥
⎦

and the network topologies switch stochastically every T
among the four states. The other parameters are the same

Fig. 7. Dynamical multisynchronization of Case II.

Fig. 8. Static multisynchronization of Case II.

as Case II. It is easy to check that all conditions in Theorem 2
(or Corollary 2) hold using the LMI toolbox of MATLAB, and
the feasible solution is given as

P =
[

0.5970 0.0826
0.0826 0.5922

]

, S1 =
[

2.6180 0
0 2.6180

]

S2 =
[

0.3858 0
0 0.3858

]

and the coupling gains are

d1 = 0.3881, d2 = 0.4265, d3 = 0.3962, d4 = 0.6288.

The corresponding simulation is shown in Figs. 7 and 8. The
dynamical multisynchronization and static multisynchroniza-
tion of the delayed CMNNs with switching topologies are
achieved (see Figs. 7 and 8), respectively, where the variable of
the initial values are randomly chosen in the interval [−4, 4].

Remark 5: Recently, the dynamical multisynchronization
and static multisynchronization of the delayed CMNNs have
been studied in [43] and [44]. Especially, the dynamical
multisynchronization and static multisynchronization of the
delayed CMNNs with parameters in Example 1 have been
studied in [44] under the assumption that the upper bound of
impulsive intervals satisfies tn+1 − tn ≤ 0.01 for all n ∈ Z+.
Note that in this paper, using the average impulsive interval
method, there is no restriction on the upper bound of impulsive
intervals, such as t6n−5 − t6n−6 = 0.02 > 0.01 which violates
the criteria in [44]. Hence, in this sense the obtained results in
this paper are more general than the results in [43] and [44].

V. CONCLUSION

This paper has investigated the dynamic multisynchro-
nization and static multisynchronizationproblem of delayed
CMNNs with fixed topology and switching topologies, respec-
tively. Some multisynchronization criterion with less con-
servatism have been established by combining the average
impulsive interval method and comparison principle. A unified
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impulsive controller has been designed, which can be easily
checked by LMI control toolbox in MATLAB. Moreover,
the robustness of delayed CMNNs has been considered to
ensure that the performance of the system can be relatively
stable. Finally, a numerical example has been used to verify the
effectiveness of the proposed criteria. In the future investigat-
ing, we will explore and develop some other analysis technique
to multisynchronization control of delayed CMNNs.
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