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In this paper, coupling properties of regular and chaotic calcium oscillations are examined.
Synchronized calcium signals among coupled cells in tissue, where calcium ions were found to
be one of the most important second messengers, have proven indispensable for proper and reli-
able functioning of living organisms. When modeling such systems, it is of particular interest to
determine, which internal system properties guarantee best coupling abilities and herewith phys-
iologically the most efficient signal transduction between cells. We found that local contractive
properties of attractors in phase space, quantified by the local divergence, represent one of the
crucial system properties that determine synchronization abilities of coupled regular and chaotic
oscillators. In particular, parts of attractors with close to zero local divergence largely facilitate
synchronization of initially unsynchronized oscillators. For bursting oscillations, this is fully in
agreement with previous studies showing that synchronization abilities of bursters are closely
related with the slow passage effect. We extended this concept with the help of local divergence
and succeeded to apply our theory also to other oscillatory regimes, like regular spiking and
complex chaotic oscillations.

Keywords: Synchronization; local divergence; slow passage; intermittency; bursting; calcium
oscillations.

1. Introduction

Recently, synchronization of coupled oscillators has
attracted much interest. Many theoretical studies
analyzing coupling properties of oscillators were
carried out for regular spiking and bursting as
well as chaotic oscillations. Leung [1999], for ex-
ample, studied coupling properties of nonchaotic
van der Pol oscillators with added dissipative drive
in dependence on different system parameters. He
found that the examined conservative system could
not be synchronized without an external dissipa-
tive drive. Moreover, for chaotic systems, many
coupling procedures that assure synchronization at
minimum coupling strength were developed. Junge
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and Parlitz [2001] showed that suppression of the
initial exponential divergence of nearby trajecto-
ries along noncontracting directions in the phase
space facilitates synchronization of coupled chaotic
oscillators. They developed a procedure that can
be used for an arbitrary chaotic dynamical system,
and demonstrated the effectiveness of their method
on the Hénon map. Furthermore, Wang [2002]
found that two initial weakly coupled chaotic sys-
tems could achieve synchronization by adaptively
reducing their speed and/or enhancing the cou-
pling strength. He developed an explicit adaptive
algorithm for speed reduction and employed it on
the Lorenz system. Effects of noise on the dynamics



2736 M. Perc & M. Marhl

of coupled oscillators were also studied extensively.
Pravitha et al. [2002] found that uniformly dis-
tributed noise can induce synchronization of two
coupled chaotic Rossler systems already at very
low coupling strength. A similar phenomenon was
reported by Zhang et al. [2001]. They observed
the phenomenon of stochastic resonance after per-
turbing a system parameter with Gaussian noise.
Gracheva et al. [2001] also found that stochas-
tic effects in a coupled system improve the agree-
ment with experimental results. On the other hand,
Andrade and Lai [2001] found that additive white
noise can induce phase slips, i.e. hinders synchro-
nization of coupled chaotic oscillators. Moreover,
there exist several theoretical studies on coupling
properties of biochemical oscillators (see [Wolf &
Heinrich, 1997, 2000; Hofer, 1999, 2001a, 2001b;
Varona et al., 2001; Schuster et al., 2002]). In
these studies, effects of varying different biologi-
cally relevant system parameters on coupling prop-
erties of oscillators are examined. Some authors
also report that coupling can lead to more com-
plex behaviors than originating from the individual
systems only, such as cascades of period doubling
and multiple periodic solutions as well as chaos (see
[Bindschadler & Sneyd 2001; De Vries & Sherman,
2001; Tsumoto et al., 2002]).

Although many theoretical as well as experi-
mental studies (see e.g. [Arecchi et al., 2003]) have
been devoted to investigate the synchronization of
coupled oscillators, the question remains, which
are those internal system properties that deter-
mine the highest synchronization abilities. That is,
under which internal system conditions the mini-
mal coupling strength is needed in order to syn-
chronize initially asynchronous oscillators. Some
authors have already dealt with similar questions.
Izhikevich [2000a, 2000b, 2001] made a detailed
analysis of coupling properties for different bursting
oscillations. He showed that best synchronization
abilities have those oscillators that are characterized
by the so-called slow passage effect. The latter was
extensively studied during the last two decades
(see [Nejshtadt, 1985; Baer et al., 1989; Holden &
Erneux, 1993a, 1993b]). The main characteristic of
the slow passage effect is a slow transition of the
trajectory through a Hopf bifurcation. Due to this
phenomenon, a delayed transition of the trajectory
from the unstable foci branch to the stable pe-
riodic branches occurs. Since the trajectory stays
close to the unstable foci branch for a considerable

amount of time after passing the bifurcation point,
that region is extremely susceptible to noise (see
[Baer et al., 1989]) or any other external influences,
like for example signals coming from the neighbor-
ing oscillators (see [Izhikevich, 2000a, 2000b, 2001]).
Therefore, such systems can adapt very flexibly
to external perturbations, which provides a pow-
erful mechanism for instantaneous synchronization
of bursters even when they have essentially different
intrinsic oscillation frequencies.

The aim of the present study is to extend the
analysis of system properties that determine the
highest synchronization abilities of coupled oscil-
lators. First, the results, previously obtained by
Izhikevich [2000a, 2000b, 2001] are interpreted in
a more general concept of the local divergence. The
local divergence appears to be a general and wide
applicative measure for determination of coupling
abilities. With the local divergence, we are able to
extend the existing theory of coupling properties
of bursting oscillations also to regular spiking as
well as chaotic oscillations. Intuitively, the role of
local divergence in adaptation processes, i.e. cou-
pling properties of dynamical systems, is well un-
derstandable since the local divergence reflects the
contractive properties of attractors in the phase
space. Therefore, if an attractor in form of a limit
cycle is weakly attractive, it seems much easier to
alter its shape, thus adapting the oscillation fre-
quency of the system to the oscillation frequency of
the neighboring system. By use of several examples,
we show that in general local divergence and cou-
pling properties of a dynamical system are in a close
interrelation. The results obtained for two coupled
oscillators can be easily generalized to multioscilla-
tor systems.

For demonstrating the influences of local di-
vergence on the synchronization abilities of cou-
pled systems, we use a biochemical model that
describes intracellular Ca’T oscillations in nonex-
citable cells, previously proposed by Marhl et al.
[2000]. Calcium ions were shown to be very im-
portant second messengers assuring synchronized
signal transduction between cells (see [Sdez et al.,
1989; Goodenough et al., 1996; Tordjmann et al.,
1997; Zhang et al., 1999; Krutovskikh et al., 2002;
Korkiamaki et al., 2002; Bode et al., 2002]), which
was proved to be indispensable for proper func-
tioning of many important biological functions. For
example, periodic release of luteinizing hormone-
releasing hormone (LHRH) from the hypothalamus,



which is essential for normal reproductive functions,
requires synchronized signal transduction between
cells (see [Richter et al., 2002]). Furthermore, also
proper insulin secretion relies on synchronized os-
cillations in pancreatic islets (see [Charollais et al.,
2000]). Moreover, Saito and Urano [2001] showed
that neurosecretory cells use intervals of synchro-
nized periodic burst discharges to fit the levels
of secretory activity to physiological requirements.
Therefore, the present study is also of significant
biological importance. It shows that the math-
ematical analysis of coupled cellular oscillators,
expressing simple periodic, complex bursting as well
as chaotic oscillations, can considerably improve
our understanding of the physiologically important
synchronization phenomenon in signal transduction
that is found to be of vital importance for all living
organisms.

2. Mathematical Model

To study the interrelations between the local di-
vergence, the slow passage effect, and the coupling
properties of Ca’t oscillations, we use the model
proposed by Marhl et al. [2000]. For different values
of parameters, the model exhibits a broad variety of
different dynamical behaviors, like simple periodic
spike-like oscillations, complex bursting as well as
chaotic Ca?* oscillations. In the model, the slow
passage effect can also be well observed for burst-
ing Ca?*t oscillations (see [Perc & Marhl, 2003a]).
The model consists of three basic model compart-
ments, i.e. the cytosol, the endoplasmic reticulum
(ER) and the mitochondria (for details see [Marhl
et al., 2000]). Consequently, the three main system
variables are: free Ca?T concentration in the cytosol
(Cacyt), free Ca?t concentration in the ER (Caey),
and free Ca?t concentration in the mitochondria
(Cam). The evolution of the model system is gov-
erned by the following differential equations:

dCCLC t
Ty = Jch — qump + Jleak + Jout
— Jin + JCaPr - JPr’ (1)
dCae, ﬁer
= — ump — “ch T Jleak) > 2
q . (Jpump — Jeh — Jteak) (2)
dCapm, m
= = o). 3)

de Pm
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qump = kpumpcacyt ) (5)
Jleak = kleak(caer - Cacyt) s (6)
Jpr = kyCacyt Pr, (7)
JCaPr = k:_CaPr, (8)
C 8
Jin = k’in% (9)
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P?":PT‘tot—CCLP’F, (11)

CaPr = Cagor — Cacyt
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o Caer G Cay, . (12)

The parameter values are listed in Table 1,
whereas their meaning and biological relevance are
fully explained in the original work (see [Marhl
et al., 2000]).

Synchronization properties are studied for the
system of two cells coupled via a passive diffusion-
like calcium transfer through gap junctions. The
calcium diffusion through gap junctions is modeled
by an additional Ca?t flux through the cell mem-
brane (see e.g. [Hofer, 1999, 2001a, 2001b; Zhang
et al., 2001; Schuster et al., 2002]). Consequently,
the total concentration of calcium in the cell (Cayot)
is no longer constant. Therefore, additional differ-
ential equations are needed for calculating changes
of total Ca?t concentrations in the first (Cagot, 1)
and in the second cell (Caxot,2):

dCa o — 13
7tt’1 h- (Cacyt72 Cfacyt7 l) ’ ( )
dCa ot, 2 — Ca 2 1
ot 2 =h- (C’CLCyt7 1 C cyt, ) . ( )

Due to the calcium transfer through gap junctions,
differential equations for the free cytosolic Ca®*t



2738 M. Perc & M. Marhl

Table 1. Model parameters for which
all results are calculated unless otherwise
stated.

Parameter Value
Total concentrations
Catot 90 uM
Priot 120 uM
Geometric parameters
Per 0.01
Pm 0.01
Ber 0.0025
Bm 0.0025
Kinetics parameters
Ken 480-4100 s~ !
Kjoak 0.05s71
k?pump 20 S_1
Kin 300 pMs~!
Eout 125-250 s~ 1
Em 0.00005 s+
ket 0.1 pM~t st
k_ 0.01 51
K 5 uM
K> 0.8 uM
Coupling parameters
h 0-0.34 571

concentration in each cell [see Eq. (1)] have to be
modified:

dCa t.1
% = Jch,1 — qump,l + Jleak,l
+ Jout7 1— Jin,l + JCaPr,l - JPr,l
+h- (Cacyt,2 - C’acyt,l) ) (15)
dCa t.2
% = Jch,2 — qump,Q + Jleak,2

+ Jout,2 — Jin,2 + Joapr,2 — Jpr,2
+h- (C’acyt7 1— C'acyt7 2) ) (16)

In Egs. (13)—(16) indices 1 and 2 denote the two
coupled cells, whereas parameter h stands for the
effective gap-junctional calcium permeability.

The complete set of model equations is given
by Egs. (1)-(16). In the paper, all results are cal-
culated for the parameter values given in Table 1 if
not otherwise stated.

3. Methods
3.1.

The bifurcation analysis of Ca?T oscillations was
carried out with the method proposed by Rinzel

Fast—slow subsystem analysis

[1985]. By this method, the system is separated
into a “fast” and a “slow” subsystem. Therefore,
we address to it as the fast—slow subsystem analy-
sis. Each variable that changes rapidly during the
oscillation period is a part of the “fast” subsys-
tem whereas the variables that vary slowly represent
the “slow” subsystem. We accomplish the fast—slow
subsystem analysis by calculating the bifurcation
diagram of the “fast” subsystem using the “slow”
variables as bifurcation parameters. All bifurcation
diagrams were calculated with the numerical contin-
uation software AUTO97 [Doedel et al., 1997] and
XPPAUT [Ermentrout, 1996].

3.2. Local divergence
For the vector field:
F(Cacyt, Caer, Cam) = (FCacym Foae FCam)

_ (dCacyy dCae dCapym
B dt At 0 dt )’

(17)
the local divergence is defined as:
V - F(Cacyt, Caer, Can)
OFcy " o
_ oo, OFCas , Ocan (g
0Cacyt 0Caer 0Cany

where (Cacyt, Caer, Cay) is a point of the limit
cycle. The local divergence determines the local at-
traction properties of the limit cycle and enables us
to identify parts of the limit cycle that are char-
acterized by weak attraction. The weak attractive
parts facilitate synchronization since in these re-
gions the system behavior can easily be modified
by the neighboring oscillators. Therefore, we use
the local divergence as a measure for estimating the
synchronization abilities of the system.

4. Results

We examine synchronization properties of two
coupled cells [Egs. (1)—(16)] for different values of
parameter kou, which determines the rate of Ca?t
efflux from mitochondria. By changing the value of
kout, We can prolong the silent phase between two
main calcium spikes. The prolonged silent phase
is characterized by a better-expressed slow pas-
sage effect, which for certain parameter values ex-
ist in the examined mathematical model (see [Perc
& Marhl, 2003a]). Since Izhikevich [2000a, 2000b,
2001] showed that elliptic bursters, also known as
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Fig. 1. Bifurcation diagram of the fast subsystem (only Cacyt is depicted), whereas the slow variable (Cam) is used as the
bifurcation parameter, for the bursting oscillatory regime at kg, = 4100 s~*. Solid (dashed) lines represent stable (unstable)
steady states. Dashed—dotted lines represent stable periodic solutions. Circle represents the supercritical Hopf bifurcation. The
thick solid line represents the 2D projection of the trajectory. (a) kout = 125 s~ 1. (b) kout = 175 s 1. (¢) kout = 250 s~ L.
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type III bursters (see [Bertram et al., 1995]), with
the slow passage effect synchronize almost instan-
taneously even when they are weakly coupled, it
seems reasonable to investigate coupling abilities of
our system in dependence on the parameter kqyz.
Results obtained by the fast—slow subsystem
analysis for different values of parameter k., are
presented in Figs. 1(a)-1(c). In Fig. 1(a) the bi-
furcation diagram is presented for koy = 125 s~ 1,
whereas in Figs. 1(b) and 1(c) kouwt was enlarged
by 40% and 100%, respectively. In all three fig-
ures [Figs. 1(a)-1(c)], the trajectory remains close
to the steady state for a considerable amount
of time before it unfolds to the stable periodic
branches (dashed-dotted line), despite the fact, that
the stable foci branch turns unstable (dashed line)
after the supercritical Hopf bifurcation is exceeded.
This behavior is known as the slow passage effect
(see [Nejshtadt, 1985; Baer et al., 1989; Holden &
Erneux, 1993a, 1993b]). Note that all cases pre-
sented in Fig. 1 are characterized by the slow
passage effect. However, the slow passage effect is
much better expressed, i.e. the transition of the
trajectory through the bifurcation point is much

(Continued)

smoother, for higher than for smaller values of kgt
[compare Figs. 1(a)-1(c)].

Coupling properties of the examined model
system [Egs. (1)-(12)] are studied by coupling
two cells via a passive diffusion-like calcium flux
through gap junctions [Egs. (13)-(16)]. Initially,
the two cells oscillate asynchronously due to differ-
ent intrinsic oscillation frequencies. The initial dif-
ference between oscillation frequencies is obtained
by multiplying all differential equations governing
the time evolution of Ca?t in the first and sec-
ond cells with constant factors f; and fs, respec-
tively, while all other parameter values are left
identical for both oscillators (for parameter val-
ues see Table 1). This procedure is known as the
time scaling method (see e.g. [Goldbeter, 1996; Rei-
jenga et al., 2002]). We choose f; = 0.95 and
f2 = 1.05, which yield a relative difference between
the two oscillation frequencies of 10.5%. If the
coupling constant (h) is zero, the two cells con-
tinue to oscillate asynchronously [see Fig. 2(a)].
By increasing the coupling constant h, we achieve
synchronization of Ca?t oscillations in both cells
[see Fig. 2(b)]. To determine, if both coupled
cells oscillate with the same oscillation frequency,
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Fig. 2. Time courses of Cacyt in the first (solid line) and in the second (dotted line) coupled cell for the bursting oscillatory
regime at kg, = 4100 s™% and kouws = 200 s~ (a) h = 0 s™L. (b) h = 0.036 s~ . (c) The similarity function for the
unsynchronized (dotted line) and synchronized (solid line) oscillations.
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i.e. they are synchronized, we calculate the similar-
ity function S (see e.g. [Masoller & Zanette; 2001]),
which is defined by the following equation:

C1acyt7 l(t + At) — Cacyt,2(t))2>
((Cagys, 1 (1)) - (Cagyy, (1))

If Cacyt,1(t) and Cacyt, 2(t) are independent time se-
ries, with different intrinsic frequencies, then S > 0.
On the other hand, if the two oscillators have the
same intrinsic frequency as well as the same shape
of oscillations, then S 2 0 at a given At. If in this
case At = 0, there is no phase shift between the two
synchronized time series, whereas if At = ¢, this
means that one signal is phase shifted with regard to
the other with a time delay ¢,,. The similarity func-
tions for oscillations, shown in Figs. 2(a) and 2(b),
are presented in Fig. 2(c), where the dotted line rep-
resents the similarity function for unsynchronized
Ca?* oscillations [Fig. 2(a)], and the solid line rep-
resents the similarity function for synchronized os-
cillations [Fig. 2(b)]. The similarity function shows
that in case of synchronized oscillations, presented
in Fig. 2(b), S = 0 at At = 9.85 s, which means that
oscillations in the second cell follow the oscillations
in the first cell with a time delay of 9.85 s, whereas

S?(At) = { (19)

(Continued)

the oscillation frequency as well as the form of Ca?*
oscillations in both cells are the same. In case of
unsynchronized oscillations, the similarity function
has a nearly constant positive value, which means
that the average of their square differences does not
depend on the time shift between them, which can
only be achieved if the two cells have different in-
trinsic oscillation frequencies.

As already shown by Izhikevich [2000a, 2000Db,
2001], bursters with the slow passage effect syn-
chronize easily, i.e. even if they are weakly coupled,
whereas bursters that are not characterized by the
slow passage effect posses no such property. Here
we investigate this system property in more detail
by comparing bursters that have differently pro-
nounced slow passage effects. In Figs. 1(a)-1(c), we
showed that in the examined mathematical model
the slow passage effect becomes more expressed by
increasing kout. Therefore, we determine the syn-
chronization ability of the model system by calcu-
lating the minimal coupling constant h for different
values of kqut. The results are presented in Table 2.
They show that the better-expressed slow passage
effect, obtained at larger values of kgout, assures
better synchronization properties of coupled cells,



Table 2. Synchronization
abilities of bursting calcium
oscillations. For oscillatory
regimes at kg, = 4100 s !
and different values of kout,
the minimal value of coupling
constant h is calculated.

kout (s™1) h(s71)
125 0.34
150 0.17
175 0.11
200 0.036
295 0.019
250 0.014

meaning that synchronization of bursters can be
achieved at lower coupling constants if the slow
passage effect is more pronounced.

Although we showed that bursters with a more
pronounced slow passage effect have better synchro-
nization abilities, the question remains, which is
the general system property that assures facilitated
synchronization. In our previous work, we showed
that the divergence can be taken as a good measure
for estimating the system ability to respond syn-
chronously to an external periodic signal (see [Perc
& Marhl, 2003b; Marhl & Schuster, 2003]). Since
effects on an individual system due to coupling are
very similar to that caused by the external forcing,
the same reasoning can also be used for explaining
synchronization properties of coupled oscillators. If,
namely an attractor in form of a limit cycle that cor-
responds to oscillations of Ca?* in the cell is charac-
terized by weakly attractive regions, i.e. parts that
have a very close to zero local divergence, it has a
partially weakly imposed spatial persistence in the
phase space. Therefore, those regions can be altered
even by the weakest external inputs from the neigh-
boring oscillator. Consequently, the whole limit cy-
cle can easily change its shape and so the system
can adapt its oscillation frequency to the external
signal. Therefore, the investigation of interrelation
between the local divergence and the coupling prop-
erties of oscillators seems to be reasonable.

We calculate the local divergence [Eq. (18)] for
all attractors corresponding to Ca?t oscillations
studied in Table 2. The local divergence for pa-
rameter values koye = 125 s7!, koue = 175 s7!
and koy = 250 s~! is presented in Figs. 3(a)-3(c),
respectively. The xz—y projection of the 3D curve
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Fig. 3. Local divergence (z-axis) together with the 2D

projection of the trajectory (z—y plane) for the bursting
oscillatory regime at k., = 4100 s~ The z-= projection
shows the outlay of the local divergence in dependence on the
slow system variable (Cam). (a) kout = 125 s~ 1. (b) kout =
175 s 1. (¢) kout = 250 s 1.
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corresponds to the Capn—Cacy; projection of the
trajectory in phase space, as shown in Figs. 1(a)—
1(c), whereas the x—z projection represents the lo-
cal divergence of the system in dependence on Ca,y,.
By comparing Figs. 1(a)-1(c) with Figs. 3(a)-3(c),
respectively, it can be well observed that the slow
passage effect is always characterized by a more or
less close to zero oscillating local divergence. Since
in this area the phase space is very weakly contrac-
tive, the system passes slowly through the bifurca-
tion point. Therefore, the trajectory feels only weak
spatial persistence in that region, which results in
a slow passage through the Hopf bifurcation. At
kout = 125 s71, the local divergence oscillates with
a rather high amplitude around zero, whereas the
oscillations of the local divergence at koy, = 175 s+
are already much more suppressed. Furthermore, at
kout = 250 s~! the local divergence ceases oscillat-
ing almost altogether and is nearly zero during the
slow passage. Consequently, at ko = 250 s~! the
weakest attraction of the phase space, expressed by
the zero local divergence during the slow passage
phase, assures excellent adaptation properties, and
hence the best synchronization abilities of the model
system (see Table 2).

By introducing the local divergence as a mea-
sure for synchronization properties of the coupled
model system, we showed that the slow passage
effect indeed facilitates synchronization of coupled
bursters, and thereby confirm the previously ob-
tained results by Izhikevich [2000a, 2000b, 2001].
Moreover, we carried out a more detailed analysis
of synchronization abilities of the system for dif-
ferently expressed slow passage effects and showed
that better synchronization of bursters can be
achieved if the slow passage effect is more pro-
nounced. In the following, we would like to extend
our study about the interrelation between the local
divergence and the synchronization properties from
bursting oscillations to regular spiking and inter-
mittent chaotic oscillations, which can be found in
our model.

Haberichter et al. [2001] carried out a detailed
analysis of different oscillatory regimes that can
be found in the mathematical model studied here.
They showed that for the same parameter values as
listed in Table 1, simple spiking oscillations could
be found for values of agonist stimulations below
ke = 1800 s~1. Therefore, we analyze synchroniza-
tion abilities of simple spiking oscillations at two
different levels of agonist stimulation, namely at

Table 3. Synchronization
abilities of simple spike-like
calcium oscillations. For os-
cillatory regimes at different
values of kg, the minimal
value of coupling constant h
is calculated.

kch (Sil) h (Sil)
480 1e=7
800 0.090

ken = 480 s™! and kg, = 800 s~!. To obtain the
initial relative difference in oscillation frequency of
10.5% between both coupled cells, we again use the
time scaling method (see e.g. [Goldbeter, 1996; Rei-
jenga et al., 2002]). The minimal values of the cou-
pling constant h, at which the two oscillators are
able to synchronize, are presented in Table 3.

We begin by explaining the results obtained
for spiking Ca?* oscillations at kg = 480 s—'.
The bifurcation diagram obtained by the fast—
slow subsystem analysis is presented in Fig. 4(a).
From the inset in Fig. 4(a), where the enlarged
area around the subcritical Hopf bifurcation is
presented, the slow passage effect can be well ob-
served. The delayed transition from the unstable
foci branch (dashed line) to the stable periodic
branches (dashed-dotted lines) is a characteristic
property indicating the slow passage effect. Note
that the trajectory passes through the subcritical
Hopf bifurcation very smoothly. There are no signs
of any oscillations during the transition, like for
example shown in Figs. 1(a) and 1(b). The slow
passage phase is characterized by a very close to
zero local divergence, as shown in Fig. 4(b). This
assures the system to have excellent synchroniza-
tion abilities. The two cellular oscillators are able
to nullify the initial relative frequency difference of
10.5% (the same as for previous results presented
in Table 2) already at h = le~" s~! (see Table 3).
This is an extremely low coupling constant, which
is nevertheless not surprising since the local diver-
gence is during the long and well-expressed slow
passage phase very close to zero. This makes the
system very flexible in this part and allows it to
synchronize at the very low coupling constant.

Another analysis of synchronization abilities
for simple spiking oscillations was carried out for
kan = 800 s~!. In this case, the two oscillators
need to be much stronger coupled, i.e. a much
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Bifurcation diagram and the outlay of the local divergence for spiking oscillatory regime at k., = 480 s7! and

kout = 125 s~ 1. (a) Solid (dashed) lines represent stable (unstable) steady states. Dashed-dotted (dotted) lines represent
stable (unstable) periodic solutions. Circle (up-triangle) represents the subcritical Hopf (fold limit cycle) bifurcation. The
thick solid line represents the 2D projection of the trajectory. (b) The 2D projection of the trajectory (z—y plane), whereas
the x—z projection shows the outlay of the local divergence in dependence on the slow system variable (Cam).

larger h is required for synchronization than at
kg = 480 s~! (see Table 3). For the oscillatory
regime at kg, = 800 s~! the bifurcation diagram
and the local divergence are presented in Figs. 5(a)
and 5(b), respectively. In Fig. 5(b) it can be well ob-
served that the region, in which the local divergence
is close to zero, is very small, i.e. the divergence just

shortly intersects the zero line. Therefore, the sys-
tem does not have a well-adaptable, flexible region
in the phase space. Thus, a much larger external
input from the neighboring cell is required for syn-
chronization. Consequently, since the trajectory is
always subjected to a rather strong spatial persis-
tence, the slow passage effect is not present in this
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thick solid line represents the 2D projection of the trajectory. (b) The 2D projection of the trajectory (z—y plane), whereas
the x—z projection shows the outlay of the local divergence in dependence on the slow system variable (Cam).

Fig. 5.

case [see Fig. 5(a)]. The bifurcation diagram shows
a typical transition from the unstable foci branch to
the stable periodic branches; hence, the trajectory
immediately diverges from the unstable foci branch
after the subcritical Hopf bifurcation is exceeded.

Local divergence can also be applied for an-
alyzing synchronization properties of intermittent
chaotic Ca?* oscillations. Intermittent chaos is
characterized by a well-expressed predominant os-
cillation frequency as well as almost constant shape
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Bifurcation diagram and the outlay of the local divergence for chaotic oscillatory regime at k., = 2950 s7! and

kout = 125 s~ 1. (a) Solid (dashed) lines represent stable (unstable) steady states. Dashed-dotted (dotted) lines represent
stable (unstable) periodic solutions. Circle (up-triangle) represents the subcritical Hopf (fold limit cycle) bifurcation. The
thick solid line represents the 2D projection of the trajectory. (b) The 2D projection of the trajectory (z—y plane), whereas
the x—z projection shows the outlay of the local divergence in dependence on the slow system variable (Cam).

of oscillations, with irregularly occurring intermit-
tent deviations (see [Haberichter et al., 2001; Perc &
Marhl, 2003a]). Therefore, for intermittent chaotic
oscillations the local divergence along the attrac-

tor still has a well comparable outlay for most
oscillation periods. Consequently, the local diver-
gence still applies as a good measure for estimating
the synchronization abilities of coupled oscillators.
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In the studied mathematical model, intermittent
chaotic behavior can be found for the agonist stim-
ulation kg, = 2950 s~1, for example (for details see
[Haberichter et al., 2001]). The coupling properties
of the intermittent chaotic Ca?* oscillations were
analyzed in the same way as the above studied cou-
pled systems (results presented in Tables 2 and 3).
We found that the coupled chaotic oscillators are
able to nullify their initial relative frequency dif-
ference of 10.5% at h = 0.14 s~!. By comparing
this result to that obtained previously for regular
bursting oscillations presented in Table 2, we see
that it is comparable with the oscillatory regime
calculated for koye = 175 s~ 1 at kg, = 4100 s~1. In-
deed, the bifurcation diagram as well as the outlay
of the local divergence for the chaotic regime pre-
sented in Figs. 6(a) and 6(b), respectively, are very
similar to that presented in Figs. 1(b) and 3(b),
which were made for the regular bursting regime.
Figure 6(b) shows that also in case of intermittent
chaotic behavior, regions with close to zero local
divergence represent well-adaptable, flexible parts
of the attractor. These parts of the chaotic attrac-
tor can be easily altered by external signals com-
ing from the neighboring oscillators. Therefore, the
local divergence seems to be a useful measure for
determining coupling abilities also for intermittent
chaotic oscillators. Additionally, from the bifurca-
tion diagram a kind of quasi- slow passage effect
can be well observed, which sets in for the majority
of oscillation cycles in a well-expressed manner [see

Fig. 6(a)].

5. Discussion

In this paper, we investigate the influence of local
divergence on synchronization abilities of calcium
oscillations in diffusion-like coupled cells. Moreover,
the interrelation between the local divergence and
the slow passage effect is studied. Our results show
that close to zero local divergence is the crucial
system property, which assures good coupling abili-
ties of Ca2t oscillations, i.e. a low coupling constant
suffices for synchronization, whereas an around-
zero oscillating outlay of the local divergence re-
duces the possibilities of synchronization at low
coupling constants. We argue that the local diver-
gence is an appropriate measure for characterizing
the coupling properties of regular spiking, complex
bursting as well as intermittent chaotic oscillations.
Furthermore, concerning the interrelation between
the local divergence and the slow passage effect, our

results are fully in agreement with those obtained
previously by Izhikevich [2000a, 2000b, 2001], show-
ing that the slow passage effect largely facilitates
synchronization of coupled bursters. Moreover, we
made a more detailed coupling analysis for os-
cillators with differently pronounced slow passage
effects, and found that coupled oscillators can be
more easily synchronized if the slow passage effect
is more pronounced. This can be well explained by
the outlay of the local divergence during the tran-
sition through the bifurcation point.

The local divergence enables a deeper insight
into the system ability to adjust its oscillation
frequency when coupled with another system. The
crucial system property, which efficiently facilitates
synchronization of Ca?t oscillations in coupled
cells, is the well-expressed close to zero local di-
vergence. Those areas represent the flexible, well-
adaptable parts of the attractor. Intuitively, if an
attractor, e.g. a limit cycle, that corresponds to os-
cillations of cytosolic calcium in the cell is weakly
attractive, i.e. has a very low local divergence, it
seems much easier to alter its shape, thus adapt-
ing its basic Ca?* oscillations to the Ca?* oscilla-
tions in adjacent cells. On the other hand, if the
local divergence oscillates around zero this indi-
cates a less adaptable system. Consequently, it is
more difficult to alter the shape of such an at-
tractor and a stronger external input from the
neighboring cell is necessary for synchronization.
Nevertheless, it should be noted that close to zero
local divergence is only the necessary condition that
assures good synchronization abilities. We previ-
ously showed that externally forced systems with
highly flexible attractors must, in addition to the
zero local divergence parts, also have localized but
well-expressed negative dells of local divergence (see
[Perc & Marhl, 2003b]). This assures the system to
have strong attractive regions in the phase space,
which act as stabilizers, and enable well-controlled
responses of oscillators to external influences. These
strong attractive regions can be well observed in all
examples that we have studied in the paper [see
negative cells of local divergence in Figs. 3(a)-3(c),
Fig. 4(b), Fig. 5(b), and Fig. 6(b)]. Without these
strong attractive regions, the system would respond
very vividly to the signals from adjacent cells and
the synchronization would be very hard to achieve.

Moreover, we point out an important interre-
lation between the local divergence and the slow
passage effect. Our results show that the slow pas-



sage effect is always characterized by close to zero
local divergence. A smoother outlay of the local
divergence is linked with a better-expressed slow
passage effect. By way of several examples, we
showed that this holds not just for bursting Ca?t
oscillations, to which the slow passage effect was
predominantly related (see e.g. Izhikevich [2000a,
2000b, 2001]), but also for simple spiking and inter-
mittent chaotic oscillations [see Figs. 1(a)-1(c), 4(a)
and 6(a)]. We also made some preliminary stud-
ies for other model systems describing intracellular
Ca?* oscillations, where the slow passage effect was
also found, like for example in the model proposed
by Borghans et al. [1997] (for the bifurcation anal-
ysis see [Perc & Marhl, 2003a]). We found that in
the model by Borghans et al. [1997] the slow passage
effect is also characterized by a very close to zero
local divergence (results not shown).

Therefore, by introducing the local divergence
as a measure for the estimation of coupling proper-
ties, we extend the existing theory of determining
the synchronization properties of coupled bursters
by considering the slow passage effect, as earlier pro-
posed by Izhikevich [2000a, 2000b, 2001]. We gen-
eralize this idea in the sense of trying to find a more
accurate and widely applicable internal system
property, i.e. the local divergence, which incorpo-
rates the slow passage effect, as well as enables the
estimation of synchronization properties for simple
spiking, complex bursting and intermittent chaotic
oscillations. We tested the presented theory also on
other model systems and obtained qualitatively the
same results. For example, studying coupling prop-
erties in the model describing bursting oscillations
in thalamocortical neurons presented by Hindmarsh
and Rose [1984], as well as the nonchaotic regimes
in the mathematical model for intracellular Ca?*
oscillations proposed by Shen and Larter [1995],
the interrelation between the coupling properties
and the local divergence obey the presented the-
ory. In all cases, oscillatory regimes that are char-
acterized by extensive regions with close to zero
local divergence synchronize at low coupling con-
stants, whereas regimes with now such properties
require a much higher coupling coefficient in or-
der to synchronize. Moreover, our investigations on
other mathematical models show that in particu-
lar for spike-like oscillations and bursting oscilla-
tions with excitable properties the local divergence
is most useful and very clearly indicates coupling
properties of the system. On the other hand, for pre-
dominantly sinus-like oscillatory regimes changes in
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the outlay of the local divergence for certain pa-
rameter ranges might not be so clearly visible, and
thus determination of coupling properties is diffi-
cult (see also [Perc & Marhl, 2003b]). Special care
should also be exercised when dealing with oscilla-
tory regimes close to bifurcation points since due to
coupling the oscillatory regimes might change and
consequently the outlay of the local divergence of a
single system before coupling no longer determines
its coupling properties.

Furthermore, an open question remains if the
local divergence is still a good measure for estimat-
ing the synchronization abilities of chaotic oscilla-
tory regimes, which come into existence through
the period doubling root, like for example the
chaotic regime in the model proposed by Shen and
Larter [1995] (for the analysis see [Perc & Marhl
2003a]). The present study shows that for inter-
mittent chaotic behavior the local divergence plays
a decisive role in determining coupling properties,
since in this case the system still has a rather well
defined predominant frequency as well as shape
of oscillations, with only some intermittent alter-
ations. Therefore, the local divergence, calculated
along an attractor of intermittent chaotic oscilla-
tions, is similar for many oscillation cycles and can
be treated nearly the same as it would be calcu-
lated for a regular oscillator. However, for chaotic
oscillations, which come into existence through the
period doubling route and consequently have no
predominant oscillation frequency and shape, the
local divergence considerably varies from one os-
cillation cycle to another and is therefore prob-
ably a less appropriate measure for determining
coupling properties of the system. Therefore, in
further studies, we are going to determine not just
the attractive properties of a particular attractor,
but also the attractive properties of the whole sur-
rounding phase space. Thereby, we expect to get a
topological picture of the whole phase space, which
would enable a deeper understanding of coupling
properties in general.
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