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We study the transition from stochasticity to determinism in the three-strategy pair-
approximated prisoner’s dilemma game. We show that the stochastic solution converges to the
deterministic limit cycle attractor as the number of participating players increases. Importantly
though, between the stochastic and periodic solutions, we reveal a broad range of population
sizes for which the system exhibits deterministic behavior, yet fails to settle onto the limit cycle
attractor. We show that these states are characterized by chaos via a rigorous treatment. Results
are discussed in view of their sociological importance.
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1. Introduction

Evolutionary game theory [Smith & Price, 1973]
has been introduced to study frequency-dependent
interactions. One branch considers the problem of
cooperation as a particular example of such inter-
actions. The prisoner’s dilemma [Axelrod & Hamil-
ton, 1981] is one of the most commonly employed
games for this purpose. The game consists of two
players who have to decide simultaneously whether
they want to cooperate or defect. Mutual coop-
eration yields the highest collective payoff that is
equally shared between the two players. However,
individual defectors will do better if the oppo-
nent decides to cooperate. The two players both
decide to defect, whereby they end up empty-
handed, hence the dilemma. This unfavorable result
of classical game theory is, however, often at odds
with reality [Wilkinson, 1984; Seyfarth & Cheney,
1984; Milinski, 1987; Clutton-Brock et al., 1999].

Accordingly, several mechanisms have been pro-
posed to explain the emergence of cooperation in
the prisoner’s dilemma game. Perhaps the most
prominent mechanism that promotes cooperation
is the spatial extension of the classical prisoner’s
dilemma game [Nowak & May, 1992; Nowak et al.,
1994a]. Although the outcome of games on grids
depends somewhat on their numerical implemen-
tation [Nowak et al., 1994b; Huberman & Glance,
1994; Hauert, 2002], the general statement that spa-
tial structure promotes cooperation in the prisoner’s
dilemma game is always valid for a certain range
of payoff values [Doebeli & Hauert, 2005]. Impor-
tantly, this may not be the case for games with
different payoff ranking; such as for example the
snowdrift or hawk-dove game [Hauert & Doebeli,
2004; Tomassini et al., 2005; Wang et al., 2006].

The success of the spatial prisoner’s dilemma
game to sustain cooperation has made it a common
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starting point for further explorations of mecha-
nisms that could facilitate cooperation even beyond
the borders determined solely by the spatial exten-
sion [Perc, 2006c; Szolnoki & Szabo, 2007]. For
example, it proved very successful to include a
third strategy into the game [Hauert et al., 2002].
The so-called loners, or volunteers, induce a rock-
scissors-paper-type cyclic dominance of the three
strategies and are able to boost cooperation in the
prisoner’s dilemma game [Hauert & Szabó, 2005].
More recently, and directly linked with the subject
of the present work, stochasticity has also emerged
as being a potent promoter of cooperation, thus
resulting in a fruitful consolidation of physics and
evolutionary game theory. Stochastic gain in pop-
ulation dynamics has been reported in [Traulsen
et al., 2004], while noise-induced cooperation pro-
motion in the spatial prisoner’s dilemma game has
been presented in [Perc, 2006a, 2007; Szabó et al.,
2002]. Small-world and other complex topologies of
players on the spatial grid have also been iden-
tified as being relevant by the evolutionary pro-
cess [Abramson & Kuperman, 2001; Zimmermann
et al., 2004; Zimmermann & Egúıluz, 2005; Santos
& Pacheco, 2005; Santos et al., 2006; Perc, 2006b;
Vukov et al., 2006; Pacheco et al., 2006; Tang et al.,
2006; Chen et al., 2007], as were the effects of
finiteness in population size [Traulsen et al., 2005,
2006].

A very convenient and effective way to capture
the dynamics of the prisoner’s dilemma on the spa-
tial lattice is to consider the pair-approximated ver-
sion of the game [Hauert & Szabó, 2005; Matsuda
et al., 1992; Szabó & Szolnoki, 1996; Szabó & Töke,
1998; Szabó et al., 2000]. The impact of stochas-
tic payoff variations on the dynamics of the pair-
approximated prisoner’s dilemma game has been
studied in [Perc & Marhl, 2006], where the so-called
evolutionary coherence resonance has been linked
with the classical coherence resonance phenomenon
[Pikovsky & Kurths, 1997; Perc, 2005b].

Presently, we wish to extend the understanding
of the role of stochasticity in the prisoner’s dilemma
game. However, unlike previous studies, we con-
sider the impact of internal rather than external
noise, which is introduced by varying the number
of participating players of the game. In particu-
lar, we study the pair-approximated three-strategy
prisoner’s dilemma game, whereby the resulting
dynamical system is integrated stochastically with
the algorithm proposed by Gillespie [1976, 1977].
By varying the number of participating players

we control the level of internal stochasticity in
the system. Larger population sizes warrant virtu-
ally noise-free temporal evolutions of the system,
whilst smaller populations result in noisy temporal
traces of individual strategies. An important dis-
tinction in comparison to previous works is also
that presently we are not so much interested in the
facilitation of cooperation that might set in due to
the introduction of stochasticity [Perc, 2006a, 2007;
Szabó et al., 2005; Perc & Marhl, 2006], but focus
explicitly on the temporal evolution of individual
strategies in dependence on the level of noise. In
particular, we analyze the transition from stochas-
ticity to determinism of oscillatory solutions. We
show that the stochastic solution converges to its
deterministic limit as the number of participating
players increases. However, it is fascinating to dis-
cover that, although the deterministic integration of
the three-strategy prisoner’s dilemma game always
yields either steady state or fully periodic solutions
[Hauert & Szabó, 2005; Perc & Marhl, 2006], there
exists a broad range of population sizes, between
those yielding either completely stochastic or fully
periodic solution, for which the system exhibits
deterministic behavior yet fails to settle onto the
limit cycle attractor. We show that for these inter-
mediate population sizes solutions of the system are
characterized by chaos [Nowak & Sigmund, 1993;
Chen & Dong, 1998; Gao et al., 1999; Sato et al.,
2002], which might have important implications for
understanding the temporal evolution of coopera-
tion in human and animal societies, as well as eco-
nomic systems.

2. Pair Approximated Prisoner’s
Dilemma Game

We consider the three-strategy prisoner’s dilemma
that is devised from the pair approximation
[Matsuda et al., 1992] of the spatial version of the
game [Hauert & Szabó, 2005]. The pair approxima-
tion tracks the frequencies of all possible strategy
pairs in the game. The probability of finding an indi-
vidual playing strategy s accompanied by a neigh-
bor playing s′ is expressed by ps,s′, where s, s′ ∈
{c, d, l}. Notations c, d and l indicate the strategies
of cooperators, defectors and loners, respectively.
To track the time development of the frequencies
of all possible strategy pairs in the three-strategy
prisoner’s dilemma game, we thus need to deter-
mine: ṗc,c, ṗd,d, ṗl,l, ṗc,d, ṗd,c, ṗc,l, ṗl,c, ṗd,l and ṗl,d.
Because of the symmetry condition ps,s′ = ps′,s and
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the constraint pc,c+pd,d+pl,l+2pc,d+2pc,l+2pd,l = 1,
we can describe the dynamics of the system by
only five differential equations. For details regard-
ing the derivation of individual differential equa-
tions ṗs,s′ we refer the reader to [Hauert & Szabó,
2005] where the pair approximation method is accu-
rately described and to [Perc & Marhl, 2006] where
the equations are given explicitly.

The dynamics of the resulting dynamical sys-
tem is governed by strategy changes of the players,
and hence changes of the corresponding ps,s′. Each
player Pi can change its strategy by comparing its
payoff Si to the payoff Sj of its neighbour Pj in
accordance with the strategy adoption function

W [Pi ← Pj ] =
1

1 + exp
[
(Si − Sj)

K

] . (1)

The payoffs of both players (Si, Sj), acquired during
each integration step of the dynamical system, are
calculated in accordance with the payoff matrix
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where r = 0.2 determines the temptation to defect,
δ = 0.3 is the reward for voluntary participation,
whilst K = 0.1 in Eq. (1) is the uncertainty related
to the strategy adoption process [Hauert & Szabó,
2005; Szabó & Töke, 1998].

In the following, we will integrate the above-
described three-strategy prisoner’s dilemma game
stochastically with the algorithm proposed by Gille-
spie [1977], and focus on the transition from
stochasticity to determinism in the temporal evo-
lution of the density of individual strategies Fs =∑

s′ ps,s′, where s′ runs over the set of all possi-
ble strategies under consideration. The main sys-
tem parameter will be the number of participating
players n, which is the equivalent of the number
of participating molecules in a chemical reaction.
For small n the Gillespie’s algorithm yields erratic
stochastic solutions, which converge to the deter-
ministic solution when n is sufficiently large.

3. Results

We start by visually examining spatial portraits of
the system obtained by different numbers of par-
ticipating players n. Figure 1 shows the results.
While a small number of players (n = 4 · 103)
obviously yields an erratic solution in the phase
space with nonsmooth temporal evolution of indi-
vidual strategies, an increase of the population size
clearly rectifies the situation and ultimately results
in a deterministic-like solution in the phase space
(n = 1024 · 103). Presently, however, we focus on
solutions that can be obtained between these two
extremes. In particular, the solution obtained by
n = 128 · 103 appears smooth and thus determin-
istic, yet the system fails to settle onto the limit
cycle attractor by a considerable margin. One might
be able to infer considerable qualitative similar-
ity between the phase space solution obtained by
n = 128 · 103 and a deterministic chaotic attrac-
tor. Next, we will lend support to this assumption
by employing a determinism test [Kaplan & Glass,
1992] and an algorithm for the estimation of the
maximal Lyapunov exponent [Wolf et al., 1985].
Both methods were developed under the framework
of nonlinear time series analysis [Kantz & Schreiber,
1997] and are thus essentially intended for the anal-
ysis of observed data. However, since solutions of
the stochastic integration procedure obviously can-
not be described by deterministic differential equa-
tions the present situation fully justifies such an
approach.

To evaluate the level of determinism in the sys-
tem, we thus use the method originally proposed
by Kaplan and Glass [1992], which is based on
measuring average directional vectors in a coarse-
grained phase space. The idea is that, in case
of a deterministic solution, neighbouring trajecto-
ries in a small portion of the phase space should
all point in the same direction, i.e. not cross,
thus assuring uniqueness of solutions, which is the
hallmark of determinism. The determinism factor
0 ≤ κ ≤ 1 is obtained by calculating the aver-
age length of all resultant vectors pertaining to a
particular phase space box, whereby the resultant
vectors are obtained by assigning a unit vector to
each pass of the trajectory through a particular
phase space box and calculating their vector sum.
Hence, if the dynamics of oscillations is determin-
istic, the average length of all directional vectors κ
will be close to 1, while for a completely random
system κ = 0. Results for different n are presented
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Fig. 1. Phase space portraits for different n. (Top left) n = 4 · 103, (top right) n = 16 · 103, (bottom left) n = 128 · 103,
(bottom right) n = 1024 · 103. The gray limit cycle corresponds to the deterministic solution of the system obtained via the
conventional Runge–Kutta numerical integration procedure.

in Fig. 2. It is evident that κ converges to 1 as n
increases. Remarkably though, the convergence of
κ→ 1 beyond n = 64·103 is very slow and marginal.

As can be inferred visually from Fig. 1, the solu-
tion obtained by n = 1024 ·103 is virtually identical
to the solution obtained via deterministic integra-
tion of governing differential equations, and thus is
characterized by a limit cycle in the phase space.
Accordingly, the pertaining determinism factor is
κ ≈ 1, as can be inferred from Fig. 2. However,

there exists an extensive range of solutions spanning
over 128 · 103 ≤ n < 1024 · 103 for which solutions
are essentially deterministic, but yet fail to settle
completely onto the limit cycle attractor, as shown
in the bottom left panel of Fig. 1. In fact, these
solutions in the phase space remarkably resemble
chaotic attractors one can obtain by determinis-
tic integration of some well-known chaotic systems,
as are, for example, the Lorenz or Rössler system
[Perc, 2005a; Celikovsky & Chen, 2002]. However,
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Fig. 2. Determinism factor of phase space solutions (Fc, Fd,
Fl) obtained by different n.

it is fascinating to discover that the deterministic
integration of the three-strategy prisoner’s dilemma
game always yields either steady state or fully
periodic solutions [Hauert & Szabó, 2005; Perc &
Marhl, 2006]. It thus appears as if the transition
from stochasticity to periodicity is characterized
by innate deterministic chaotic states that can be
revealed by the stochastic integration procedure.

In order to confirm this, we calculate the maxi-
mal Lyapunov exponent λmax of obtained solutions
in the phase space via the algorithm proposed by
Wolf et al. [1985]. Again, note that since the solu-
tions were obtained via Monte-Carlo simulations,
the governing differential equations have no merit
with respect to the oscillatory behavior of the sys-
tem. We thus employ the algorithm developed in
the framework of nonlinear time series [Kantz &
Schreiber, 1997], only that presently the original
phase space, given by the set of variables (Fc, Fd,
Fl), instead of the reconstructed phase space from
a single observed quantity is used. Results for dif-
ferent n are presented in Fig. 3. It is evident that
for n < 1024 · 103 the maximal Lyapunov expo-
nent converges very convincingly to a positive value.
In particular, λmax(n = 128 · 103) ≈ 0.13 s−1 and
λmax(n = 256 · 103) ≈ 0.045 s−1. Due to the con-
vergence of the stochastic solution to the deter-
ministic limit cycle solution as n increases the
convergent value of λmax decreases steadily towards
λmax(n = 1024 · 103) ≈ 0.0 s−1. Still, however, there
exists an extensive range of population sizes where
λmax > 0, which confirms the necessity of chaos
between order and randomness in the three-strategy
pair-approximated prisoner’s dilemma game.

−

−

−

−

Fig. 3. Convergence of maximal Lyapunov exponents of

phase space solutions (Fc, Fd, Fl) obtained by n = 128 · 103

(solid line), n = 256 · 103 (dashed line) and n = 1024 · 103

(dotted line) as time increases.

4. Summary

We study the transition from stochasticity to deter-
minism in oscillatory solutions of the three-strategy
pair-approximated prisoner’s dilemma game. We
find that, although the deterministic integration of
the three-strategy prisoner’s dilemma game always
yields either steady state or fully periodic solutions,
there exists a broad range of population sizes for
which the system exhibits chaotic behavior.

Our findings reveal an interesting mechanism
for generation of unpredictable chaotic behavior. In
particular, it appears that the stochastic integration
procedure induces deviations from the limit cycle
attractor, which ultimately result in unpredictable
deterministic behavior if the system size (in our case
the number of participating players) is appropri-
ately adjusted. Additional studies will be necessary
to clarify necessary conditions for the observation of
the presently reported phenomenon. However, our
preliminaries studies suggest that three degrees of
freedom and nonlinearity in differential equations
of time-continuous systems might be sufficient con-
ditions warranting the observation of deterministic
chaos out of stochastic integration by appropriate
system sizes.

The present study imposes an interesting
viewpoint on the nature of temporal evolution of
behavioral strategies in human and animal societies
as well as economic cycles. In particular, it appears
that even if the system dynamics is described by
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fairly simple and deterministic rules, its temporal
evolution is still subjected to unpredictability unless
the system size is extremely large. We argue that
this might well be the reason for widespread pres-
ence of unpredictability in real life in the broad-
est possible sense. Importantly, we note that only
extremely large population sizes, in conjunction
with transparent deterministic rules, are able to
yield fully predictable behavior. Otherwise, the
temporal evolution of the system is either stochas-
tic, or for somewhat larger system sizes chaotic at
best, while periodic solutions are attainable only in
the limiting cases that likely surpass the boundaries
of real life feasibility and validity.
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