International Journal of Bifurcation and Chaos, Vol. 21, No. 6 (2011) 1689-1699
© World Scientific Publishing Company
DOI: 10.1142/50218127411029367

EXPERIMENTAL OBSERVATION
OF A CHAOS-TO-CHAOS TRANSITION
IN LASER DROPLET GENERATION

BLAZ KRESE*, MATJAZ PERC' and EDVARD GOVEKAR*
*Laboratory of Synergetics, Faculty of Mechanical Engineering,
University of Ljubljana, Askerceva cesta 0,

SI-1000 Ljubljana, Slovenia

"Department of Physics, Faculty of Natural Sciences and Mathematics,
University of Maribor, Koroska cesta 160,
SI-2000 Maribor, Slovenia

Received May 20, 2010

We examine the dynamics of laser droplet generation that is dependent on the detachment
pulse power. In the absence of the detachment pulse, undulating pendant droplets are formed
at the end of a properly fed metal wire due to the impact of the primary laser pulse that
induces melting. Eventually, these droplets detach, i.e. overcome the surface tension, because of
their increasing mass. We show that this spontaneous dripping is deterministically chaotic by
using a positive largest Lyapunov exponent and a negative divergence. In the presence of the
detachment pulse, however, the generation of droplets is fastened depending on the pulse power.
At high powers, the spontaneity of dripping is completely overshadowed by the impact of the
detachment pulse. Still, amplitude chaos can be detected, which similarly as the spontaneous
dripping, is characterized by a positive largest Lyapunov exponent and a negative divergence,
thus indicating that the observed dynamics is deterministically chaotic with an attractor as
solution in the phase space. In the intermediate regime, i.e. for low and medium detachment
pulse powers, the two chaotic states compete for supremacy, yielding an intermittent period-
doubling to amplitude chaos transition, which we characterize by means of recurrence plots and
their properties. Altogether, the transition from spontaneous to triggered laser droplet generation
is characterized by a chaos-to-chaos transition with an intermediate dynamically nonstationary
phase in-between. Since metal droplets can be used in various industrial applications, we hope
that the accurate determination of the dynamical properties underlying their formation will
facilitate their use and guide future attempts at mathematical modeling.
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1.

The theory of dynamical systems and deterministic
chaos [Schuster, 1989; Strogatz, 1994; Eckmann &
Ruelle, 1985] provides the backbone for our under-

Introduction of nonlinear dynamics on observed data. Although
sometimes still unnoticed, chaotic behavior [Gan,
2009], fractal structures [Aguirre et al., 2009] and

synchronization [Pikovsky et al., 2001; Wang et al.,

standing of many natural and technological phe-
nomena. The importance of nonlinearities inherent
to many of them and the resulting ubiquitousness
of deterministic chaos have led scientists and engi-
neers of various fields to develop and use methods
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2006; Wang et al., 2007] are deeply rooted in
several fields of science [Abarbanel et al., 1993;
Schreiber, 1999]. In contrast to the universal avowal
of the chaos theory, the complexity and richness of
the dynamics underlying many technical processes
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often remains unexplored or is even completely
overlooked. A vast potential in merging chaos the-
ory with real life engineering systems lies within
chaos control [Ott et al., 1990; Chen, 1999; Ma
et al., 2008; Ma et al., 2010] to directly inter-
fere with the system states. Due to the complexity
of natural and technological processes, mathemat-
ical models are often nonexistent, so we face the
problem of characterizing the process by analyzing
experimental data. Nonlinear time series analysis
[Abarbanel, 1996; Kantz & Schreiber, 1997] offers
methods to determine dynamical properties of a
particular system by analyzing the time series of
one characteristic variable of the process. While
these methods enable us to bridge the gap between
the observed behavior and the theory of dynamical
systems, we emphasize that the time series under
study needs to meet conditions of having properties
that are typical of deterministic systems [Kaplan &
Glass, 1992; Kantz & Schreiber, 1997]. Indeed, we
point out the importance of verification whether the
observed irregular behavior is deterministic and sta-
tionary in order to make the results of the nonlinear
analysis meaningful.

In this paper we propose a set of experiments
in order to study the dynamics of laser droplet
generation, in particular, the influence of the
detachment pulse to it. Similarly to the tradi-
tional dripping faucet experiment [Shaw, 1984], the
surface tension and gravity force play a crucial
role in the laser droplet generation. However the
latter is governed by additional physical phenom-
ena, including light-metal interaction, heating and
phase transitions, which distinguish the two pro-
cesses significantly. A laser pulse is used to melt
the tip of the vertically placed metal wire. From
the molten end a pendant droplet is formed due
to the interplay between surface tension and grav-
ity force. The droplet detaches when a surface ten-
sion force is overcome. This can either happen as
a result of the droplet mass growth, or through
intensive laser heating, which we apply by an addi-
tional detachment pulse at the end of the pendant
droplet formation pulse. Here, we present the sig-
nificant influence of the detachment pulse power
on the generation of laser droplets, in particular,
from the dynamics point of view. In order to do so
we recorded a set of droplet generation sequences
with various detachment pulse powers. The most
important variable to observe during the process
is the temperature of the wire end and the pen-
dant droplet. We measure this indirectly with a

high-speed infrared (IR) camera. The time course
of the temperature is finally obtained as the mean
value over the pixel intensity of the IR snapshots.
From a set of time series, we selected three char-
acteristic ones for the analysis. We start the anal-
ysis with the power spectra inspection and then
continue with the nonlinear time series analysis.
Applying the embedding theorem [Takens, 1981;
Sauer et al., 1991] to reconstruct the phase space
from a single variable, we use the mutual infor-
mation [Fraser & Swinney, 1986] and the false
nearest neighbor [Kennel et al., 1992] methods to
obtain optimal embedding parameters. A determin-
ism test [Kaplan & Glass, 1992] follows as well as
testing for nonstationarity using recurrence plots
and their quantification [Eckmann et al., 1987;
Marwan et al., 2007]. At the end, we calculate
the spectra of Lyapunov exponents [Briggs, 1990;
Parlitz, 1992] for the time series which exhibited
deterministic and stationary properties. We observe
a chaos-to-chaos transition with an intermediate
dynamically nonstationary phase in-between as the
detachment pulse power is increased. Finally, we
outline the significance of our analysis for the deeper
understanding of the process itself, as well as for
future attempts at mathematical modeling.

The paper is structured as follows. In Sec. 2 an
accurate description of the experimental setup and
the experiments is given. Section 3 is devoted to pre-
senting the results of nonlinear time series analysis,
while in the last section we summarize our findings
and conclude the paper.

2. Experimental Setup

We use a laser pulse as a source of energy in order to
generate droplets from the metal wire. The process
phenomenologically consists of two phases, i.e. the
generation of the pendant droplet and its detach-
ment. In the first phase, a primary pulse is used to
melt the end of a vertically fed metal wire. From
the molten end, a pendant droplet is formed due to
the action of surface tension and gravity force. The
surface tension drags the pendant droplet up the
wire so the wire has to be properly fed to obtain
a certain droplet volume and to ensure a proper
relative position of the laser beam with respect to
the wire. Now a droplet, undulating at the tip of
the wire, needs to detach. To achieve the detach-
ment, the surface tension force has to be overcome.
One way to reach the threshold of detachment is by
droplet mass growth, but in our case we attached
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an additional secondary pulse, i.e. the detachment
pulse, at the end of the pendant droplet formation
phase in order to stimulate the detachment of the
pendant droplet. Notably, metal droplets are being
used in many manufacturing applications, like for
instance droplet joining, where a molten droplet
is placed onto the joining spot [Dreizin, 1997,
Jeric et al., 2009; Govekar et al., 2009]. Other
potential applications include the generation of 3D
structures accomplished by selective deposition of
droplets into layers and micro casting. Laser droplet
generation is a process which encompasses the most
vital characteristics needed for these technologies.
To be able to effectively optimize and control the
process, it is essential to know its dynamics, which
we aim to determine from experimental data.

For the purpose of studying laser droplet gen-
eration we have developed an experimental sys-
tem that is schematically presented in Fig. 1. The
Nd:YAG pulse laser, opto-mechanical elements, the
wire feeder and the infrared camera are the main
parts of the experimental system. The Nd:YAG
laser is used for generating laser pulses with a wave-
length of 1.06 um. The maximal laser pulse power
is 8 kW and the pulse duration needs to be between
0.3 ms and 20 ms. The maximal pulse repetition rate
is 300 Hz with an average power of 0.25kW. The
uniform heating of the wire and process symmetry
(see Fig. 1) are achieved by division of the laser
light into three equal laser beams. By means of the
opto-mechanical elements the beams are distributed
equiangular along the wire circumference and per-
pendicularly focused onto the wire’s surface. The
wire is fed vertically by a controlled wire feeder hav-
ing a triangular velocity profile, which does not vary

Wire feeder
@
IR camera
Wire Q

Laser |[—— 120°

120° >\

“—— Laser beams

Optical fiber

A Opto-mechanical element

Fig. 1. Schematic presentation of the experimental setup.
The temperature is measured indirectly by means of a high-
speed infrared (IR) camera (see main text for details).

with the detachment dynamics and is applied in
order to synchronize the triggering of the laser pulse
with the stepwise wire feeding. Since the tempera-
ture is the most important variable of the process,
it was indirectly measured by a high-speed infrared
camera. Given the properties of the light emitted
by the wire end and the pendant droplets, the snap-
shots were acquired at wavelengths between 3.5 ym
and 5 pm.

According to the given description of the exper-
imental setup there are several parameters that
influence the process of laser droplet generation.
Here we present those that were important for car-
rying out the experiments. We used a nickel wire of
diameter 0.6 mm. A rectangular laser pulse of power
1.44kW and duration of 12ms was used as a pri-
mary pulse in order to form a pendant droplet. Sub-
sequently a detachment pulse of 1.2 ms duration and
various powers was attached to the primary pulse
with a delay of 2.0 ms. The power of the detachment
pulse was varied from 0 kW to 8 kW with a step of
0.5 kW. The so composed laser pulse was triggered
with a frequency of 3 Hz. The sampling frequency
of the infrared camera was 1428 Hz (except for the
time series presented in Fig. 2, where we have used
3147 Hz) at a snapshot size of 32 x 64 pixels. Finally,
the spatiotemporal temperature field was converted
into a single scalar time series by calculating the
mean value of the pixel intensity of every snap-
shot. A set of resulting time series in dependence
on the power of the detachment pulse is shown
in Fig. 2.

3. Time Series Analysis

We begin with visual inspection of acquired time
courses of the temperature profile, as obtained from
the high-speed infrared images, for different detach-
ment pulse powers in Fig. 2. It can be observed
that the dynamics changes rather dramatically from
the top (Pg, = 0kW) to the bottom panel (Py, =
8kW). In the upper-most series, low and high fre-
quency components can be inferred, which can be
linked nicely with the two-phase process of spon-
taneous laser droplet generation. Namely, the high
frequency oscillations correspond to droplet vol-
ume (mass) and temperature growth, which is fol-
lowed by a sudden drop of the signal amplitude
due to the spontaneous droplet detachment, giving
rise to the low frequency component. On the other
hand, in the lower-most panel a single frequency
dominates, which is that of the detachment pulse
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Characteristic excerpts of time courses, capturing the process of laser droplet generation via the pixel intensity of

high-speed infrared snapshots, for different powers of the detachment pulse. From top to bottom the detachment pulse power
Py, was increased from 0kW to 8 kW via increments of 0.5kW. In what follows, we will focus on the time courses obtained
for 0OkW (blue), 5 kW (green) and 8 kW (cyan). Prior to the analysis, the three time courses were subject to Wiener filtering,
removing the high-frequency noisy component that is due to the infrared imaging, and were rescaled to the unit interval for
simplicity. Note also that the depicted traces were recorded at twice the sampling frequency that was subsequently used for

the time series analysis presented in Sec. 3.

triggering. Note that for high detachment pulse
powers the droplet detaches virtually every time
the laser pulse is triggered, thus completely overrid-
ing the spontaneous growth of droplet volume and
mass that can be observed in the upper-most series
(high-frequency small-amplitude undulations). For
intermediate detachment pulse powers, however,
droplets detached only occasionally following the

triggering of the laser pulse, while sometimes they
remain undulating and acquiring mass via the
spontaneous dripping mechanism. The result is a
mixture between spontaneous and forced dripping,
manifesting as what appears to be an intermit-
tent dynamical state between two complex behav-
iors (see e.g. the time course colored green in Fig. 2
depicting the dynamics recorder at Py, = 5kW).



Ezperimental Observation of a Chaos-to-Chaos Transition in Laser Droplet Generation 1693

In what follows, we will use methods of nonlinear
time series analysis in order to quantify the dynam-
ics for different detachment pulse powers, focusing
specifically on time courses obtained for Py, = 0 kW
(blue), Py, = 5kW (green) and Py, = 8kW (cyan).
This coloring for the three considered series will be
used throughout this work.

Before commencing with nonlinear time series
analysis, however, it is instructive to have a look
at the power spectra of the three series to get
an impression about their complexity. Figure 3
features the obtained results in linear and logarith-
mic scale. Especially in logarithmic scale the con-
tinuity of spectra in all three cases is visible very
well, thus suggesting that the behavior is, besides
being characterized by some predominant frequen-
cies, inherently irregular. Harmonic spikes domi-
nate for Pz, = 8kW, thus indicating a strong
periodic component, which is due to the periodic
action of the detachment pulse. In-between the two
extreme cases the power spectrum is a mixture of
both, on one hand having a somewhat sharper peri-
odic component than the Py, = 0kW case, but
on the other still having significantly more continu-
ity and a much stronger low-frequency component
(due to the occasional spontaneous dripping) than
the Py, = 8kW case. Results presented in Fig. 3
thus support our visual assessment of the dynamics
based on time courses in Fig. 2, but also clearly out-
line the necessity for more sophisticated methods of
analysis based on nonlinear statistics.

Underlying almost all methods of nonlinear
time series analysis is the embedding theorem
[Takens, 1981; Sauer et al., 1991], which states that
for a large enough embedding dimension m the
delay vectors

2(i) = [Ti, Titr, Tit2r, -+ Ti (m—1)7) (1)

yield a phase space that has exactly the same
properties as the one formed by the original vari-
ables of the system. In Eq. (1) variables z;, z;r,
Tiy2rs -+ Tip(m—1)r denote values (rescaled to the
unit interval for simplicity) of the indirectly mea-
sured temperature at times t = idt, t = (i + 7)dt,
t = (i+27)dt,...,t = [i + (m — 1)7]d¢t, respec-
tively, whereby 7 is the embedding delay and dt is
the sampling time of data points equaling 7-107% s
in all three cases. However, while the implementa-
tion of Eq. (1) is straightforward, we first have to
determine proper values for the embedding parame-
ters m and 7. For this purpose, the mutual informa-
tion [Fraser & Swinney, 1986] and the false nearest
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Fig. 3. Power spectra of the three examined time courses.

From top to bottom the detachment pulse powers are Py, =
0,5 and 8 kW, respectively. Insets feature the power spectra
in logarithmic scale. Notice the continuity in all the spectra,
visible especially good on logarithmic scale, albeit the peri-
odic impact of detachment pulses becomes clearly visible in
the bottom panel (harmonic spikes). Still, the power spec-
tra hint toward deterministically chaotic behavior, as we will
show using nonlinear methods of time series analysis in what
follows.
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neighbor method [Kennel et al., 1992] can be used,
respectively. Since the mutual information between
x; and x;4, quantifies the amount of information
we have about the state x;,, presuming we know x;
[Shaw, 1981], Fraser and Swinney [1986] proposed
to use the first minimum of the mutual informa-
tion as the optimal embedding delay. Results for
the three considered detachment pulse powers are
stated in the caption of Fig. 5. The false nearest
neighbor method, on the other hand, relies on the
assumption that the phase space of a determin-
istic system folds and unfolds smoothly with no
sudden irregularities appearing in its structure. By
exploiting this assumption, one comes to the conclu-
sion that points that are close in the reconstructed
embedding space have to stay sufficiently close also
during forward iteration. If a phase space point has
a close neighbor that does not fulfil this criterion,
it is marked as having a false nearest neighbor. As
soon as m is chosen sufficiently large, the projection
effects due to a mapping of the time series onto a
space with too few degrees of freedom should dis-
appear, and with them the fraction of points that
have a false nearest neighbor (fnn) should converge
to zero [Kennel et al., 1992]. Note that the method
implicitly assumes that a deterministic time series
is given as input. This, however, cannot be taken
for granted, and indeed a simple extension of the
originally proposed false nearest neighbor method
[Hegger & Kantz, 1999] can be used also as a deter-
minism test. Here we employ the classical algorithm
proposed by Kennel et al. [1992] and use the deter-
minism test due to Kaplan and Glass [1992]. Results
of the false nearest neighbor method are presented
in Fig. 4, showing that fnn — 0 at m = 5 for all
three cases. We will thus use these values as input
for Eq. (1) in what follows.

Having all the parameters at hand for recon-
structing the phase space from the observed vari-
able (see Fig. 5), we can proceed by employing the
determinism test proposed by Kaplan and Glass
[1992]. The test is simple but effective, measur-
ing average directional vectors in a coarse-grained
embedding space. The idea is that neighboring tra-
jectories in a small portion of the embedding space
should all point in the same direction, thus assuring
uniqueness of solutions in the phase space, which is
the hallmark of determinism. To perform the test,
the embedding space has to be coarse grained into
equally sized boxes. The average directional vector
pertaining to a particular box is then obtained as
follows. Each pass p of the trajectory through the
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00 ... ....... s . .............. S

Fig. 4. Determination of the minimally required embed-
ding dimension. The fraction of false nearest neighbors (fnn)
drops close (<0.01) to zero at m = 5 for all three time series.
For the determination of false nearest neighbors [Kennel
et al., 1992], we have used the first minimum of the mutual
information for the embedding delay 7 [Fraser & Swinney,
1986]. Specifically, the values were 7 = 260,21 and 13 for
detachment pulse powers Py, = 0,5 and 8 kW, respectively.

kth box generates a unit vector e,, whose direction
is determined by the phase space point where the
trajectory first enters the box and the phase space
point where the trajectory leaves the box. The aver-
age directional vector Vi through the kth box is
then

n
Vi=n"") e, (2)
p=1

where n is the number of all passes through the kth
box. Completing this task for all occupied boxes
gives us a directional approximation for the vector
field. If the time series originates from a determin-
istic system, and the coarse grained partitioning is
fine enough, the obtained directional vector field
V. should consist solely of vectors that have unit
length. Hence, if the system is deterministic, the
average length of all the directional vectors s will
be close to one. The determinism factor pertain-
ing to the five-dimensional embedding spaces pre-
sented in Fig. 5 that were coarse grained into a
12x12x---x 12 grid is K > 0.9, which confirms the
deterministic nature of all three studied time series.

By now, we have successfully reconstructed the
phase space from the observed time courses and
established their deterministic origin. In the con-
tinuation, it would be possible to apply methods
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Fig. 5. Two-dimensional projections of the phase space for
Pyp = 0kW (top panel), Py, = 5kW (middle panel) and
Py, = 8kW (bottom panel). Reconstruction parameters were
those stated in the caption of Fig. 4. Determinism factor of
all three phase spaces, determined according to the algorithm
proposed by Kaplan and Glass [1992], is x > 0.9, thus con-
firming the deterministic nature of the examined laser droplet
generation dynamics.

of nonlinear time series analysis that yield invari-
ant quantities of the system, such as for example,
Lyapunov exponents [Briggs, 1990; Bryant et al.,
1990; Abarbanel et al., 1992; Holzfuss & Par-
litz, 1991; Parlitz, 1992] or dimension estimates
[Grassberger & Procaccia, 1983; Theiler, 1986;
Kantz & Schreiber, 1994], in order to obtain deeper
insights into the system dynamics. However, these
quantities could be meaningless if the studied time
courses did not originate from a stationary system.
Thus, in order to justify further analysis, we have
to verify if the studied series possess properties that
are typical of stationary courses.

An appealing and simple graphical tool that
enables the assessment of stationarity in an
observed system is the recurrence plot [Eckmann
et al., 1987; Marwan et al., 2007]. Recurrent behav-
ior is an inherent property of oscillating systems.
For regular oscillators, time-distinct states in the
phase space can be arbitrarily close, i.e. ||z(i) —
z(j)|| = 0 if times ¢ and j differ exactly by some
integer of the oscillation period, whereas for chaotic
systems this distance is always finite. The recur-
rence plot is a two-dimensional square-grid graph
with time units on both axes, whereby, in the most
common case [Eckmann et al., 1987; Marwan et al.,
2007], points (4, j) that satisfy ||z(:) —z(j)|| < € are
marked with color while all others are left white. It
is worth noting that depending on the application,
there also exist several variations of recurrence plots
that can be used for determining various proper-
ties of observed dynamics [Zbilut & Webber, 1992;
Manuca & Savit, 1996; Atay & Altintas, 1999;
Marwan & Kurths, 2002; Thiel et al., 2004a; Thiel
et al., 2004b; Thiel et al., 2004c; Donner et al.,
2010a, 2010b]. For the visual assessment of recur-
rence plots, the most important features are the
large and small scale structure, latter being termed
typology and texture [Eckmann et al., 1987], respec-
tively. By wvisually inspecting the typology and
texture of a recurrence plot, properties of the sys-
tem such as stationarity and determinism can be
assessed. In particular, a homogenous typology is an
indicator that the studied data set originated from
a stationary process. Contrary, a nonhomogenous or
disrupting typology indicates nonstationarity in the
system. Texture, on the other, can provide informa-
tion regarding deterministic versus stochastic origin
of the signal, as well as give insights on the complex-
ity of oscillations. Lack of texture, i.e. solely isolated
recurrence points, often indicate stochastic origin
of the examined time series, while diagonal lines
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Fig. 6. Recurrence plots of the three examined time courses.
From top to bottom the detachment pulse powers are Py, =
0,5 and 8kW, respectively. For each time series we have
selected € such that the recurrence rate was approximately
1%, which means 75%, 15% and 30% of the standard devia-
tion of the phase space from top to bottom, respectively. Note
the obvious nonstationary dynamics in the middle panel,
which is a consequence of the transition from spontaneous
to triggered dripping. At Py, = 5kW both processes play
a noticeable role in the overall system dynamics, thus mak-
ing its characterization via invariants, such as the Lyapunov
exponents, questionable.

indicate deterministic oscillations, which depend-
ing on the complexity of emerged small-scale pat-
terns can be further classified into simple or chaotic
oscillations. The recurrence plots of the three stud-
ied time courses are presented in Fig. 6. It can be
observed that for Py, = 0kW (top panel; blue) and
Py, = 8kW (bottom panel; cyan) the typology is
homogenous, while for Py, = 5kW (middle panel;
green) it is not. In particular, several thick hori-
zontal and vertical white lines disrupt the other-
wise fairly homogenous squares lying in-between.
From this, it can be concluded that the record-
ing for Py, = 0kW and Py, = 8kW stem from
a dynamically stationary process, while the record-
ing for Py, = 5kW is most likely nonstationary. To
strengthen this visual assessment, we have deter-
mined also the length of the longest diagonal Lax
in 11 equally long segments in each of the three time
courses. Results presented in Fig. 7 clearly attest
to the fact that, while for Pj, = 0kW (blue) and
Py, = 8kW (cyan) the dynamics is the same in all
segments, for Py, = 5kW (green) this is not the case
as indeed 1/Lax jumps between the two extreme
cases of spontaneous (blue) and triggered (cyan)
dripping. From this, we conclude that only the time
courses obtained for Py, = 0kW and Py, = 8kW
are both deterministic and dynamically stationary,
while the one for Py, = 5kW is deterministic but
nonstationary. This in turn implies that the transi-
tion between spontaneous and forced (triggered by

1/ Lmam
x 10°
3 . . . . . .
-—— —
2 F 4
1 o 4
O 1 1 1 1 1 1
1 3 5 7 9 11
h
Fig. 7. The recurrence quantification analysis of recurrence

plots presented in Fig. 6. Depicted are the inverse lengths
1/Lmax of the longest diagonal line, whereby the three time
courses were partitioned into 11 equally long nonoverlapping
segments each. While for Py, = 0kW (blue) and Py, = 8kW
(cyan) the values vary insignificantly over the windows, for
Py, = 5kW (green) the nonstationarity is obvious. Indeed,
1/Lmax jumps between the two extreme cases of spontaneous
(blue) and triggered (cyan) dripping, thus evidencing nicely
the transition taking place between the two dynamical states.
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means of the detachment pulse) dripping is char-
acterized by an intermittent mixture of the two
extreme cases, whereby the forced dynamics is more
prevalent the higher the power of the detachment
pulse.

Finally, it remains of interest to accurately
quantify the dynamics of the two time courses
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Fig. 8. Spectra of Lyapunov exponents determined using

radial basis functions for the approximation of the flow. Top
panel shows results for Py, = 0kW and the bottom panel
depicts results for Py, = 8kW. In both panels from top
to bottom the lines depict the convergence of the largest
(A1) to the smallest (A5; most negative) Lyapunov exponent
as a function of the discrete time 7. The lowest line (red)
shows the sum of all five exponents, i.e. the divergence A =
> G=1,...;m Aj. A linear fit towards the end of the curves gives
for the top panel A} = (3.240.1)s™%, Ay = (0.0+0.1)s~ ! and
A = —(145+3)s~ !, while for the bottom panel we have A\; =
(9.240.2)s7H Ay = (0.0+£0.2)s™ and A = —(70 £ 2)s™ 1.
Note that the vertical axis has a break in both panels.

that we found to be both deterministic as well
as stationary. For this purpose, we calculate the
spectra of Lyapunov exponents A; where j = 1,
2,...,m, knowing with reasonable certainty that
the obtained results are due to deterministic nonlin-
ear dynamics rather than noise or varying systems
parameters during data acquisition. We employ
radial basis functions for the approximation of the
flow in the phase space. Using the phase space
reconstruction parameters obtained above, M = 10
nearest neighbors of each z(i) to make the fit, and
the stiffness parameter r = 7 [Parlitz, 1992], the
exponents change their sign upon time reversal of
the flow and converge robustly as the number of
iterations increases. Figure 8 features the individ-
ual convergence curves, from which we obtain, for
the top panel (Py, = 0kW) A\; = (3.2 £0.1)s7 1,
A2 = (0.0 £ 0.1)s7! and the divergence as the sum
over all \; equal to A = —(145+3)s™!, while for
the bottom panel (Py, = 8kW) we have \; = (9.2+
0.2)s75 A= (0.0£0.2)s7  and A = —(70 £ 2)s~ L.
From the positive largest Lyapunov exponent, the
vanishing second Lyapunov exponent, and the nega-
tive divergence, we can conclude that the dynamics
of laser droplet generation, irrespective of whether
it is spontaneous or forced by means of a strong
detachment pulse, is deterministically chaotic, and
that there exists a stable attractor in the phase
space to which any given cloud of initial condition
converges in time. A distinctive property of the two
chaotic states is that the forced dynamical behav-
ioral has a strong periodic component with notice-
able amplitude modulation, i.e. amplitude chaos,
while the spontaneous dripping is primarily fre-
quency modulated, i.e. period-doubling chaos. The
transition from spontaneous to the forced laser
droplet generation is thus characterized by a chaos-
to-chaos transition with an intermittent dynami-
cally nonstationary phase in-between.

4. Summary

We have examined an experimental setup with the
aim of determining the dynamics of laser droplet
generation in dependence on the detachment pulse
power. Using a high-speed infrared camera, we have
indirectly measured the spatiotemporal profile of
temperature of the molten end of the wire and the
pending droplets. Subsequently, the time courses
were obtained as the mean value over the pixel
intensity of every infrared snapshot, and analyzed
systematically with methods of linear and nonlinear
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time series analysis. After reconstructing the phase
space from the observed variables, we have verified
that the later have properties that are typical for
deterministic systems. We have shown that the min-
imally required embedding dimension is five, which
altogether suggests that it would be justified to
mathematically model the process of laser droplet
generation with no more than five first-order ordi-
nary differential equations. Subsequently, we have
constructed and quantified recurrence plots to show
that only the fully spontaneous and fully forced
time courses are dynamically stationary, while in
the region of intermediate detachment pulse pow-
ers the dynamics is nonstationary. Accordingly, we
have determined the whole spectra of Lyapunov
exponents for the two extreme cases by approx-
imating the flow in the phase space with radial
basis functions. Our calculations revealed that the
largest Lyapunov exponent is positive, the second is
zero, while the divergence is negative, thus obtain-
ing strong indicators that the observed dynamics,
either spontaneous or forced, is deterministically
chaotic with an attractor as solution in the phase
space. The transition from spontaneous to forced
laser droplet generation is thus an example of an
experimental realization of a chaos-to-chaos tran-
sition with an intermediate dynamically nonsta-
tionary phase. Notably, although the laser droplet
generation is governed by additional physical phe-
nomena, including light-metal interaction, heating
and phase transitions, the dynamics of the pro-
cess is similar to the one observed in traditional
dripping faucet experiments. In addition, the pre-
sented results indicate that nonlinearity is an innate
ingredient of laser droplet generation, which will be
taken into account in future modeling and control-
ling attempts. We hope that acquired deeper under-
standing of the examined process will be of value
when striving towards the integration of the pro-
cess into outlined industrial applications.
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