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Over the past few decades, interval arithmetic has been attracting widespread interest from the
scientific community. With the expansion of computing power, scientific computing is encounter-
ing a noteworthy shift from floating-point arithmetic toward increased use of interval arithmetic.
Notwithstanding the significant reliability of interval arithmetic, this paper presents a theoret-
ical inconsistency in a simulation of dynamical systems using a well-known implementation of
arithmetic interval. We have observed that two natural interval extensions present an empty
intersection during a finite time range, which is contrary to the fundamental theorem of interval
analysis. We have proposed a procedure to at least partially overcome this problem, based on
the union of the two generated pseudo-orbits. This paper also shows a successful case of inter-
val arithmetic application in the reduction of interval width size on the simulation of discrete
map. The implications of our findings on the reliability of scientific computing using interval
arithmetic have been properly addressed using two numerical examples.
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1. Introduction

Numerical simulations play a fundamental role in
the analysis of dynamical systems and have been
applied to different subareas in nonlinear dynam-
ics, such as synchronization, bifurcation and chaos,
complex networks, conservative systems and nonlin-
ear partial differential equations [Macau & Pando
Lambruschini, 2014; Saberi Nik, M] It is usually
necessary to use recursive functions to describe and
solve many types of systems and problems [Feigen-
baum, [1978: [Hammel et all, [1987; T.ozi. 2013: Nepo-
muceno, 2014]. Thus, the control of numerical error
propagation has been considered highly important,
particularly for nonlinear systems mg

: Nepomuceno & Mar-
tins, 2016].

Over the past few decades, interval arithmetic
IBJlm.ﬂ, 11999; Moore et all, DDQQ] has been attract-
ing widespread interest from the scientific commu-
nity. This increasing interest has resulted in a myr-
iad of applied and theoretical works. Regarding the
theoretical investigations, many versions of interval
arithmetic have been suggested in literature. One
of the most respected versions is widely recognized
as the standard arithmetic interval (SIA) [Moore

et al., 2009; [Piegat & Landowski, [2017]. SIA has a

long history, but it is usually attributed to Moore’s
development to a mature stage |[Chalco-Cano et al.,
]. In this work, we are focusing our attention
on SIA.

This interest on STA is mainly motivated to
evaluate the effects of approximation errors and
inaccurate inputs [Bruguerd, 2014]. The SIA is
a tool that defines sets of intervals rather than
real numbers, delimiting a range of possible values
to represent some given data [Hamgma&&s], |20Qj]
Thereby, this technique allows a computer user to
obtain precise results, ensuring that a true solution
lies on the range of values limited by the corre-
sponding interval m, ]. There are libraries
developed for interval arithmetic, such as C-XSC
|Hofschuster & Krimer. 2004] and CoStLy [Neher &
Eble, m, both developed for the C4++ language,
in addition to Intlab , , developed for
Matlab and Octave. With the expansion of com-
puting power, scientific computing is encountering
a noteworthy shift from floating-point arithmetic
toward increased use of interval arithmetic. It has
even been considered as a complete and exception-

free calculus , ]

) )

Although, the success of interval arithmetic
is widely accepted, some concerns have also been
reported in_literature. The authors in [Piegat &
Landowski, l20.]1|, 120_]_51] have presented a consider-
able list of works in which the SIA has had some
faults. The main worries are related to the overes-
timation of results, the dependence on the form of
the mathematical expression used in problem solv-
ing, the calculation of interval borders and the lack
of important properties, such as distributivity and
multiplicative cancellation. According to Piegat and
Landowski M], these problems lead to controver-
sial results.

The main principle of SIA has been well
reported in - ,2014]: “in all com-
putations including (or most especially) those per-
formed on a digital computer should never lose any
possible value.” Although, great effort has been
devoted to accomplish this principle, real imple-
mentations, such as those implemented in a digital
computer, may not always be completely successful
[Piegat & Landowski, 12015, [2017]. This paper
reports the use of interval intersection and mean
value form to reduce the interval width. In one
of the numerical experiments, we have surprisingly
found a theoretical inconsistency in the use of Intlab

) M] We were working on the simulation
of a simple RLC circuit. The reduction of the inter-
val using two pseudo-orbits (in a similar approach
seen in ceno & Martins, 2016: Nepomu-
ceno et al., ﬂ]) has not been possible because
its intersections were empty for some time instants.
This encountered problem has allowed us to make
a clear parallel between floating-point and interval
arithmetic. For instance, digital filters are normally
implemented in hardware using the two complement
arithmetic for the addition operation. The authors
in |Ling et all, 2006] have reported that in such sit-
uation first and second order linear filters are actu-
ally nonlinear discrete-time systems. That sort of
problem in physical implementation is not differ-
ent for SIA. Following these ideas, the main con-
tribution of this paper is twofold. First, we want
to revisit the reduction of interval width using the
mean value form and interval intersection. We have
investigated a discrete dynamical system, where the
intersection has been successfully applied to reduce
the interval width. The second investigated exam-
ple has been focused on the simulation of RLC cir-
cuit with uncertain parameters. Our objective is to
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compare the result of the RLC circuit with experi-
mental data, which has intensive pedagogical utility
,lZQlﬂ] As already mentioned, we
have not been able to proceed with the intersection
because the simulation of analytical result consider-
ing the uncertain parameters has led us to find the
empty intersection. The second contribution of this
paper is a simple procedure to overcome this prob-
lem at least partially. To avoid the empty intersec-
tion, we have built a new pseudo-orbit based on the
union of the pseudo-orbits generated by two differ-
ent interval extensions. The results show a satisfac-
tory agreement between experimental data and our
approach.
The remainder of the paper proceeds as follows.
In Sec. 2 we recall some preliminary concepts of
SIA and discrete dynamical systems defined by
recursive functions. In Sec. Bl we present the devel-
oped method for the simulation of logistic map and
an electric circuit. Section H is devoted to present
the results, and the final remarks are given in Sec. .

2. Theoretical Foundation

In this section, we present some background that
supports the method presented in the following
section.

2.1. Recursive function

A recursive function can be defined as follows:

Definition 2.1. Let I be a metric space such that
I'CRand f:I— R. A recursive function can be
defined as

T = f(Tn-1). (1)

Discrete-time series can be generated by a sim-

ple iterative procedure of (). A well-known exam-

le of recursive function is the logistic map m,
M} given by

Tnt1 = f(zn) = reg (1 — xy). (2)

2.2. Orbits and pseudo-orbits

Connected to a map, an orbit may be defined as
follows:

Definition 2.2. An orbit is a sequence of values of
a map, represented by {x,} = [xg,x1,..., 2]

Definition 2.3. Let ¢ € N represent a pseudo-orbit,
which is defined by an initial condition, a natural
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interval extension of f, some specific hardware,
software, numerical precision standard and dis-
cretization scheme. A pseudo-orbit is an approxi-
mation of an orbit and can be represented as

{Zin} = [Ti0, Ti1s -5 Timl,
such that
‘xn - i'i,n‘ < Yi,ns (3)

where v;, € R is a bound of the error and ~; , > 0.

2.3. Interval aritthmetic

An interval is a set of real numbers such that any
number that lies between two numbers in the set

is also included in the set [Nepomuceno & Martins,

2016]. An interval X is denoted [X,X], i.e. X =

{r : X < 2 < X}. In a degenerated interval, we
have X = X and such an interval amounts to a real
number z = X = X.

For a given interval X = [X,X], its width
is defined by w(X) = (X — X) and its center is
m(X) = 3(X + X) [Rothwell & Cloud, 2012]. The
intersection of two intervals X NY is a set of real
numbers which belong to both. The union X UY is
a set of real numbers which belong to X or Y (or
both). If X NY is not empty, then

XNY = [max(X,Y), min(X,Y)], (4)

X UY = [min(X,Y), max(X,Y)]. (5)

The intersection plays a major part in interval
arithmetic. This assumption comes from the fact
that if there are two distinct intervals that con-
tain a result of interest, regardless of how they were
obtained, the intersection, which may be narrower
than both, will also contain the result. The above
statement can be simplified through Eq. (@), which
shows that the size of the intersection between two
intervals is at most the smallest of the intervals

);w(Y)}. (6)

Therefore, this simple algebraic operation can
decrease the size of an interval which contains the
solution of a problem.

Operations with intervals are the same as oper-
ations with sets. Thus, when operations are per-
formed between two intervals, it gives a resulting
interval containing all the results of operations
between pairs of values of each interval. The basic

w(X NY) < min{w(X
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interval operations are defined by:

X+Y=[X+Y, X+Y], (7)
X-Y=X-Y,X-Y] (8)
X Y = [min(S), max(S)], 9)

where S = {XV XV XY, XY}. If 0 does not
belong to Y, then X/Y is given by

é:x- (%) (10)

where 1/Y = [1/Y,1/Y].

2.4. Natural interval extension

Let 5 be a function of real variable x. M

| presented the following definition:

Definition 2.4. A function F' is a natural interval
extension of f if F' agrees with f for degenerate
interval arguments:

[z, z]) = f(x).

Some examples and implications of natural
interval extension can be found in ,
M; Nepomuceno & Marting. [2016; Nepomuceno
et al., ; Men Nepomucen @ Nepo-
muceno & Mendes,

2.5. Rational interval functions

A rational interval function can be defined as
follows:

Definition 2.5 ﬂMme_e_t_a‘U,hDQQ] A rational inter-

val function is an interval-valued function whose
values are defined by a specific finite sequence of
interval arithmetic operations.

Example 2.6. Consider the function given by
F(X) = [2,2]X([1,1] — X). The computation of
F(X) can be broken down into the finite sequence
of interval arithmetic operations described by

T) =[1,1] — X, one interval subtraction,
Ty = [2,2] X, one interval multiplication,
F(Xy) =T1T,, one interval multiplication.

Therefore F' is a rational interval function.
According toMoore et all [2009], a rational interval

function usually comes from an interval extension of

some real function. In the previous example, F'(X)
is an interval extension of the logistic map function.

Definition 2.7 lMo_or_e_et_aﬂ, |2.0ﬂg] If F'is a rational

interval function and an interval extension of f, then

f(X) € F(X).

Definition [27] states that a value obtained by
F contains the range of values of the corresponding
real function f when the variable x is within the
interval X. Therefore, for an x that belongs to the
range of values of the interval X, the true answer
of the calculation of a function f to z, or f(x), will
be contained in an interval obtained by an interval
extension F'(X) of the function f(z).

2.6. The mean value form

Moore et al. [2009] noticed that the width of the
bounds for an interval is strongly connected to the
representation of the function f. They proposed an
useful interval extension called the mean value form

(MVF), which is defined as

f(X) C Fp(X) = f(m) + ZDiF(X>(Xi —m;)
i—1

(11)

where m = m(X), D;F is an interval extension of
of | 0x;.

Consider the following example of the mean
value form:

Example 2.8. Let the following natural interval

extension:
GX)=rX(1-X). (12)

If r =3.5 and X = [0.1,0.25], then the mean value
form is:

Frnp = r(m(X)(1 — m(X))

+ (1 = 2X)(X = m(X))),

Fpp = 7(m(]0.1,0.25])(1 — m([0.1,0.25]))
+ (1 —2[0.1,0.25])([0.1, 0.25]
—m([0.1,0.25]))),

Frw = [0.2953,0.7153].

As can be easily checked, without the mean
value form, the interval would be [0.1312,0.8400],
considerably greater than F,,, = [0.2953,0.7153].
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2.7. Intlab

The library used in this paper for the application
of interval arithmetic is the Intlab, a toolbox for
Matlab which supports real and complex intervals,
vectors and matrices. The Intlab concept is divided
into a rapid library of interval arithmetic and
an interactive programming environment for easily
accessible interval operations. Arithmetical opera-
tions in Intlab are rigorously verified to be correct,
including input and output and standard functions.
By that, it is possible to replace every operation of
a standard numerical algorithm by the correspond-
ing interval operations. Standard functions, such as
trigonometric and exponential functions, are avail-
% and are used in the usual Matlab form m,

.

In this work, the input of an interval variable in
Intlab occurred through the function intval(‘zg’),
which creates an interval in which the lower and
upper limits are, respectively, the floating point cor-
responding to the negative rounding and the float-
ing point corresponding to the positive rounding.
Thus, the range of values limited by those numbers
contain x.

3. Methodology

In order to reduce the effect of overestimation, the
intersection between pseudo-orbits obtained by dif-
ferent interval extensions is used, here denoted by
ITIE. This method is based on the concept presented
below. Let {xg,x1,...,2,} be a true orbit of f and
let {)A(w, )A(i,l, . ,)A(m} be a pseudo-orbit obtained
by some rational interval extension of f, given by
F;, i € N. From Definition 27 it is clear that if
xg € XL(), then

T € Xin. (13)

From this we may establish the following for two
natural interval extensions [/} and [, which gener-
ate two sequences X1 o and X» o, respectively.

Theorem 3.1. If x¢ € XLO and Ty € XZ(), then
€ [X1,NXa,l, neN.

Proof. Let us assume x, ¢ (X1, N Xap], n € N
Hence, x, ¢ X m O Ty & Xgn or both. According

to (I3), it means that X, or Xy, is not a pseudo-
orbit, which is a contradlctlon That completes the
proof. [ |
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However, in some real implementation of SIA,
the intersection of two or more interval extensions
might result in an empty interval. Thus, Defini-
tion has been proposed.

Definition 3.2. Let Fl . and Fg n, 1 € N, be ratio-
nal interval extensions of f, glven by Fj,i € N. If
F —[FlnﬂFQn] (Z) thenF —[Fanan]

The ITE method is summarized in the following
steps:

(1) Elaborate interval extensions F; for the recur-
sive function under investigation f.

(2) Define the same parameters for all interval func-
tions and a maximum number of iterations.

(3) Set an initial interval Xy = [X,, Xo] in such a
way that xy € XO.

(4) Calculate the response of the current iteration
for each interval extension with the previously
obtained interval.

(5) Calculate the intersection between the intervals
obtained for each interval extension. The inter-
val obtained in this step should represent the
pseudo-orbit interval of the function for the cur-
rent iteration.

(6) Return to step 4 and repeat the calculations
until the iterations reach a maximum number
or the pseudo-orbit has converged according to
tolerance criterion.

3.1. D:iscrete dynamical systems

In order to reduce the overestimation effects and the
memory consumption of the computer, the mean
value form for the logistic map applying () is
given by

- yn) + (1 - 2Fn>(Xn - yn))a

(14)

Fop1 = 7r(ya(1

where X, is the interval which contains x,, and y,
is the midpoint of F), [Bruguera, 2014].

We used two interval extensions of the logistic
map represented in the mean value form to evaluate
the proposed method. These functions are given as
follows:

Fip = 7(Yn(1 —yn) + (1 - 2F17n>(Xn

FQ,n+1 = yn('r - Tyn) + (T - 2TF2,n)(Xn - yn)
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The results obtained by Fi,41 N Fop,qq are
compared with the results of F,.1, given by
Eq. ([I4)). Besides, Intlab was used to obtain the
results by interval arithmetic operations of the
traditional form of the logistic map, given by

Eq. (I0)

Hypr = rHy(1 — Hy). (17)

Four cases for computing the pseudo-orbits in
the logistic map were analyzed:

Case 1. r = 3.60 and xo = 0.6;
Case 2. r =3.70 and xo = 0.6;
Case 3. r = 3.85 and xo = 0.6;
Case 4. r =3.95 and zg = 0.6.

3.2.

In the second application of IIE, we analyze para-
metric uncertainties in a series RLC electric circuit.
This circuit is composed of one resistor, one induc-
tor and one capacitor connected in series. Initially
we performed the traditional simulation of the cir-
cuit by means of Matlab software. We choose an
underdamped output with (0 < £ < 1) and compo-
nents presented in Table [Il. It was also considered
as a resistance of 7.8 ) to the inductor.

The circuit was implemented in a breadboard
EPBO0058 and data was collected by means of an
Oscilloscope DSO-X, 70 MHz, Agilent. The output
voltage on the capacitor due to a unit step as input
of the RLC circuit, is given by Eq. (I8)

Uncertain parameters

_ § .
ve(t) =1 — e 8 | coswyt + ———— sinwygt |.

(18)

Then we compare the nominal simulation with
experimental results and lastly we did the simu-
lation using the Intlab toolbox, where the circuit
components are seen as intervals, such that the

bounds of the intervals are simply obtained by
[Ny(1 —6/100), N, (1 4 6/100)].

Table 1. List of components used in the circuit, nominal
value and tolerance (9).

Component Nominal Value (Ny) Tolerance (§) (%)
Resistor 100 €2 5
Inductor 0.1H 10
Capacitor 100 nF 20

In order to analyze the effect of pseudo-
orbits obtained from different interval extensions of
Eq. (I8), we elaborate:

fi(t) =1—e 5 <cos wqt +

\/%_52 sin wdt> ,

(19)
fo(t)y=1- et coswyt — e 8 \/%—52 sin wqt.
(20)

For both applications, the first interval was
obtained rounding zp down and up, ensuring that
the endpoints X o and Xo were the lowest and the
highest floating points near xg. All calculations

were done using Matlab with double precision for
Windows.

3.3. Reduction factor

In order to give an account of how much a width of
an interval has been decreased, we use the following

index:

where w(X) is the reference width and w(Y) is
the reduced width by an application of a spe-
cific method. For instance, let w(X) = 0.0001 and
w(Y') = 0.000001, we have Ry = 2. When the differ-
ence is not so large, we also make use of percentage.

(21)

4. Results

In this section, we present the two numerical exam-
ples investigated. First, we have revisited the pro-
cedure to reduce the interval width for the logistic
map. The reduction is obtained by means of the
mean value form. The second example is devoted to
simulate a RLC circuit with parametric uncertain-
ties. In this case, we have to change the usual pro-
cedure as the SIA implementation has presented an
inconsistent result. This result has been analyzed
and a simple step has been adopted to avoid this
problem, according to Algorithm [

4.1. Waidth reduction for the
logistic map

The results obtained for iterations 1, 5, 15 and 25
by the IIE of Egs. (I3) and (I0) are compared with
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Algorithm 1 Pseudo-code of the IIE method.

1: input Number of iterations (N), parameters and initial conditions

2: Xo < intval(‘zg’)
3: for n=1:N do

4 F?l,nJrl — F()gn)

5: F2,n+1 <—AF(Xn> .

6: Foy1 — FipniNEFypga

7 if Fo = 0 ’Ehen .

8: Foy1— Fip1 UFy
9: end if

10: end for

> Initial conditions

> Interval Extension 1
> Interval Extension 2

the calculation of the logistic map in the mean value
form, using Eq. (I4), represented by F, . and the
calculation of H,; using Eq. (7). These compar-
isons are presented in Table Bl which presents the
reduction on the size of the interval obtained at iter-
ation n for each case.

Analyzing Table 2] we can see that the mean
value form presents a reduction on the size of the
intervals with respect to the traditional form H,, 1.
Besides that, for all cases, the intervals obtained by
the IIE present a reduction on their sizes in relation
to the mean value form.

Although the method of the MVF [Moore &
Moore, 1979; [Lohner, |l9_9_?zl] reduces the effects of
overestimation, after some iterations, the intervals
obtained tend to increase in such a way as to extrap-
olate the limits of representation of the variable x,,
and diverge to infinite. Figure [l shows the evolution
of the size of intervals for F,, 11 and Fy 41 N Fy i1
with » = 3.85 and zg = 0.6, where it can be
observed that the effect of the overestimation for
the proposed method is much smaller than for the
method of mean value form. The reduction, in per-
centage, of the proposed method with respect to the

Table 2. Comparison of width size for the simulation of logistic map. The reference is the width produced by means of

Intlab [Rump,

. We show the results using the mean value form (MVF) presented by [Moore & Moore, 1979; Lohner,

and our method of intersection of interval extensions (IIE). The reduction is calculated using a log;( scale compared
to Intlab reference, according to Eq. (2II). We have studied four cases, of which the parameters and initial conditions are as
follows: (1): » = 3.60 and z¢p = 0.6. (2): » = 3.70 and zg = 0.6. (3): r = 3.85 and z¢p = 0.6. (4): r = 3.95 and zg = 0.6.

Intlab Mean Value Form 11E
Case n Width Width Ry Width Ry
(1) 1 1.110 x 10716 1.110 x 10716 0 1.110 x 10716 0
5 3.486 x 10~ 1.610 x 10719 1.34 6.661 x 1016 1.72
15 1.279 x 10798 3.009 x 10~ 14 5.63 1.121 x 10~ 6.06
25 0.0046 5.884 x 1071 10.90 2.243 x 10714 11.32
(2) 1 1.110 x 10716 1.110 x 10716 0 1.110 x 10716 0
3.664 x 10~ 14 2.776 x 107 1P 1.12 1.221 x 10715 1.48
15 1.760 x 10798 8.6385 x 1014 5.31 4.041 x 107 5.64
25 0.0085 6.698 x 10713 10.10 3.129 x 10713 10.43
(3) 1 1.110 x 10716 1.110 x 10716 0 1.110 x 10716 0
5 4119 x 107 3.331 x 107 1° 1.09 1.332 x 10715 1.49
15 2.954 x 1078 1.332 x 10712 4.35 5.393 x 1013 4.74
25 0.0211 2.378 x 10710 7.95 9.629 x 10~ 11 8.34
(4) 1 1.1102 x 10~1¢ 1.1102 x 10~1¢ 0 1.1102 x 10~1¢ 0
4.330 x 10~ 2.443 x 10710 1.25 1.110 x 10~ 19 1.59
15 4.009 x 10798 3.759 x 10712 4.03 1.765 x 10712 4.36
25 0.0370 1.347 x 10710 8.44 6.325 x 10~ 8.77
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Fig. 1. Width of intervals obtained with r = 3.85 and z¢ =

0.6 by Fy+1 and Fl,n+l N F21n+1.

mean value form, along the iterations, can be seen
in Fig.

4.2. Parametric uncertainties

Figure [3] presents a comparison between the sim-
ulation of Egs. (I9) and (20) obtained by Matlab
and the response obtained experimentally. We can
observe from Fig. [3] that all curves do not totally
coincide and present an apparently considerable
error. Considering the existing errors associated
with the inherent properties of the components, the
finite accuracy of the measuring equipment and the
errors propagated during the simulation, it is diffi-
cult to say which one faithfully represents the char-
acteristic of the circuit. Therefore, it is more reliable
to use a simulation that contains the associated
errors by means of STA.

100

80

[=)
(=]

% Reduction
o
(=)

20 1

O 1 1 1 1
0 200 400 600 800 1000

Tterations

Fig. 2. Reduction of interval obtained with r = 3.85 and
xo = 0.6 by Fj,41 and Fl,n+l n FZ,n+1~

1.8} - fl(b 1
‘ — 0

Experimental |

1.2F

Output Voltage (V)

o
=N
T

time (s) <10~

Fig. 3. Step response RLC circuit: Comparison between
nominal simulation, according to Eqgs. (@) and 0), and
experimental data.

Proper treatment of measurement errors is a
crucial aspect of careful laboratory procedure. We
should have tools to identify sources of experimen-
tal errors, establish uncertainties in measurements,
and propagate those uncertainties through calcula-
tions leading to the final results |[Rothwell loud,
]. The curve presented in Fig. @l was obtained
also using the Intlab toolbox. It is possible to notice
that the response found through the toolbox encom-
passes the traditional simulation and the response
obtained experimentally. In this case, the estima-
tion of the errors were satisfied.

In order to reduce the width of the interval,
the IIE was applied from different interval exten-

sions of Eq. (&), according to Eqgs. (I[9) and 20).
It is possible to notice in Fig. Bl that the reduction

1.8 Interval ]
16 —f®
Experimental
=14 ]
& 1.2 |
£
VN S s - rrrpve ooy
>O 1 AN
E
= 0.8 ]
=
QO 0.6 ]
0.4 ]
0.2 1
0 ‘ ‘ ‘ ‘
0 0.002 0.004 0.006 0.008 0.01
time (s)
Fig. 4. Comparison between the interval simulation, nomi-

nal simulation and experimental by step input.
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% Reduction

Fig. 5.

time (s)

6 8 10
-3
x 10

Reduction in the width of the step response interval using the interval intersection of Eq. (I8).

Table 3. Analysis of intersection of Eqs. (I3) and (20), with a step-size h = 1e~%. The last column presents

the result obtained by means of Definition B2

Ji(t) (t) 1) U f2()

D
o8

0

t f1(?) f2(t)
1 0 0
2 [—0.0003, 0.0004] [0.0007, 0.0015]
3 [~0.0006, 0.0010] [0.0016,0.0031]
4 [—0.0007, 0.0017] [0.0024, 0.0049]
5 [—0.0008, 0.0026] [0.0034, 0.0068]
6 (—0.0009, 0.0035] [0.0045, 0.0088]
7 [~0.0008, 0.0047] [0.0056,0.0110]
8 [~0.0007, 0.0059] [0.0068, 0.0133]
9 [~0.0005, 0.0073] [0.0080, 0.0158]
10 [—0.0002, 0.0088] [0.0094, 0.0183]
11 [0.0002, 0.0105] [0.0108,0.0211]
12 [0.0006, 0.0123] [0.0122, 0.0239]

S oo oo e S 0o

0
[0.0122, 0.0123]

[—0.0003, 0.0015
[—0.0006, 0.0031
[—0.0007, 0.0049
[—0.0008, 0.0068
[—0.0009, 0.0088
[—0.0008, 0.0110
[~0.0007,0.0133
[0.0005, 0.0158
[—0.0002, 0.0183
0.0002, 0.0211]

]
]
]
]
]
]
]
]
]

reaches up to 95% and in the steady state regime it
is around 5%, which is significant as the tolerance of
the components presents similar magnitude. How-
ever, as can be seen from Table B], the intersection
of Egs. (I9) and (20) results in an empty interval
for a given time period. From this, we applied Def-
inition and the last column presents the result.
We believe that, although Eqgs. (I9) and (20) are not
recursive, they use trigonometrical functions, which
are intrinsic algorithms that use recursive functions.

5. Conclusion

Interval arithmetic has been considered a reli-
able alternative to the conventional floating-point

arithmetic [Bruguerd, 2014]. It provides a great

diversity of algorithms and methods for a wide
range of applications. Among the great number of
versions, the standard interval arithmetic (SIA) has
been considered the most trustworthy ,
}. However, care must be taken that there is
no overestimation of the interval width. Moreover,
less attention has been paid for physical implemen-
tation of SIA in digital computer. This paper has
reported such a situation when an inconsistent the-
oretical result has been found in an implementation
of SIA.

First, we have investigated the reduction of
interval width in the simulation of the logistic
map. The results obtained by the intersection of
interval extensions (IIE) have been compared to
values obtained by the use of Intlab and the mean
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value form. The IIE has overwhelmed both strate-
gies showing a reduction factor equal to or smaller
than all four investigated cases. Furthermore, the
IIE has also been able to avoid pseudo-orbit diver-
gence, contrary to what happened for the mean
value form approach. This is an important aspect
that has been highlighted by Rothwell and Cloud
] as a desirable feature of refined algorithm for
interval arithmetic.

In the second application, the IIE has been
applied for the treatment of uncertainties in the
simulation of a RLC circuit. Traditional simulations
and data collected from laboratory experiments
show considerable differences due to the errors asso-
ciated with simulation and inherent errors of the
practical circuit, as can be seen in Fig.[3. In order to
reduce the interval width, ITE extensions of the step
response equation were used. The reduction in the
interval width has been observed as above — 95% in
transient regime and 5% in permanent regime. This
is a type of improvement expected in [Rothwell &
Cloud, 2012]. However, for some time instants (see
Table3)), the ITE resulted in empty interval. Accord-
ing to interval analysis this is an unacceptable fact,
as both intervals derived from the two natural inter-
val extensions [see Egs. ([9) and (20)] should con-
tain the real values. This problem has been over-
come by introducing a test in each iteration, and if
it is necessary, a union operation, as shown in Algo-
rithm [l This simple approach has been shown to
be satisfactory to ensure that the true response is
contained in the interval obtained.

Finally, we would like to point out the impor-
tance of a critical judgement of the results. Even
though the SIA has been investigated as an
approach to take rigor to a computer simulation, its
physical implementation, particularly for functions
other than the simple arithmetic operations, in digi-
tal computer requires care and a critical observation
of the results. As a matter of fact, new challenges of
science, such as the Big Data, do not only require
a hardware revolution as suggested in [Editorial
Nature, |211]_8], but it will need further investigation
to properly operate these super power machines,
which should certainly be finite, and therefore, sub-
ject to some sort of error.
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