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Duality of terrestrial subterranean fauna

INTRODUCTION
There are two time frames in considering ter-

restrial subterranean ecology, the classical period of 
1832−1980 dealing with caves, and the modern peri-
od after the 1980s when a wide range of other subter-
ranean habitats were also considered. After Schmidt 
(1832) published the first scientific description of an 
invertebrate well adapted for living in hypogean habi-
tats, the beetle Leptodirus hochenwartii from the cave 
Postojnska jama in Slovenia, interest in studying sub-
terranean biology and ecology increased enormously. 
Evidence of eyelessness, depigmentation, relatively 
long appendages and other convergent characteristics 
of subterranean animals launched the need for their 
ecological and morphological classification (Schiödte, 
1849, 1851; Schiner, 1854; Racovitza, 1907). Since 
then, many modifications and refinements have been 
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Terrestrial animals in subterranean habitats are often classified according to their degree of morphological or ecological specialization 
to the subterranean environment. The commonly held view is that, as distance into a cave increases, the frequency of morphologically 
specialized, i.e., troglomorphic, species or ecological specialization will increase. We tested this hypothesis for the fauna in 54 
caves in Slovenia–the classical land for subterranean biology. We found that there exist two ecologically well separated terrestrial 
subsurface faunas: one shallow and one deep. 1) The shallow subterranean fauna, adapted to the terrestrial shallow subterranean 
habitats (SSHs) in the upper 10 m of subsurface strata, is most diverse. It consists of randomly distributed non-troglobionts and 
a major group of troglobionts adapted to the soil root zone. 2) The deep subterranean fauna is represented by a minor group of 
troglobionts, adapted to caves. Troglobionts are strictly divided between the two faunas. There is strong evidence that in karstic 
ecosystems with deep-rooted vegetation this might be a global pattern, or that in these locations only the shallow subterranean fauna 
exist.
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suggested (reviewed by Sket, 2008), among which 
Christiansen’s (1962) introduction of the term troglo-
morphism to denote the typical appearance of well-
adapted subterranean species has been widely ac-
cepted. There are three main ecological groups of ani-
mals in habitats beneath the surface (Boutin, 2004; 
Sket, 2008). 1) Trogloxenes are taxa that enter caves 
for shelter or feeding opportunities, but which exhibit 
no morphological adaptation to the hypogean envi-
ronment and do not complete their life cycle there. 
2) Troglophiles (terrestrial) and stygophiles (aquatic 
animals) alternate between the epigean and hypogean 
habitats or live permanently in subterranean habitats, 
and show some moderate adaptation to subterranean 
conditions, such as reduced eyes and adaptations to 
compensate for the lack of visual orientation. Some 
among these do not complete their life cycle under-
ground (subtroglophiles), while others (eutroglophiles) 
do. 3) Troglobionts and stygobionts complete their life 
cycle in a completely dark, humid/water and thermal-
ly stable hypogean environment. Most of these clearly 
show troglomorphism. For the purpose of simplifica-
tion, trogloxenes and troglophiles together are treated 
here as non-troglobionts. 

In caves, according to the classical understanding, 
trogloxenes have been expected in the entrance zone, 
troglophiles in the twilight zone, and troglobionts in 
the totally dark zone, deep inside the cave. In prac-
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tice, ranking among both trogloxenes and troglophiles 
is often confusing because of the lack of generally ac-
cepted criteria for delimiting the two groups or im-
possible because of the unresolved status of many of 
these species. Besides, many troglobionts are not con-
sistent with this distributional range and are recorded 
rarely or sparsely in deep cave sections, but are abun-
dant in terrestrial superficial subterranean habitats 
(SSHs), like in talus slopes (Juberthie et al., 1980; G. 
Racovitza, 1983; Juberthie, 2000; Juberthie & Decu, 
1994; Růžička, 1999; Culver & Pipan, 2009a, b) or, 
especially in the tropics, near cave entrances (Prous 
et al., 2004). The terrestrial SSHs are difficult to in-
vestigate directly (Růžička & Klimeš, 2005) and have 
been much more poorly researched than those in wa-
ter habitats (Culver & Pipan, 2009a). They are physi-
cally similar to caves within the same area, but with 
larger annual temperature variation and much more 
abundant and diverse food supply from the surface 
and soils. These may be in close contact with caves, 
and therefore considered a gateway to the deep sub-
terranean habitats (Juberthie & Decu, 1994; Růžička, 
1999; Culver & Pipan, 2009a, b; Pipan et al., 2011). 

Caves adjacent to other subsurface habitats en-
able indirect study of these habitats as well. Although 
caves are much easier to investigate than SSHs, the 
ecological interpretation of biota in caves is skewed 
for several reasons. Caves vary considerably in shape, 
length, altitude and other characteristics, resulting in 
a wide range of environmentally dissimilar combina-
tions. The usual sampling methods, such as visual 
inspection, pitfall trapping and Berlese extraction 
deserve careful interpretation (e.g., Kuštor & Novak, 
1980a; Sabu & Shiju, 2010; Gotelli & Collwell, 2011). 
Most troglobionts are rare in caves, indicating that 
this is not their preferred habitat (Novak 1989). Some 
of them show a preference for narrow spaces (e.g., 
Aphaenops – Juberthie, 1969; Juberthie & Bouillon, 
1983; Speonomus – Delay, 1978; Leptodirus, Anoph-
thalmus − Kuštor & Novak, 1980a, b), and some have 
been reported from SSHs (e.g., Tylogonium − Chris-
tian, 1987; Eukoenenia – Christian, 2004; Anophthal-
mus, Aphaenopidius, Orotrechus − Drovenik et al., 
2007). Species may vary considerably in abundance 
from year to year. According to the modern under-
standing of adaptive processes, a wide range of ad-
aptations and niches can be expected in the subter-
ranean environment, as shown, e.g., among fishes 
(Riesch et al., 2010; Romero, 2011). 

Considering all these facts, the classical under-
standing of the distribution does not conform to re-
cent knowledge and should be revised on the general 
level. Here we focus on two points: 1) how the pro-
portion between non-troglobionts and troglobionts 
changes with distance from the entrance inward and 
2) whether the troglobionts represent a unique eco-
logical group or not. We hypothesized that, in territo-
ries providing a continuous range of shallow to deep 
subterranean habitats, such as karst territories, 
non-troglobionts and troglobionts are evenly dis-
tributed within the SSHs. We also hypothesized that 
there are two ecologically well defined subgroups of 
troglobionts: 1) species adapted to the SSHs, i.e., the 
deep soil root zone, and 2) species adapted to caves 

sensu Culver & Pipan (2009a). They argue that from 
the biological/ecological point of view, a “cave” rep-
resents a natural space in the solid rock with areas 
of complete darkness and is larger than a few mil-
limeters in diameter. 

MATERIALS AND METHODS
Terminological notes
Speleobiological classifications themselves are not 
the subject of this contribution and do not influence 
its outcome, but they deserve a brief comment. Most 
European authors dealing with terrestrial fauna tra-
ditionally use “trogloxenes” (see references, e.g., in 
Juberthie & Decu, 1994) in place of “subtroglophiles” 
in the resurrected Pavan-Ruffo classification (Sket, 
2008), but not all traditional “troglophiles” rank among 
“eutroglophiles”. To avoid confusion, we pragmatically 
apply the term “non-troglobionts”−without any inten-
tion of introducing a new category−as a group which 
includes two ecologically different entities: troglox-
enes and troglophiles (traditional classification), or 
subtroglophiles and eutroglophiles (Pavan−Ruffo clas-
sification). We understand “troglobionts” in the sense 
of species confined to subterranean habitats. 

Study area and sampling
In the study area in central and northern Slovenia, 
using a 10x10 km2 UTM grid, we selected 54 natural 
caves and artificial galleries (in the following: caves, 
mapped in Novak, 2005) at altitudes of 260−2450 
m that were morphologically and meteorologically 
varied for the investigation. As far as possible, these 
were homogenously scattered within a territory of 
7,500 km2 in carbonate and non-carbonate rocks. 
For the investigation, we chose caves at least 30 m 
long, or the longest ones available. The caves were 
investigated between 1977 and 2001. We sampled 
in January, April, July and October in a total of 617 
sampling sections, every 3.5 m, on average. Besides 
measuring various environmental parameters, fau-
nal records were provided on two visits within 45−48 
hrs by observing cave walls, ceiling and floor, and 
applying standardized baited pit-fall trapping and 
Berlese funnels. Such sampling ensured avoiding 
autocorrelation (cf. Beale et al., 2010) to the highest 
possible degree. Altogether, 2,468 records were pro-
vided, referring to 173,008 individuals of 600 esti-
mated species in total, of which 456 were determined 
(details in Novak et al., 2004; Novak, 2005). 

Statistical Analyses
In the analysis, presence was used as the most reli-
able information on biota. We selected ecologically 
key taxa: the most abundant non-troglobionts, ar-
bitrarily defined as those recorded in N≈≥2 individu-
als/cave, on average, and all the troglobiotic taxa. 
Non-troglobionts were unified in the same dataset 
and troglobionts in the other one. In this way, the 
non-troglobionts were represented by 19 species 
and the troglobionts by 15 species−two of them un-
determined−plus 4 subspecies. The basic statistical 
item was the presence of a taxon within a sampling 
section per season. We observed the frequencies in 
repetitive presence of the taxon with respect to dis-
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tance from the cave entrance and from the surface, 
the last referring to the surface vertically above the 
sampling place within the cave. We first checked the 
distribution of presence frequencies for normality. 
The Mann-Whitney U test was used in testing the 
adequacy of presence frequencies within and be-
tween the groups. The spatial distribution of species 
was evaluated by means of spatial density maps, the 
density referring to the normalized presence frequen-
cies at any given distance from the entrance or the 
surface. The normalization was such that for each 
taxon the sum of densities over the whole distance 
range was equal to one. The overall similarity be-
tween different density maps was compared with 
the normalized spatial cross-correlation function,  
χ є [0.1] (Kantz & Schreiber, 2004). The best border 
between two identified subgroups of the troglobionts 
was obtained by determination of the smallest rela-
tive difference between the cumulative occupancies, 
κ ϵ [0.1], where 1 means no, and 0 full separation.

RESULTS
Within the 54 caves, there were 51,162 individuals of 
the most abundant non-troglobionts recorded in 2−53 
caves, and 3,086 individuals of the troglobiotic taxa in 
1−14 caves up to 96 m from the entrance and 80 m 
from the surface (Table 1). Most representatives of the 
non-troglobionts are Central-European, Alpine, Euro-
pean or more widely distributed species, such as the 
Holarctic Scoliopteryx libatrix, while Troglohyphantes 
diabolicus is a local endemite. Among the troglobionts, 
except for Androniscus stygius, all the others are en-
demic to an area from a few tens of to a few hundred 
km2. Only two troglobiotic species: A. stygius and Ceu-
thmonocharis robici−with two subspecies−were repre-
sented by ≥2 individuals/cave, on average, while the 
others were rare. The spatial density maps of the 19 
most abundant non-troglobionts (Fig. 1) and 19 troglo-
bionts (Fig. 2) reveal that the majority of species were 
most frequently present either about 8 m equidistant, 
or 8 m distant from the entrance and 32 m from the 

Fig. 1.  
Comparative 
normalized spatial 
density map of the 
19 most abundant 
non-troglobionts in 
cavities of central 
and eastern 
Slovenia. See text 
for comments.

Fig. 2.  
Comparative 
normalized spatial 
density map of 
19 troglobionts in 
cavities of central 
and eastern 
Slovenia. 
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surface or vice versa, while only six of them were 32 m, 
or deeper inside, equidistant from both (Tables 1, 2). 
With respect to distance from the entrance and from 
the surface, there were no statistical differences in 
any taxon (Mann-Whitney, 0.069>p>0.953 for the 
non-troglobiont, and 0.754>p>0.981 for the troglo-
bionts) or within any group (Mann-Whitney, p=0.454 
for the whole non-troglobiont group, and p=0.427 for 
the troglobiont group). This indicates that each spe-
cies and each group as a whole inhabited hypogean 
habitats proportionally distant from the epigean en-

vironment, irrespective of the way of measuring the 
distance. The correlations between the density maps 
were nearly perfect within each group (entrance vs. 
surface, the non-troglobiont group, r=0.951; the tro-
globiont group, r=0.972), and high between the two 
groups (entrance vs. entrance, r=0.721; surface vs. 
surface, r=0.770). The troglobiont group was bimodal 
with two clearly separated subgroups (Fig. 2), and 
such a trend is also evident in non-troglobionts (Fig. 
1). There was a highly significant difference in dis-
tribution between the non-troglobionts vs. the troglo-

Table 1.  List of species, their presence and abundance in investigated caves with respect to distance from the entrance and the surface. 
Traditional European classification (e.g., Juberthie & Decu, 1994): x trogloxene, f troglophile, b troglobionts, and Pavan-Ruffo classification 
(Sket, 2008): (s) subtroglophile, (e) eutroglophile. 

Higher 
taxon

Family Species N of 
individuals 

N of 
inhabited

caves 

N of 
presence   

observations

Distance 
from the 

entrance [m]

Distance 
from the 

surface m]

Gastropoda Helicidae x (s) Faustina illyrica (Stabile, 1864) 949 44 247 0−28 0−45

Oniscoidea Trichoniscidae b Andronuscus stygius Nemec, 1897 104 14 70 2−77 2−80

Opiliones Phalangiidae x (s) Amilenus aurantiacus (Simon, 1881) 12,570 53 701 0−77 0−65

x (s) Gyas annulatus (Olivier, 1791) 120 4 14 3−55 12−30

x (s) Gyas titanus Simon, 1879 139 6 25 4−30 9−37

Araneae Agelenidae x (s) Malthonica silvestris (L. Koch, 1872) 180 24 108 0−24 0−27

Linyphiidae f (e) Troglohyphantes diabolicus Deeleman-Reinhold, 1978 100 15 72 0−66 2−37

Nesticidae x (s) Nesticus cellulanus (Latreille, 1804) 282 21 132 0−65 0−65

Tetragnathidae f (e) Meta menardi (Latreille, 1804) 3,107 48 555 0−69 0−65

x (s) Metellina merianae (Scopoli, 1763) 883 39 221 0−69 0−65

Palpigradi Eukoeneniidae b Eukoenenia sp. 2 1 2 100 80

Coleoptera Carabidae b Anophthalmus hitleri Scheibel, 1937 8 1 7 11−66 8−25

b A. fallaciosus (J. Müller, 1914) 3 2 3 10−30 18−24

b A. micklitzi (Ganglbauer in G. Müller, 1913) 7 2 4 9−13 3−16

b A. schaumi macromelus Jeannel, 1926 4 1 3 21−29 4−10

b A. s. silvicola Jeannel, 1928 1 1 1 41 11

b A. schmidti Sturm, 1844 3 1 3 30−41 9−11

b Anophthalmus sp. 1 1 1 25 32

f (e) Laemostenus schreibersii (Küster, 1846) 328 30 124 0−75 0−80

b Orotrechus g. globulipennis (Schaum, 1860) 2 1 1 8 9

b O. subpannonicus Daffner, 1994 4 1 2 6−11 8−11

Leiodidae b Aphaobiella tisnicensis Pretner, 1949 63 4 18 9−90 7−65

b Aphaobius heydeni Reitter, 1882 1 1 1 9 13

b A. milleri alphonsi G. Müller, 1914 17 4 10 10−77 9−46

b A. m. knirschi G. Müller, 1913 34 1 8 20−55 34−54

b A. m. winkleri Mandl, 1944 2 2 2 3−12 5−10

x (s) Catops tristis (Panzer, 1794) 106 12 28 0−15 2−43

b Ceuthmonocharis pusillus Jeannel, 1924 64 1 79 0−42 0−29

b C. robici robici Ganglbauer, 1899 2,579 4 19 5−33 13−25

b C. r. staudacheri Müller, 1919 188 1 9 6−13 24−26

Diptera Culicidae x (s) Culex pipiens (Linnaeus, 1758) 5,373 50 441 0−96 0−80

Limoniidae x (s) Limonia nubeculosa Meigen, 1804 3,544 50 315 0−84 0−65

f (e) Speolepta leptogaster (Winnertz, 1863) 575 31 235 0−68 0−64

Lepidoptera Geometridae x (s) Triphosa dubitata (Linnaeus, 1758) 539 32 187 0−75 2−65

Noctuidae x (s) Scoliopteryx libatrix (Linnaeus, 1758) 836 50 265 0−84 2−65

Orthoptera Rhaphidophoridae f (s) Troglophilus cavicola (Kollar, 1833) 15,730 48 1565 0−92 0−67

f (s) Troglophilus neglectus Krauss, 1879 5,673 44 1203 0−88 0−65

Mammalia Rhinolophidae x (s) Rhinolophus hipposideros (Bechstein, 1800) 128 39 95 1−84 2−65
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tion, i.e., animals sojourning especially on the cave 
walls and ceiling near entrances. Except in a few cas-
es (e.g., Novak et al., 2010a), these assemblages dif-
fer in composition and functioning to a limited extent 
from France to Romania. While these are only excep-
tionally endemic, troglobionts are highly endemic as 
reported for many stygobionts and other troglobionts 
(Gibert & Deharveng, 2002; Christman et al., 2005; 
Culver & Pipan, 2009a; Reboleira et al., 2011). In this 
way, a number of widely distributed and locally en-
demic SSH species co-occur by chance; no charac-
teristic ecological community can be recognized (cf. 
Ricklefs, 2008). While non-troglobiotic taxa have been 
ecologically relatively well investigated (Supplement 
1), the troglobionts have in principle not been studied 
or have been understudied.  

Many SSH species are dependant on roots (Juber-
thie et al., 1980; Ashmole, 1994). Rich troglobiotic 
fauna has been reported from shallow lava tubes (e.g., 
Medina & Oromi, 1990; Oromí et al., 1990; Howarth, 
2004; Howarth et al., 2007) and from shallow Brazil-
ian caves, especially ferrugineous ones (Souza-Silva et 
al., 2011), all of them with extensive tree root systems 
protruding into the caves and directly or indirectly 
supporting the cave fauna. The lava and iron ore rocks 
provide an extensive SSH system of micro- and meso-
voids, probably allowing migration of the fauna into 
macro-caves (Souza-Silva et al., 2011). In the temper-
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biont group with respect to distance from both the 
entrance and the surface (Mann-Whitney, p<0.001), 
caused by a bimodal presence of troglobionts. In the 
maps, the 8 m and 32 m groups represent the most 
distinctive regions, yielding κ ≈ 10-6 and indicating 
nearly-perfect justification of grouping.

DISCUSSION
The karst in Slovenia is the classical landscape for 
subterranean biology, often called the cradle of spele-
obiology. The caves under investigation together with 
adjacent epikarst, talus slopes and other SSHs form a 
more or less interconnected frame of subsurface habi-
tats at the disposal of subsurface animals. For troglo-
bionts that are rare in caves, cumulative frequencies 
of presence help to detect places where their preferred 
habitats inaccessible to humans are in contact with 
a cave. These data are even more limited than their 
low abundance data, rendering impossible the use 
of most standard statistical methods. Spatial density 
maps are applicable to abundant data, like studying 
a species or community dynamics (e.g., Novak et al., 
2010b), as well as to such limited datasets. 

With respect to their activity in the subterranean 
environment, the recorded non-troglobionts represent 
a network of species, showing a range of habitat adap-
tations, rather than two ecologically clearly separated 
groups. Most of them belong to the parietal associa-

Table 2.  Species ranked according to frequency of presence in the 54 cavities with respect to distance from the entrance and the surface. 
Traditional European classification: x trogloxene, f troglophile, b troglobiont, and Pavan-Ruffo classification: (s) subtroglophile, (e) eutroglo-
phile. Troglobionts adapted to the deep subterranean environment in grey.

Distance 
from the 
entrance [m]

Distance from the surface [m]

8 16 32 80

4 x (s) Malthonica silvestris
8 x (s) Faustina illyrica

f (e) Meta menardi
x (e) Metellina merianae
x (e) Nesticus cellulanus
b Anophthalmus hitleri 
f (e) Laemostenus schreibersii
b Aphaobius heydeni 
b A. milleri winkleri 
b Ceuthmonocharis robici robici 
b Orotrechus g. globulipennis 
b O. subpannonicus 
x (s) Culex pipiens
f (e) Speolepta leptogaster
x (s) Scoliopteryx libatrix
x (s) Troglophilus cavicola
x (s) T. neglectus 
x (s) Rhinolophus hipposideros

x (s) Limonia nubeculosa x (s) Amilenus aurantiacus
x (s) Gyas annulatus
x (s) G. titanus
b Anophthalmus micklitzi
x (s) Catops tristis
b Ceuthmonocharis pusillus

16 x (s) Triphosa dubitata
32 b Andronuscus stygius 

f (e) Troglohyphantes diabolicus
b Anophthalmus schaumi macromelus 
b A. schaumi silvicola 
b A. schmidti 
b Aphaobiella tisnicensis

b Anophthalmus fallaciosus 
b Anophthalmus sp.
b Aphaobius milleri alphonsi 
b A. milleri knirschi 
b Ceuthmonocharis robici staudacheri

100 b Eukoenenia sp.
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ate biome, trees grow relatively shallow roots, maxi-
mally 4.4−6.3 m deep (Canadell et al., 1996). This is 
why in the caves from our investigation they rarely 
grow through the ceiling. Besides, larger fissures and 
similar habitats connecting caves and adjacent SSHs 
are mostly as unstable as the cave entrance zone, rep-
resenting an ecotone between the epigean and hypo-
gean environments (Prous et al., 2004; Culver, 2005). 
This is true at least with respect to the air flow, caus-
ing troglobionts to avoid such habitats. Consequently, 
these habitats contribute only occasional SSH indi-
viduals to cave biota by hazard. In spite of that, the 
much larger number of troglobiotic taxa in the shallow 
peak of their bimodal distribution indicates that the 
SSH species are the most diverse group of troglobi-
onts. This demonstrates the crucial importance of re-
search into this group, adapted to the deep root zone, 
i.e., the rhizosphere (Cardon & Whitbeck, 2007), for 
progress in understanding the ecology of the subter-
ranean environment as well as of ecosystems provid-
ing the deep rhizosphere. Deep subterranean troglo-
bionts are much less diverse. Among them, at least a 
few inhabit the terrestrial phreatic environment − »mi-
lieu phreatique terrestre« sensu Jeannel (1926), i.e., 
habitats consisting of tiny water trickles in channels 
originating in the epikarst and passing into the deep 
karstic massifs. Such a case is the bathysciin beetle 
Aphaobiella tisnicensis, occurring in mass (more than 
1000 individuals per m2) in the hardly accessible cave 
Štravsova luknja near Velenje (not among the 54 in-
vestigated caves) on slowly percolated sandy ground 
(own unpublished data). 

Our finding that most non-troglobionts and tro-
globionts are primarily distributed and coexist within 
the upper 10 m of subsurface strata is, in addition, 
congruent with the following facts. The belowground 
communities are usually much more diverse than 
the corresponding aboveground ones (Wardle, 2006); 
multiple independent colonization of the subterra-
nean habitat is common in cave-adapted species (Por-
ter, 2007) and in terrestrial species most probably via 
the SSHs (Růžička, 1999; Culver & Pipan, 2009b); 
moreover, species diversity generally declines from 
the shallow towards the deep subterranean habitats 
(Culver & Pipan, 2009a). To most non-troglobionts, 
the entrance cave zone represents either a preferable 
habitat or merely a conduit from the epigean habitat 
to deeper habitats where a daily rest or seasonal in-
active hypogean ecophase can unfold and vice versa. 
To the other non-troglobionts and all troglobionts, the 
entrance cave zone acts as a disturbance, disrupting, 
or limiting their preferred subsurface habitat within 
the range from SSHs to deep caves. 

In conclusion, the terrestrial fauna in the classical 
European subterranean environment consists of two 
well separated faunas: The SSH fauna is represented 
by non-troglobionts and a major group of troglobi-
onts, while the deep subterranean fauna consists of 
a minor group of troglobionts. Thus, troglobionts are 
strictly divided into the two identified ecological sub-
groups. Consequently, non-troglobionts as well as tro-
globionts are most diverse and randomly distributed 
in the upper 10 m of subsurface strata corresponding 
to the cave entrance zone and the SSHs. Wherever in 
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the world troglobionts occur in vegetation landscapes, 
they most likely inhabit the soil root zone, and, if also 
present in deep subterranean habitats, they can be 
expected to be much more diverse in the SSHs. 
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