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Lies can have profoundly negative consequences for individuals, groups and
even for societies. Understanding how lying evolves and when it proliferates
is therefore of significant importance for our personal and societal well-being.
To that effect, we here study the sender–receiver game in well-mixed
populations with methods of statistical physics. We use the Monte Carlo
method to determine the stationary frequencies of liars and believers for
four different lie types. We consider altruistic white lies that favour the recei-
ver at a cost to the sender, black lies that favour the sender at a cost to the
receiver, spiteful lies that harm both the sender and the receiver, and Pareto
white lies that favour both the sender and the receiver. We find that spiteful
lies give rise to trivial behaviour, where senders quickly learn that their best
strategy is to send a truthful message, while receivers likewise quickly learn
that their best strategy is to believe the sender’s message. For altruistic
white lies and black lies, we find that most senders lie while most receivers
do not believe the sender’s message, but the exact frequencies of liars and
non-believers depend significantly on the payoffs, and they also evolve
non-monotonically before reaching the stationary state. Lastly, for Pareto
white lies we observe the most complex dynamics, with the possibility of
both lying and believing evolving with all frequencies between 0 and 1 in
dependence on the payoffs. We discuss the implications of these results for
moral behaviour in human experiments.

1. Introduction
There are arguments and data in favour of the statement that we live safer,
richer and healthier than ever before [1,2]. But the gap between rich and
poor is currently growing out of all reasonable proportions. And it is difficult
to look away from the armed conflicts, hunger and poverty without thinking
that we ought to be able to do better. While we try our best to be compassio-
nate, civilized and social, and while there is an abundance of technological
breakthroughs and innovations that make our lives better, many human
societies are still seriously failing to meet the most basic needs of millions
around the world [3]. We are also dangerously depleting natural resources,
our industries and ways of life are changing the climate, and we have fallen
victim to echo chambers and misinformation, to the point that it is often
impossible to discern truth from lies [4,5].

Although the above-outlined issues are diverse and multifaceted, they
do share one common property. Their solutions require cooperation. And we do
cooperate—in fact, we are champions of cooperation, to the point that we exercise
‘supercooperation’ [6]. But since natural selection in all of biology favours the fittest
and the most successful individuals, there is still an innate selfishness in us that
greatly challenges our cooperative drive. Cooperation is costly, and exercising it
weighs down on individual well-being and prosperity. We therefore often
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succumb to the Darwin within, and we forget about less privi-
leged others, and about future generations, and the health of
our climate, and about many related issues that would require
large-scale cooperation to be improved. Not surprisingly,
understanding and promoting cooperation in human societies
has once been declared one of the grandest challenges of the
twenty-first century [7], and scholars fromdisciplines as diverse
as economics, psychology, sociology, biology and anthropology
have explored what factors favour people’s cooperative
behaviour [8–19].

Methods of physics, in particular the Monte Carlo method
and related approaches in statistical physics and network
science [20–25], have also emerged as being very useful for
studying many social phenomena. Statistical physics of
social dynamics [26], of evolutionary games in structured
populations [27–30], of crime [31], of gossip [32] and of epi-
demic processes and vaccination [33,34] are all examples of
this exciting development, with human cooperation being no
exception [35,36]. However, empirical work has shown that
cooperation is only one kind of a more general class of beha-
viours—moral behaviours [37]. This suggests that the same
methods could be applied effectively to study the evolution
of other types of moral behaviours as well [38].

Using this as motivation, herewe usemethods of statistical
physics to study the evolution of lying, or deception. Why
deception? Deception has significant negative impacts on
government, companies and society as a whole. For example,
tax evasion costs approximately US$100 billion a year to the
US government alone [39], whereas, still in the USA, insurance
fraud costs about US$40 billion a year to insurance companies
[40]. More recently, research has also focused on the spreading
of fake news and misinformation [5], which, by favouring the
emergence of inaccurate beliefs about the real state of society,
may represent a serious threat to democracy [41]. Thus, not
surprisingly, studying dishonesty has a long history of interest
among social scientists [42–56], with the sender–receiver
game being a popular theoretical paradigm to measure
(dis)honesty [57].

In what follows, we re-introduce the sender–receiver game
in a way that is appropriate to use with the Monte Carlo
method, and we determine the stationary frequencies of liars
and believers for four different lie types in well-mixed popu-
lations. In particular, we consider altruistic white lies, black
lies, spiteful lies and Pareto white lies, and we study in
detail the dynamics that emerges as a result. As we will
show, with spiteful lies in play senders and receivers both
quickly learn that their best strategy is to send a truthful mess-
age and believe it, respectively. But for other types of lying, the
dynamics becomes more nuanced. For example, for altruistic
white lies and black lies, we will show that most senders lie
while most receivers do not believe the sender’s message,
while for Pareto white lies we will show that both lying and
believing can evolve with any frequencies between 0 and
1. Our research thus adds a theoretically rigorous quantitative
component to studying dishonesty, which has important
implications for better understanding moral behaviour in
general, as well as provides pointers for devising innovative
human experiments to test the theory.

2. The sender–receiver game
Behavioural scientists have invented several tasks to measure
people’s (dis)honesty. The more popular ones are the
die-rolling paradigm [56], the matrix task [42], the Philip
Sidney game [58] and the sender–receiver game [57]. In this
work, we focus on the sender–receiver game, which is par-
ticularly suitable for the application of the Monte Carlo
method, being a game with two players and (practically)
two strategies, whereas the die-rolling paradigm and the
matrix task are both decision problems, with no strategic
component, in which one person has to decide whether to
lie for their benefit, or not. Moreover, the sender–receiver
game allows us to study four different types of lies (black
lies, spiteful lies, altruistic white lies and Pareto white lies),
whereas the Philip Sydney game, although strategically
similar to the sender–receiver game, permits us to study
only black lies. In particular, we focus on the variant of the
sender–receiver game introduced by Erat & Gneezy [53].

The game is as follows. There are two potential allocations
of money between the sender and the receiver, option A
and option B. The sender rolls a six-face dice and is the
only one who sees the outcome. After looking at the outcome,
the sender chooses a message to send to the receiver
among six possible messages: ‘The outcome was i’, with
i∈ {1, 2, 3, 4, 5, 6}. After receiving the message, the receiver
has to guess the true outcome of the dice roll. If the receiver
guesses the true outcome, then option A is implemented as
a payment; if the receiver fails to guess the true outcome,
then option B is implemented.

Although, in principle, this game has six strategies for
each player, it can be reduced to a game with two strategies
for each player in an obvious way. The sender has indeed
essentially two strategies: he either tells the truth to the recei-
ver about the outcome of the dice, or he lies. Similarly,
also the receiver has essentially two strategies: she either
believes the message sent by the sender, or not: if the receiver
believes the sender, she reports the same number as the one
sent by the sender; otherwise, if the receiver does not
believe the sender, she draws randomly a number from the
remaining five numbers of the dice.

Therefore, we can write the payoff matrix of the sender–
receiver game as follows. Let A = (aR, aS) and B = (bR, bS) be
the payoffs associated with option A and option B, respect-
ively, where S stands for the sender and R stands for the
receiver. If the number chosen by the receiver is equal to
the actual outcome of the dice, the sender gets the payoff
aS, and the receiver gets the payoff aR. Conversely, if the
number chosen by the receiver is not equal to the actual out-
come of the dice, the sender gets the payoff bS, and the
receiver gets the payoff bR.

Without loss of generality, we can reduce the number of
parameters from four to two by setting aS = aR = 0. Finally,
by setting s = bS and r = bR, we can rewrite the game in a
2 × 2 matrix form, as follows:
B
 N
T
 0, 0
 s, r
L
 s, r
 4
5 s,

4
5 r
where T stands for ‘truth’, L stands for ‘lie’, B stands for
‘believe’ and N stands for ‘not believing’. The ratios (⅘)
come from the fact that, when the sender lies and the receiver
does not believe the message sent by the sender, the
receiver does not guess the true outcome of the dice with
probability (⅘).
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Following the taxonomy introduced by Erat & Gneezy
[53], we distinguish four types of lies, depending on the
consequences in payoffs.

— Pareto white lies are those that benefit both the sender and
the receiver: r, s > 0.

— Altruistic white lies are those that benefit the receiver at a
cost to the sender: r > 0, s < 0.

— Black lies are those that benefit the sender at a cost to the
receiver: r < 0, s > 0.

— Spiteful lies are those that harm both the sender and the
receiver: r, s < 0.

We conclude this section by reporting the equilibrium
analysis. If r, s < 0, there are two equilibria in pure strategies,
(T, B) and (L, N ), and one equilibrium in mixed strategies
(T/6 + 5L/6, B/6 + 5N/6)—that is, the sender plays T with
probability ⅙ and plays L with probability ⅚; analogous for
the receiver. If sr < 0 (i.e. if r > 0 and s < 0 or s > 0 and r < 0),
then there are no equilibria in pure strategies and there is
one equilibrium in mixed strategies, that is, again, (T/6 +
5L/6, B/6 + 5N/6). Finally, if s, r > 0, there are two equilibria
in pure strategies, (T, N ), (L, B), and one equilibrium in mixed
strategies, again, (T/6 + 5L/6, B/6 + 5N/6). The cases r = 0
and/or s = 0 are trivial, because the corresponding player/s
is/are indifferent between the strategies.
3. The Monte Carlo method
We consider the sender–receiver game among N players, who
interact pairwise in a well-mixed population. At each round
of the game, one player acts as a sender, and the other
player acts as a receiver. Each player can assume either role,
which is decided by a coin toss at the start of each encounter.
When acting as a sender, a player can either tell the truth (T)
or lie (L). When acting as a receiver, on the other hand, a
player can either believe (B) the message received from the
sender, or not (N). This gives rise to four different strategies,
namely (T, B), (T, N ), (L, B) and (L, N ). Initially, each player is
randomly assigned as either T or L (when she acts as a
sender), and as either B or N (when she acts as a receiver).

We simulate the game using the Monte Carlo method. For
a well-mixed population with N players, the following
elementary steps apply. First, a player x is randomly drawn
from the population. Player x then plays the sender–receiver
game with four randomly chosen other players from the
population in a pairwise manner as described above, thereby
obtaining the payoff πx. Secondly, another player y is also ran-
domly drawn from the population, and he also plays the
sender–receiver game with four randomly chosen other
players from the population, thereby obtaining the payoff
πy. Lastly, player y imitates the strategy of player x in accord-
ance with the probability w = {1 + exp [(πy − πx)/K ]}−1, where
K quantifies the uncertainty during the strategy adoption pro-
cess. In the K→∞ limit, payoffs cease to matter and strategies
change at random; conversely, in the K→ 0 limit, player y imi-
tates x only if πx > πy; between these two limits, the strategies
of better performing players tend to be imitated, although
under-performing strategies are imitated as well; for example,
because of errors in the decision making, imperfect infor-
mation and external influences that may adversely affect the
evaluation of the payoff of the other player. Without loss of
generality, here we set K = 0.1, in agreement with previous
research that showed this to be a representative value [36].

The time ismeasured inMonte Carlo steps (MCSs), whereby
one MCS corresponds to executing all three elementary steps N
times. During one MCS, each player changes strategy, on aver-
age, only once. For a systematic numerical analysis, we have
determined the fraction of strategies in the final stationary state
when varying the values of s and r. For an adequate accuracy,
we have used sufficiently large system sizes, varied from N =
500 to 1000, aswell as long enough thermalization and sampling
times, varied from 104 to 106 MCS. To further remove statistical
fluctuations, we have also averaged the final outcome over up to
2000 independent realizations. The code used to conduct the
simulations is reported in the electronic supplementarymaterial.
4. Results
We considered a well-mixed population and investigated the
final configuration reached by the system once the dynamics
has reached its steady state.

4.1. Final densities of liars and believers as a function
of lie type

As a first step of our analysis, we look at the final densities of
liars and believers, as functions of the type of lie.

Figure 1 shows the final densities of liars (a) and believers
(b), as functions of the game parameters (r, s). For each couple
(r, s), the corresponding densities are obtained by averaging
over 2000 independent realizations on a system of size
N = 500. The simulations were conducted with r, s increasing
from − 1 to 1, with steps of length 0.08. We verified that the
dynamics has actually reached the final state.

We start from the case r, s < 0. Figure 1a highlights that, in
this case, all senders are honest, whereas figure 1b puts in evi-
dence that all receivers believe the message sent by the sender.
This result is not a priori obvious. The case r, s < 0 corresponds
to spiteful lies, in which both the sender and receiver are
harmed by a lie that is believed. As we have seen before, in
this domain, the sender–receiver game has three equilibria
(T, B), (L,N ) and ((1/6)T + (5/6)L, (1/6)B + (5/6)N ). The simu-
lations show that two of these equilibria are discarded and all
agents tend to coordinate on (T, B). A theoretical reason for
why this happens is that this equilibrium is the only one
that is Pareto optimal in that it maximizes the payoff for
both players. Therefore, (T, B) is the strategy that has the
most chances to be imitated. Also note that, as shown in this
figure (see also figure 2a), the finding that only the (T, B) equi-
librium survives in the evolution is robust to changing the
payoff parameters, r and s, as long as they remain in
the domain of spiteful lies. In other words, in the domain of
spiteful lies, senders quickly learn that their best strategy is
to report the truth, while receivers quickly learn that their
best strategy is to believe the sender’s message.

Now, keeping r < 0 constant, we note that, when s
increases and overcomes zero, there is a state transition,
which corresponds to the fact that the parameters (r, s)
enter the domain of black lies, where, assuming that receivers
believe the senders’ messages, it is favourable for senders to
lie. This has the effect that lying tends to spread. However,
since, in the domain of black lies, the receiver’s best response
to lying (L) is to not believe the sender’s message (N ), while
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Figure 1. Density of liars (a) and believers (b) in the steady state. In the domain of spiteful lies, all senders are honest and all receivers believe the sender’s
message. In the domain of altruistic white lies and black lies, most senders lie and most senders do not believe the sender’s message. However, the exact
final frequencies depend on the specific parameters. In the domain of Pareto white lies, the steady state depends significantly on the parameter values.
System size used is N = 500, and the results are averaged over 2000 independent realizations.

–1.0 –0.5 0
r

0.5 1.0 –1.0 –0.5 0
r

0.5 1.0
–1.0

–0.5

0

0.5

SS

1.0(a) (b)

(c) (d)

1.0

0.8

0.6

0.4

0.2

0

–1.0

–0.5

0

0.5

1.0

–1.0 –0.5 0
r

0.5 1.0 –1.0 –0.5 0
r

0.5 1.0
–1.0

–0.5

0

0.5

SS

1.0 1.0

0.8

0.6

0.4

0.2

0

–1.0

–0.5

0

0.5

1.0

Figure 2. (a) Final densities of the pure strategy profile (T, B), which turns out to evolve only in the domain of spiteful lies. (b) Final densities of the pure strategy
profile (T, N ), which turns out to evolve in three cases; namely, for altruistic white lies, for black lies and for Pareto white lies, although with different frequencies
depending on the exact parameter values. (c) Final densities of the pure strategy profile (L, B), which also turns out to evolve in the domains of altruistic white lies,
black lies and Pareto white lies, but with different frequencies depending on the exact parameter values. (d) Final densities of the pure strategy profile (L, N ), which
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L emerges, also N emerges. The emergence of N in turn
contrasts the emergence of L among senders, because, in
the domain of black lies, the sender’s best response to N is
telling the truth (T ). This opposite dynamics results in a
mixed steady state in which most, but not all, senders lie,
and most, but not all, receivers do not believe the sender’s
message. One might at this point wonder whether this
stationary state is equal to the unique mixed strategies equili-
brium, and, in particular, whether it is independent of the
parameters (r, s), or not. The answers are negative. We will
show in the next sections that, in fact, the steady state
depends on the parameters (r, s) non-trivially.

A similar logic applieswhenwe keep s < 0 and let r increase
from − 1 to 1. As soon as r becomes positive, there is a state
transition corresponding to the fact that the parameters (r, s)
enter the domain of altruisticwhite lies. In this domain, assum-
ing that receivers believe that senders tell the truth, then it is
favourable for receivers to not believe the sender’s message.
This has the effect that strategy N tends to emerge. However,
since, in the domain of altruistic white lies, the sender’s best
response to N is L, the emergence of N is contrasted by the
emergence of L. This opposite dynamics results in a mixed
state, which, again, depends non-trivially on the exact
parameters (r, s) as we will show in the next sections.

The quadrant in which both r and s are positive is the
more variegate one. These parameters correspond to Pareto
white lies, lies that benefit both the sender and receiver.
The resulting dynamics is quite complex and the steady
state highly depends on the parameters (r, s), and both L
and N can span all possible frequency values from 0 to 1,
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in a monotonic way: keeping r constant, the final frequencies
of L and B both increase with s.
4.2. Density of the pure strategies
In the previous section, we have reported the final densities
of liars and believers as a function of the type of lie. However,
liars can come in two forms: liars who, when playing in the
role of the receiver, believe the sender’s message and liars
who, when playing in the role of the receiver, do not believe
the sender’s message. Similarly, believers can come in two
forms: believers who, when playing in the role of the
sender, send a truthful message and believers who, when
playing in the role of the sender, send a deceptive message.
To gain insights about which strategies are more likely to
evolve, in this section we report and discuss the final den-
sities of the four pure strategy profiles (T, B), (T, N ), (L, B)
and (L, N ).

Figure 2a highlights that the strategy profile (T, B), accord-
ing to which a player reports the truth when acting as a
sender and believes the sender’s message when acting as a
receiver, appears in the steady state only for r, s < 0 (spiteful
lies). In all other types of lie, the pure strategy profile (T, B)
never evolves.

Particularly interesting is the strategy profile (T, N ),
according to which a player tells the truth when acting as a
sender, but does not believe the sender’s message when
acting as a receiver. This situation is similar to what Sutter
[59] termed ‘sophisticated deception’, telling the truth while
expecting to not be believed. Figure 2b highlights that this
strategy profile appears in a number of non-trivial cases.
When s is negative and r is positive and close to zero (T, N )
appears with high probability, close to 1. This case corre-
sponds to altruistic white lies that have a very small cost
for the sender. Instead, when r is negative and s is positive
(black lies), (T, N ) emerges, but it does so with very small
probability. In the domain of Pareto white lies (r, s > 0),
(T, N ) almost always emerges (especially for r≥ s). In particu-
lar, when r gets close to 1 and s is between 0 and 0.5, (T, N )
emerges with very high probability, close to 1.
The case (L, B) is symmetric to the case (T, N ). Figure 2c
shows that this strategy profile does not emerge at all in the
domain of spiteful lies (r < 0, s < 0) and it emerges with
small probability in the domain of altruistic white lies
(r > 0, s < 0). In the domain of black lies (r < 0, s > 0), we
note a fast emergence of the strategy (L, B) for small values
of s, close to 0, in which this strategy profile evolves even
with probability close to 1. However, for larger values of s
it quickly vanishes. Again, the domain of Pareto white lies
is the more variegate one. Indeed, in this case, the strategy
profile (L, B) emerges with high probability when s≥ r,
whereas for s < r its probability is very small.

Finally, figure 2d shows that the strategy profile (L, N )
does not emerge in the domains of spiteful lies and Pareto
white lies, but it does emerge in the domains of altruistic
white lies and black lies, with very high, although not
equal to 1, probabilities.
4.3. Sections
We have said earlier that, in the domains of black lies (r < 0,
s > 0) and altruistic white lies (r > 0, s < 0), the steady state
depends on the specific values of r and s in a non-trivial
way, and that, in particular, it is not equal to the unique
Nash equilibrium of the game, ((1/6)T + (5/6)L, (1/6)B +
(5/6)N ). Here we show this interesting fact by reporting the
dynamics along the two sections r = ±0.50, as functions of
the sole parameter s.

We start by setting r =−0.50. When s < 0, we have already
seen in the previous section that the only strategy profile that
survives is (T, B). This is indeed reflected in figure 3a, which
puts in evidence that, in this region, the frequency of (T, B)
(green line) is equal to 1, whereas all other frequencies are
equal to 0. Then, when s becomes positive, there is a
sudden change of state. Interestingly, liars quickly emerge,
but in a non-symmetric way: the frequency of (L, B) quickly
increases up to almost 1 for s≃ 0.01, as shown in the inset
of figure 3a, then it quickly decreases again to 0. On the
other hand, the frequency of (L, N ) rapidly increases up to
around 0.9, and then slowly keeps increasing up to reaching
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a value near 1. The maximum of the frequency of (L, B) is
rather surprising for its narrowness: the final density of
(L, B) is 0 for s < 0; then it quickly increases for positive but
very small values of s; then it quickly decreases again to
0. To better understand this peculiar behaviour, in figure 4,
we report the time series of each strategy in the interval of
(L, B) dominance. Specifically, figure 4a highlights that the
frequency of (L, B) increases monotonically up to near 1,
while all other strategies tend to appear with very small
frequencies, although their evolution is rather different. In
particular, (L, N ) evolves non-monotonically, while (T, N) is
even oscillatory. Figure 4b reports the evolution of liars and
believers in the same interval of (L, B) dominance. (More
details about the time evolution of the various densities
will be given in the next section.) Regarding truth-telling,
the strategy (T, B), which was the only surviving strategy
for s < 0, in the domain s > 0 completely vanishes. On the
other hand, the strategy (T, N ) emerges in a non-monotonic
way: as s > 0 increases, the frequency of (T, N ) first increases
up to a value around 0.1, and then slowly decreases to values
near 0. Therefore, for r =−0.5 and s > 0, receivers never
believe the sender’s message, while senders lie with high
frequency, but not equal to 1.

The case r = 0.50 is somewhat more articulated, as shown
in figure 3b. When s < 0, liars emerge with frequency 1; how-
ever, this does not appear to be due to the emergence of a
single profile of strategies. Indeed, for s < 0 we see a coexis-
tence of the strategy profiles (L, B) and (L, N ), although the
latter one appears to emerge with higher frequency, especially
when s increases and approaches 0, in which (L, N ) reaches
frequencies very close to 1. Then, as soon as s reaches 0,
there is a change of state: the strategy profile (T, N ) appears
with frequency very close to 1; however, as s increases
towards 1, then (T, N ) appears with lower and lower frequen-
cies. This decrease in the frequency of appearance of (T, N ), as
s increases, appears to be perfectly mirrored by an increase in
the frequency of (L, B).
4.4. Time evolution
We conclude by reporting the time evolution of liars and
believers at the corner of the domain of the parameters (r, s).
We verified the time evolution also for other values of (r, s),
and we found qualitatively similar patterns (as long as r,
s≠ 0, clearly).

Figure 5a,b highlights that, before reaching the steady
state, the evolution is interesting, being sometimes monotone
and sometimes not. For r = 1 and s =−1 (red line, altruistic
white lie), we note that both the behaviour of senders and
the behaviour of receivers evolve in a non-monotone way.
Similarly, for r = 1 and s = 1 (blue line, Pareto white lie), the
behaviours of both senders and receivers evolve non-
monotonically. A non-monotone evolution, although less
remarked, appears also in the case of black lies (r =−1, s = 1,
green line). Conversely, in the case of spiteful lies, we see a
very quick convergence to the strategy (T, B), in line with
the discussion above that, in this case, senders quickly learn
that their best strategy is to tell the truth and receivers quickly
learn that their best strategy is to believe the sender’s message.

Figure 6 reports in more detail the time evolution of the
four basic strategies for r = 1, s = ±1, that is, when the densities
of liars and believers evolve non-monotonically. In the case of
Pareto white lies (figure 6a), we note that the non-monotonic
evolution of liars is primarily driven by a non-monotonic evol-
ution of the strategy (L,N ), whose frequency first increases up
to about 0.8 and then suddenly decreases by two orders of
magnitudes, to values below 0.01, and then keeps oscillating.
Similarly, still in the domain of Pareto white lies, the non-
monotonic evolution of believers is driven by a combination
of (T, B) and (L, B): at the beginning of the dynamics,
the frequency of (L, B) is approximately constant, while the
frequency of (T, B) decreases, giving rise to the initial decrease
of believers observed in figure 5b; then, between t≃ 20 and
t≃ 100, the frequency of (T, B) doubles from about 0.4 to
about 0.8, where it stabilizes, while the frequency of (T, B)
keeps decreasing. After t≃ 100, the frequency of (T, B) starts
alternating. This change in the dynamics contributes to the
overall non-monotonicity observed in the evolution of the fre-
quency of believers. A similar line of reasoning holds in the
case of altruistic white lies. As shown in figure 6b, the non-
monotonic evolution of liars and believers is mainly driven
by a non-monotonic evolution of the strategy (L, B).

Finally, it is worth noticing that the non-monotonic
behaviour in time increases with the population size:
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indeed, for very large systems (N � 104), in some cases we
observe oscillations before the densities reach the final state.
4.5. Discussion
We have used the Monte Carlo method to explore the evol-
ution of lying in well-mixed populations, where individuals
are playing the sender–receiver game [53,57]. We have
shown that the evolution follows non-trivial trajectories. In
particular, honesty and dishonesty may appear or disappear
with very high probability depending on the particular pay-
offs of the game. Similarly, also believing and non-believing
can emerge or vanish with very high probabilities. More
specifically, following Erat and Gneezy’s taxonomy of lies
[53], we distinguished four basic types of lies: black lies,
spiteful lies, altruistic white lies and Pareto white lies. In
the domain of spiteful lies, senders quickly learn that their
best strategy is to send a truthful message, and receivers
quickly learn that their best strategy is to believe the sender’s
message. The cases of altruistic white lies and black lies are
instead characterized by the fact that, at the steady state,
most senders lie while most receivers do not believe the
sender message. However, the exact proportions of senders
and non-believers depend significantly on the particular pay-
offs, and they also evolve in a non-monotonic way, before
eventually reaching the steady state. The case of Pareto
white lies is an even more variegate one. Here, the steady
state depends fully on the payoffs, and both lying and non-
believing can evolve with all probabilities between 0 and 1.

Previous research has explored the evolution of honesty
using the Philip Sidney game [58]. In this game, the sender
is initially in either of two states, healthy or needy, with prob-
ability p and 1− p, respectively. The sender can either pay a
cost c to signal his state or stay quiet. The receiver does not
know the state of the sender, but can observe the signal.
After observing the signal (if sent), the receiver decides
whether to donate his resource to the sender. The sender
and the receiver are assumed to be related, by a relatedness
coefficient r. Each player’s payoff is the sum of his survival
probability and a fraction r of the other player’s survival prob-
ability. Survival probabilities are defined as follows: the
receiver is sure to survive only if he does not donate
his resource; the sender is sure to survive only if he receives
the receiver’s resource. This creates a conflict of interests
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among the sender and the receiver which corresponds to what
we called (following Erat & Gneezy [53]) the ‘black lie’ con-
dition. A classic work on the Philip Sidney game found that,
if the cost of the signal is sufficiently high, honest signalling
can evolve [60]. See [61] for a review of this ‘handicap
principle’ and its variants. More recent research revealed
that punishment can promote the evolution of honesty in
cases in which the conflict of interests among the sender and
the receiver is moderate and signalling is cheap or even cost
free [62]. Our work departs from this line of research along
two main dimensions. First, in the sender–receiver game,
signalling is cost free and there is no punishment. Even in
this case, our results indicate that honesty can evolve
in some circumstances (especially in the case of spiteful lies
and Pareto white lies, but also, to some extent, in the case of
black lies). Second, the sender–receiver game allows us to
study the evolution of honesty not only in the domain of
black lies, but also in the domains of spiteful lies, Pareto
white lies and altruistic white lies.

Related to our work is also the recent literature on pre-
commitments in social dilemmas. In this context, a social
dilemma is preceded by a pre-play stage in which players
can send messages (commitment proposals) and other players
can accept or refuse the proposal. Proposers can lie about the
commitment. For example, after promising that they would
cooperate, proposers can dishonour their promise and defect.
On the other hand, responders can refuse a commitment
proposal because they do not believe the proposer. Han and
colleagues explored analytically and numerically the evolution
of cooperation in this type of social dilemma, both in pairwise
[63] and group interactions [64,65], and found that cooperation
can evolve under a number of different circumstances, such as
when the cost of commitment is sufficiently small compared
with the cost of cooperation. Our work differs from this line
of research in that we focus specifically on honesty and believ-
ing, with no consequences on cooperative behaviour. This
allows us to clearly identify the four classes of lies (black, spite-
ful, altruistic, Pareto), and to study the evolution of lying as a
function of lie type.

Statistical physics, and, in particular, the Monte Carlo
method, has proven valuable for the study of the evolution
of cooperation in social dilemmas [36]. Yet, cooperation in
social dilemmas is only one particular instance of a more
general class of behaviours, moral behaviours [37]. Therefore,
it is time now to move beyond the borders of cooperation
and start applying similar methods to the evolution of
other moral behaviours, such as, indeed, honesty [38].
To the best of our knowledge, this is the first study using
techniques from statistical physics to study the evolution of
lying in the six-dice sender–receiver game. Of course, some
questions remain to be addressed in future research,
such as: What happens for general n-dice sender–receiver
games? What happens on networks? What interventions
can be done to favour the evolution of honesty? What if imi-
tation is replaced with other forms of strategy change? Just to
name a few. These are important questions, whose answers
can greatly contribute to the improvement of the society we
live in, and they can provide a nuanced quantitative view
of honest behaviour, as well as inform the design of future
human experiments with testable theoretical predictions.

Extending the domain of application of the Monte Carlo
method from cooperation to honesty, our work also suggests
that similar techniques could be applied to study the evol-
ution of other forms of moral behaviour. A recent work by
Curry et al. [66] shows that seven moral rules are universal
across societies: love your family, help your group, return
favours, be brave, defer to authority, be fair and respect
others’ property. Clearly, not all these behaviours can be
studied using simple games, but some are. For instance,
‘returning favours’ could be studied using a sequential
Prisoner’s Dilemma or the trust game; ‘help your group’
could be studied using games with labelled players, in
which individuals come with a label describing the group
they belong to; ‘fairness’ could be studied through the ulti-
matum game, as indeed has already been done [67–77];
respect others’ property can be studied using games with
special frames, as, for example, the dictator game in the
take frame, for which taking turns out is considered more
morally wrong than giving [78,79].

In sum, we believe that illuminating if, when and how
techniques of statistical physics can be applied to study the
evolution of morality among humans should be considered
as a primary direction for future research.
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