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We determine under which conditions the propagation of

weak periodic signals through a feedforward Hodgkin–

Huxley neuronal network is optimal. We find that

successive neuronal layers are able to amplify weak

signals introduced to the neurons forming the first

layer only above a certain intensity of intrinsic noise.

Furthermore, we show that as low as 4% of all possible

interlayer links are sufficient for an optimal propagation of

weak signals to great depths of the feedforward neuronal

network, provided the signal frequency and the intensity of

intrinsic noise are appropriately adjusted. NeuroReport
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Introduction
Complex network models have been widely used to

understand how neuronal circuitry generates complex

patterns of activity [1–4]. As neuronal processing often

involves multiple synaptic stages, a feedforward sequence

of layers of neurons has been proposed as a rudimentary

platform able to shed light on how cortical circuits encode

the world around us [5,6]. Within such a feedforward

network, information may be encoded in different ways.

In principle, information in spike trains may be encoded

either through the timing of the spikes (temporal-wise)

[7] or through the mean firing rate [8], indicating two

possible modes of signal propagation through multiple

layers. Therefore, one possible way for propagation of

information in such systems is provided through the firing

rate of neurons, that is, the firing-rate propagation. In this

context, Shadlen and Newsome [9] studied the variable

discharge of cortical neurons in a single layer with a

balance between excitation and inhibition, and found that

an ensemble of 100 neurons with an integrate and fire

mechanism provides a reliable estimate of rate encoding

within 10–50 ms long time intervals. More recently,

however, it has been shown that it is difficult to transmit

the firing rate of a whole population faithfully through

many layers in feedforward networks with an exact

balance [6], which is in contradiction with the results

presented in Ref. [9]. Rossum et al. [10] constructed a

different network architecture with multiple layers,

having all-to-all connectivity, and suggested that informa-

tion can be rapidly encoded by means of the firing rate of

the population, and moreover, that information can

propagate through many layers even with a remarkably

small number of neurons per layer (B20) by adding an

appropriate amount of noise to the system. In their study,

noise sets the operating regimen of the network as in

single layer networks. The second mode of signal pro-

pagation, as an alternative to the firing rate encoding, is

temporal encoding (also termed synfire propagation), in

which information is carried by a wave of synchronous

activity of small groups of neurons constituting the

network [11]. Recently, Reyes [12] constructed feed-

forward networks consisting of 10 layers, each with several

hundred real cortical neurons, and showed that the firing

of neurons was asynchronous in the first few layers, but

became gradually more synchronous in successive layers.

This experimental finding supports the notion that feed-

forward cortical neurons use the temporal encoding for

fast and reliable signal propagation and processing [5].

Indeed, understanding the detection and propagation of

weak signals in neuronal networks is of great importance.

Although the subject has been widely investigated on the

level of single cells [13,14] and neuronal networks with

different topologies [3,4,15], it has thus far been only

partly addressed for feedforward networks [16,17]. In

both earlier studies [16,17], a subthreshold periodic

stimulus was injected to all neurons forming the first

layer of a 10-layer feedforward network in the presence of

external noise, and the success of the propagation of the

weak signal was investigated through the signal-to-noise

ratio. It has been reported [16,17] that the signal-to-noise

ratio decreases as the layer index increases, and that in

a given frequency range of the stimulus the transmission

is enhanced. The models investigated in Refs [16,17]

considered noise as an external additive current. How-

ever, because the source of noisy activity in neuronal
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dynamics is primarily internal, an external source of noise

may be biologically questionable [18]. The present work

aims to further facilitate the understanding of weak signal

propagation in feedforward neuronal networks. Therefore,

we use a biophysically more realistic model of indivi-

dual neuronal dynamics for each neuron constituting the

feedforward network, where the stochastic behavior of

voltage-gated ion channels embedded in neuronal mem-

branes is modeled depending on the cell size. This allows

relating the cell size to the level of intrinsic noise in a

manner that more closely mimics actual conditions. In

addition, the measure for the effectiveness of signal pro-

pagation, that is, information transmission, used at pre-

sent is also different from what was used in Refs [16,17].

Here, we focus explicitly on the presence of a given signal

frequency in the output of each layer. We thus measure

explicitly the propagation of weak signals by tracking the

presence of different frequencies in neuronal responses

through successive layers of the feedforward network in

dependence on the intensity of intrinsic noise and

density of interlayer links.

Methods
We use a 10-layer feedforward neuronal network model

that is conceptually similar to the one used earlier in Refs

[16,17], where each individual layer consists of L = 200

Hodgkin–Huxley (HH) neurons [19], and each neuron

receives synaptic inputs from 10% (unless stated other-

wise) of randomly selected neurons in the preceding

layer. There are no connections among the neurons in

individual layers. The time evolution of the membrane

potential for the HH neurons is given by:

Cm
dVi;j

dt
¼ �gNam3

i;jhi;j Vi;j � VNa

� �
� gKn4

i;j Vi;j � VK

� �

� gL Vi;j � VL

� �
� Isyn

i;j ðtÞ ð1Þ

where Vi,j denotes the membrane potential of the j-th
neuron in layer i (i = 1,2,y,10 and j = 1,2,y,200 = L).

The membrane capacity is Cm = 1 mF/cm2, whereas

gNa = 120 mS/cm2 and gK = 36 mS/cm2 are the maximal

sodium and potassium conductances, respectively. The

leakage conductance is assumed to be constant, equaling

gL = 0.3 mS/cm2, and VNa = 50 mV, VK = – 77 mV and

VL = – 54.4 mV are the reversal potentials for the sodium,

potassium, and leakage channels, respectively. The syn-

aptic current Isyn
i;j ðtÞ is given by:

Isyn
i;j ðtÞ ¼

1

Ni;j

XN

p¼1

gsyna t � tði�1Þp
� �

Vi;j � Vsyn

� �
ð2Þ

with a[t] = (t/t)e – t/t. Ni,j and t(i – 1)p are the number of

neurons in layer i – 1 coupled to the j-th neuron in layer

i and the firing time of the p-th neuron in layer i – 1,

respectively. The firing time is defined by the upward

crossing of the membrane potential past a detection

threshold of 0 mV, whereby the rising time of the synaptic

input is assumed to be t= 2 ms. The synaptic weight is

gsyn = 0.6, and Vsyn represents the synaptic reversal

potential, which is set to 0 mV, indicating that all the

couplings in the network are excitatory. Finally, mi,j and

hi,j denote activation and inactivation variables for the

sodium channel of j-th neuron in layer i, respectively,

and the potassium channel includes an activation

variable ni,j.

The effects of the channel noise can be modeled by using

different computational algorithms. In this study, we use

the algorithm presented by Fox [20]. In the Fox’s

algorithm, variables of stochastic gating dynamics are

described via the Langevin generalization [20]:

dxi;j

dt
¼ axðVi;jÞð1� xi;jÞ � bxðVi;jÞxi;j þ xxi;jðtÞ; xi;j

¼ mi;j; ni;j; hi;j ð3Þ

where ax(Vi,j) and bx(Vi,j) are rate functions for the gating

variable xi,j. The probabilistic nature of the channels

appears as a source of noise xxi ;jðtÞ in Eq. (3), which is an

independent zero mean Gaussian white noise whose

autocorrelation function is given by [20].

xmðtÞxmðt0Þh i ¼ 2ambm

NNaðam þ bmÞ
dðt � t0Þ ð4Þ

xhðtÞxhðt0Þh i ¼ 2ahbh

NNaðah þ bhÞ
dðt � t0Þ ð5Þ

xnðtÞxnðt0Þh i ¼ 2anbn

NKðan þ bnÞ
dðt � t0Þ ð6Þ

where NNa and NK denote the total number of sodium

and potassium channels, respectively. The channel

numbers are calculated as NNa = rNaS and NK = rKS,

where rNa = 60 mm – 2 and rK = 18 mm – 2 are the sodium

and potassium channel densities, respectively. Equations

(1)–(6) constitute the stochastic HH network model,

where the cell size S determines the intensity of intrinsic

noise. When the cell size is large enough, stochastic effects

of the channel noise are negligible, and thus the stochastic

model approaches the deterministic description.

Weak rhythmic activity is introduced to each neuron

(unless stated otherwise) in the first layer (i = 1) in

form of a weak, i.e. subthreshold, periodic signal I(t) =

Asin(ot). Here A denotes the amplitude of the sinusoidal

forcing current, which we set to 1.0 mA/cm2, whereas

o= 2p/tr is the corresponding angular frequency.

For each set of S and o the temporal output of each

neuron j in each of the 10 layers given by Vi,j(t) is recorded

for T = 1000 periods of the weak forcing, and then the

collective temporal behavior of each layer is measured by

averaging the membrane potential over all the neurons in
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the corresponding layer Vi;avgðtÞ ¼ L�1
P

j¼1::L Vi;jðtÞ cor-

responding to the mean field of a random network. The

correlation of each series with the frequency of the weak

forcing is computed via the Fourier coefficients

Qi ¼
ffiffiffiffiffiffiffiffiffiffi
R2

i
þS2

i

p
according to [21]

Ri ¼
2

Ttr

ZtrT

0

Vi;avgðtÞ sinðotÞdt ð7Þ

Si ¼
2

Ttr

ZtrT

0

Vi;avgðtÞ cosðotÞdt ð8Þ

We use the Fourier coefficients Qi as a numerically

effective measure for quantifying the quality of signal

propagation, or equivalently information transmission,

across all the layers of the feedforward neuronal network.

Results
In what follows, we will systemically analyze effects of

different S and o on the propagation of weak rhythmic

activity across the layers of HH neurons through Qi. First,

we examine the dependence of Qi on S for all layers with

a fixed value for the angular frequency of the pacemaker

equaling o= 0.3 m/s. Results are presented in Fig. 1.

Evidently, Qi increases sigmoidally with increasing cell

size (or, equivalently, decreasing level of intrinsic noise)

for each layer. Interestingly, each curve intersects at

SD6 mm2, indicating two different modes for the

propagation of weak rhythmic activity through successive

layers. For the cell sizes S <6 mm2, Qi decreases as the

layer index i increases, which may result in the weak

periodic forcing, introduced to the neurons in the first

layer, being transmitted very weakly or even die out

towards successive, deeper layers. This constitutes the

first regime of the propagation of weak periodic forcing

across the layers. However, for the cell sizes S > 6 mm2, Qi

increases as the layer index i increases. Thus, the weak

periodic signal introduced to all neurons in the first layer

is being transmitted increasingly more efficient as the

depth of the network increases. This constitutes the

second regime of the propagation of weak periodic forcing

across the layers. Finally, for larger cell sizes SZ 16 mm2

Qi saturates. Importantly, the location of the intersection

point with respect to S is frequency dependent in that

lower as well as higher o shift its occurrence towards

S-0mm2, until at o= 0.1 m/s (lower limit) or o= 0.9 m/s

(upper limit) the intersection disappears altogether (not

shown). This must be attributed to the fact that the

forcing frequency is then far from the optimal value (see

results further below), and therefore successive layers do

not amplify the input signal irrespective of the cell size,

i.e. the first regime prevails across the whole span of S.

Furthermore, it is interesting to note that Qi exhibits

significant difference for the first four layers within the

second regime (see e.g. symbols at S = 10 and 16 mm2

respectively in Fig. 1), whereas this difference gradually

disappears in successive, deeper layers, suggesting that

the weak periodic signal is progressively processed at

deeper layers. Such a development for the outreach of the

signal introduced to the first layer can be related to the

experimental observations in Ref. [12] and the computa-

tional results in Refs [16,17,22], where neuronal firings in

feedforward neuronal networks are asynchronous for the

first layers while they become progressively more syn-

chronous in deeper layers.

Next, we investigate how Qi changes in dependence on

the signal frequency with a fixed value of the cell size S.

To that effect, we calculate the dependence of Qi on o for

three different cell sizes. Results are presented in Fig.

2a–c for S = 2, 4 and 16 mm2, respectively. In agreement

with results presented in Fig. 1, smaller cell sizes result in

substantially lower peaks of Qi (Fig. 2a), which increase

steadily as S is enlarged (Fig. 2b and c). Interestingly, in

all panels of Fig. 2, thus not depending on S, Qi exhibits a

peak at oE0.4 m/s(D60 Hz) for all i. This indicates the

existence of an optimal frequency for the noise-supported

propagation of weak rhythmic activity through successive

layers of HH neurons. In fact, noisy HH neurons exhibit

intrinsic subthreshold oscillations, giving rise to selective

sensitivity to weak input signals with different frequen-

cies. The frequency of these oscillations can be estimated

through the imaginary part of the Eigen values of the

corresponding steady state of an individual neuron (e.g.

[23]), and the resonances with a periodic drive can thus

Fig. 1
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be interpreted as an Arnold tongue. The frequency range

from 30 to 80 Hz has proven most suitable for efficient

encoding of weak signals that are able to optimally excite

HH neurons [15–17]. The above-reported optimum of

oE0.4 m/s(D60 Hz) thus falls nicely within this range,

especially also for networks of the small-world type [3,4],

in turn explaining the existence of an optimal forcing

frequency based on the individual dynamics of the HH

model. These results support the fact that there exists a

direct interrelation (or mapping) between oscillatory

properties of individual network elements and the

network rhythmicity as a whole [24]. This is also in

agreement with a recent analysis, suggesting that the

firing statistics of individual neurons greatly affects the

behavior of the network [25].

Furthermore, when the cell size is very small, as in Fig. 2a,

Qi deteriorates with increasing i (increasing depth of the

feedforward network) across the whole span of o.

However, for larger S the effect of the forcing frequency

on the propagation of the weak rhythmic signal to deeper

layers becomes more complex. For S = 4 mm2 (Fig. 2b), Qi

deteriorates with increasing i below and above the

optimal forcing frequency oE0.4 m/s, whereas Qi in-

creases with increasing i at the optimal o. For larger cell

sizes still, the frequency range for which Qi increases with

increasing i becomes broader (Fig. 2c), and interestingly

covers rather exactly the most sensitive frequency range

of the HH neurons (30–80 Hz) as determined by the

subthreshold oscillations around the steady state. Thus,

the optimal propagation of weak periodic signals towards

deeper layers depends both on the cell size of neurons

and the forcing frequency.

To support this argumentation further, we compute the

ratio Q10/Q1 in dependence on the relevant span of S and

o, as shown in Fig. 3. By smaller S, although the optimal

frequency is able to facilitate the overall transmission

throughout the layers due to the resonance between the

signal and the subthreshold oscillations of the HH

neurons, this is not sufficient to evoke an increase in Qi

as i is becomes larger. Accordingly, the detection of the

weak signal introduced at the first layer deteriorates or

can even seize completely towards larger i, as evidence by

Q10/Q1 < 1 in Fig. 3 for small S. For larger cell sizes,

however, certain ranges of the forcing frequency, corre-

sponding to the most sensitive frequency range of the

HH neurons, provide the necessary ingredient enabling

the switch from Q10/Q1 < 1 to Q10/Q1 > 1, thus indicating

a transmission mode in which the initially weak forcing

signal is increasingly amplified with the depth of the

network. In Fig. 3 the amplification factor for inter-

mediate cell sizes reaches Q10/Q1E3, provided the

optimal oE0.4 m/s is used. For even larger S the

amplification factor increases further only marginally,

yet the frequency range of the input signal ensuring Q10/

Q1 > 1 broadens substantially.

Thus far, each neuron randomly received synaptic inputs

from 10% of neurons in the preceding layer. In layered

networks the common inputs tend to fire spikes in a

Fig. 2
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restricted time window, yielding partial synchrony

between the corresponding postsynaptic neurons, and

then in the next layer downstream, neurons will tend to

‘pick-up’ synchronous firings in their common inputs and,

consequently, they will tend to fire even more synchro-

nously [5]. Finally, we investigate how the alteration of

this interlayer link density affects the propagation of

the forcing signal towards deeper layers. Based on this

mechanism, we determine the minimal density of inter-

layer links required for an efficient propagation of the

weak signal to the deepest layer. We fix the cell size to

S = 6 mm2 so that in general Qi increases with increasing i,
and compute Q10 for several interlayer link densities

above and below 10% over an equal frequency range. We

also compute Q10 for all-to-all coupling among neurons in

neighboring layers. Obtained results are presented in

Fig. 4. Evidently, the larger the interlayer link density, the

larger the outreach of the forcing signal to the deepest

layer. This can be appreciated most clearly for the optimal

angular forcing frequency oE0.4 m/s. Interestingly, how-

ever, all curves of Q10 for the interlayer link density

exceeding 4% are practically identical. This important

finding indicates that the synaptic inputs from no more

than 4% of neurons in the preceding layer are sufficient

for a successful propagation of the signal to the deepest

neuronal layer if the forcing frequency is within the

sensitive frequency range of individual HH neurons. For

finite size feedforward networks with 10 layers, such as

considered in this study, if each neuron receives the

synaptic inputs from 10% of the neurons in the preceding

layer, then neurons in any given layer will share about 1%

of the same (common) synaptic inputs [5,22]. Our result

suggests that only about 0.4% of the common synaptic

inputs in any given layer are enough for an effective

propagation of weak rhythmic signals towards deeper

layers.

Conclusion
We have shown that the optimal propagation of weak

rhythmic signals through feedforward neuronal networks

depends significantly on the level of intrinsic noise, the

forcing frequency, as well as the density of interlayer links

and the coverage of the input introduced to the first layer.

Large system sizes, that is, lower levels of intrinsic noise,

guarantee a broader range of forcing frequencies that can

be effectively amplified by the depth of the feedforward

network. Moreover, we have shown that only a rather

modest density of interlayer links (4% of all possible) is

fully sufficient for an effective propagation of localized

stimuli to great depths of the feedforward network.

Although this assertion depends on the level of intrinsic

noise and the forcing frequency, it indicates that the

effectiveness of the amplification mechanism from the

input to the output of feedforward networks relies on

sparse interlayer connections. In this sense, an overly

dense interneuronal communication network between

different layers can be considered wasteful.
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