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Abstract. We study dynamical responses in locally paced networks consisting
of diffusively coupled excitable units with dynamically adjusted connectivity.
It is shown that for weak subthreshold pacing, excessive or strong connectivity
impairs the reliable response of a network to the stimulus. Fast random dynamic
rewiring of the network also acts detrimentally on signal detection by enforcing
a faster relaxation upon the paced unit. Our results indicate that efficient
signal processing on excitable complex networks requires tight correspondence
between the dynamics of connectivity and the dynamical processes taking place
on the network. This, in turn, suggests the existence of ‘function-follows-form’
principles for systems described within this framework.
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1. Introduction

Excitability is an important property of several biological and artificial systems, ranging from
neural networks and cardiac tissue to chemical reaction systems and laser optics [1–4]. Weak
perturbations acting upon an excitable steady state typically evoke spiking responses, which
after a system-characteristic refractory time fade anew towards the steady state. Excitations
can be triggered by stochastic or deterministic inputs, whereby one can observe fascinating
phenomena such as, for example, stochastic and coherence resonance in temporal and spatially
extended systems [5–9], pattern formation and firing synchronization [10] or self-sustained
activity [11] and fast coherent responses [12] in small-world neural networks, to mention but
a few. Indeed, especially in neural systems, excitability plays a pivotal role and remains an
inspiration for ongoing research efforts, as evidenced by recent focus issues devoted to this
subject [13, 14]. For example, the excitability of so-called leader neurons has been found
crucial for the development of bursts of activity in neural networks [15]. Inspired by preceding
experimental observations [16], it was conjectured that the leader neurons form a sub-network
that acts as a nucleation area for the bursts upon its initial excitation.

Although the majority of studies has so far considered static networks or has dealt with
the network architecture and connection strengths in a probabilistic fashion [17], the focus
has recently been shifting towards evolving or adaptive networks [18]. In particular, evolving
or dynamically changing interactions in the context of excitable neural networks have been
considered previously by Bazhenov et al [19], who examined the role of network dynamics
in shaping spike timing reliability. Also, Levina et al [20, 21] reported on the existence of
self-organized criticality due to dynamical synapses in a pulse-coupled neural network, while
coherence resonance due to rewiring has been presented recently by Jiang and Ma [22] in
the context of diffusively coupled FitzHugh–Nagumo neurons. Outside the realm of excitable
systems, Mondal et al [23] showed that the rapid switching of random links among chaotic
maps enhances spatiotemporal regularity of their dynamics. Moreover, synchronization on
evolving complex networks has also been studied. Sorrentino and Ott [24] proposed an adaptive
strategy based on defining an appropriate potential that each node aims to minimize, and it was
shown that a similar technique could be used for adaptive learning of a time-evolving network
topology as well [25]. Following these developments, further studies examined the emergence
of synchronization on evolving complex networks [26, 27] and were subsequently integrated
into the broader scope of synchronization on complex networks, as reviewed comprehensively
in [28].

Our motivation here is to extend the scope of the above studies and gain an understanding
about how the connectivity structure of a network of excitable units could contribute to various
aspects of signal processing. We focus on a network’s detection of weak periodic signals in the
framework of small-world architecture and try to understand how some features of connectivity,
such as the fraction of shortcuts between the excitable nodes, determine the ability of a network
as a whole to detect the signal that is introduced to one of its units (i.e. the paced unit). We
show that connectivity and topology can have counterintuitive effects on signal detection in
locally paced networks. Namely, we show that excessively strong connectivity of the paced unit
impairs reliable signal detection, and we provide a theoretical argument to explain this effect. We
then consider the effect that random dynamic redistribution of connectivity has on the ability
of a locally paced network to detect a weak localized stimulus, and we demonstrate that fast
random rewiring reduces the response of a network. Our observations suggest that the optimal

New Journal of Physics 12 (2010) 043013 (http://www.njp.org/)

http://www.njp.org/


3

strategy for weak signal detection in locally paced networks of diffusively coupled excitable
units should be tightly linked to activity-dependent rewiring of the connectivity. This, in turn,
suggests a practical realization of the ‘function-follow-form’ principle [29–33] on evolving
networks, whereby the structure (or form) of the network defines its function, in this case being
the dynamical response to the weak signal.

The paper is structured as follows. In section 2, we describe the employed mathematical
model, as well as the interaction networks and other mathematical methods presently in use. The
results are presented in section 3. In the last section, we summarize our findings and discuss their
potential implications.

2. The model and methods of analysis

We consider networks of diffusively coupled excitable units, with network topology ranging
from practically regular to random. The temporal evolution of the ith unit (time is discretized
in our model as an iteration number) is described by the following set of map equations that
were developed to capture the rich variety of neuronal dynamics, from regular spiking to self-
sustained chaotic bursting [34, 35]

ui(t + 1) =
α

1 + u2
i (t)

+ vi(t) + D
N∑

j=1

εi j

[
u j(t) − ui(t)

]
+ σξ(t),

vi(t + 1) = vi(t) − βui(t) − γ.

(1)

In equation (1), the variable ui captures the fast component of neural dynamics, whereas vi

evolves on a slower time scale. The parameter D represents the strength of diffusive coupling
between the given unit and the set of its ‘neighbors’ (parameterized by the matrix εi j ), which
consists of both the unit’s neighbors on the regular lattice and of contributions that come from
shortcut links to randomly picked units, constructed as detailed below. For the sake of clarity,
we assume that the strength of the coupling D is the same for all pairs of coupled units. Elements
of matrix εi j take the following values:

εi j =

{
1 : i, j connected,

0 : i, j not connected.
(2)

In this work, we consider networks with structures ranging from almost regular, through small-
world, to almost randomized. We start from the ring-like network with regular connectivity,
where each unit is coupled to its nearest neighbor on each side of the ring. Then, for each pair
of previously unconnected units, the shortcut connection is established with the probability ps.
The value of ps determines the topological characteristics of the network (the averaged minimal
path length between the units and the clustering coefficient).

In addition to being coupled to the rest of the network, each of the units is subject to
temporally and spatially uncorrelated Gaussian noise ξ(t), with intensity σ invariant across the
network and not dependent on time, such that〈

ξi (t) ξ j (t + 1t)
〉
= σ 2δ (1t) δi j . (3)

The goal of the present study is to understand the effects that dynamic changes in the network’s
connectivity have on the collective population-wide response to weak local stimulation. To this
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Figure 1. Dynamical behavior of the nonlinear map model used in this study.
(a) Dynamics of the model for α = 4.1. In this regime, the map exhibits self-
sustained chaotic bursts in the absence of any external stimulation (A = 0,
σ = 0). (b), (c) In the excitable regime (α = 1.95), neither noise alone (in the
absence of the signal, (b)) nor the signal alone (in the absence of noise, (c)) are
able to evoke spiking. (c) Only the application of both, the signal and noise,
results in the detection of the otherwise subthreshold signal. (d) Signal trace. In
all panels the results were obtained on a single map unit, i.e. not coupled to any
other units.

end, one of the units is stimulated by a weak periodic signal Iapp(t) with frequency f and
amplitude A

Iapp (t) = A sin(2π f t), (4)

which is added to the dynamics of variable u. Depending on the values of its parameters, the
map model can exhibit different dynamical behaviors [34]. For example, for sufficiently high
α (as in figure 1(a), where α = 4.1) an individual map can exhibit self-sustained chaotic bursts
that do not require external inputs (σ = 0 and A = 0). To work in the excitable regime, we
set α = 1.95. It is important to note that in the excitable regime that we consider here, neither
the Gaussian noise (parameterized by σ ) nor the signal (parameterized by f and A) alone is
supra-threshold, i.e. the spiking activity of the paced unit occurs only when both the noise
and the signal are applied to it, as depicted in figures 1(b)–(e). Even for the joint application
of noise and signal, however, the response of the coupled paced unit is quite irregular (the
coherence of spiking (see equation (5)) is less than 1) and depends on the coupling strength
between the units and on the abundance of shortcut connections (figure 2(c)). Parameter values
used throughout this work are β = γ = 0.001 and α = 1.99. Initially, all units are initialized
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Figure 2. The collective response of excitable networks to the weak localized
stimulus. (a) Raster plots of network activity showing the response for different
coupling strengths D and abundance of shortcuts ps. Top panel: ps = 103

and D = 2 × 10−3. The second panel: ps = 10−2 and D = 2×10−3. The third
panel: ps = 10−3 and D = 3×10−3. Bottom panel: ps = 10−2 and D = 3×10−3.
(b) Network-averaged coherence of spiking CS versus the probability of shortcut
connection ps for different values of the coupling strength D. Data points are
averages over 100 independent realizations. (c) Coherence of spiking CS solely
of the paced unit versus the probability of shortcut connections ps for different
values of the coupling strength D. Data points are averages over 100 independent
realizations.

from the fixed point of equation (1), which for α < 2 (and D = 0, σ = 0) is given by u∗
= −1

and v∗
= −1 − (α/2). In what follows, and unless otherwise specified, we used σ = 9 × 10−3,

A = 8 × 10−3 and f = 5 × 10−4 (in units 1/iteration).
In the setting described above, the ability of a single excitable unit to detect weak

periodic stimuli can be conveniently quantified by using the so-called ‘coherence of spiking’
measure [36]. The coherence of spiking measure CS is defined as a fraction of interspike
intervals (ISI) that are within 20% of the stimulus period T :

CS =
N (ISI |0.9T 6 ISI6 1.1T )

N (ISI)
. (5)

Unless otherwise indicated, the measure given by equation (5) is computed for each excitable
unit individually and then the average is taken over all of the units in the network and over a
large number (typically 100) of statistically independent realizations.
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3. Results

A brief glance at the network’s raster plots (figure 2(a)) suggests that the pattern of collective
activity that develops in the network in response to weak pacing does strongly depend on
the structure of the network. Both the strength of the coupling (parameterized by D) and
the connectivity (parameterized by ps) can critically affect the collective dynamics. Visual
inspection confirms that there might exist an optimal level of coupling strength and fraction
of shortcut links that maximize the coherent response to the periodic pacing stimulation. This is
in agreement with earlier observations [37, 38]. We note, however, that interesting phenomena
can be observed when either the coupling is made relatively strong (compare the top and second
panels in figure 2(a)) and/or the number of shortcut links is relatively high (compare the top
and third panels in figure 2(a)); in either of these cases, naive reasoning would imply that the
activity has to be more intense (as a result of stronger coupling and a more connected network),
but the actual outcome is exactly the opposite. Thus, in the studied excitable network, the relative
contribution of strong coupling and strong connectivity can determine the efficiency with which
the weak subthreshold signal is detected. The goal of this work is to elucidate the mechanisms
responsible for this counterintuitive effect brought about by the network connectivity and
coupling strength.

To quantify the above qualitative observations regarding the effects of coupling and
connectivity, we use here the simple measure of output coherence relative to the input signal
periodicity. For periodic stimulation, this coherence measure CS is defined as a fraction of
the element’s interspike intervals that fall within the 20% window of the stimulation period
T (see equation (5)). Figure 2(b) shows the dependence of averaged output-to-input coherence
on the fraction of shortcut links in the excitable network, for different levels of the coupling
strength. Two features are eminent. Firstly, coherence of the network’s response falls to zero
in the large ps limit (corresponding to a strongly wired network with randomized topology).
Secondly, stronger coupling between the units increases the CS only up to a certain value of
the coupling strength, and the effect of increased coupling on the coherence depends on the
fraction of shortcut links ps (figure 2(b)). From these observations it follows that there exists
a coupling-dependent range of ps values, for which the network is optimally coherent with the
weak subthreshold signal that is introduced to the paced unit. This can indeed be observed in
figure 2(b) (open squares and closed squares). Since the networks we study are locally paced, it
is of interest to examine the signal detection properties of the paced unit as well. In figure 2(c),
we show the output–input coherence of the paced unit activity, plotted for different scenarios
of the network’s connectivity and the coupling strength. The striking difference between the
paced unit response (figure 2(c)) and the averaged response of the whole network (figure 2(b))
is evident in the limit of low ps and weak coupling (D = 0.002)—the activity of the paced unit
is highly coherent with the input signal, but this is not the case for the activity of other units.
Thus, in the limit of weak connectivity and coupling, signal detection is reliable, but signal
propagation is not.

Why does the network exhibit low coherence to input when the wiring and/or coupling are
excessively strong? In principle, the reduced coherence could be either the outcome of some
intrinsic alternation in network dynamics or it could arise because of the reduced ability of the
pacer to detect the weak signal. The results shown in figures 2(b) and (c) suggest that the latter
cause might hold. To understand the role played by the paced unit, we examine the dynamics
of networks for which the paced unit was spared from getting any shortcut connections (it was
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only connected to its nearest neighbors on the regular lattice). Figure 3(a) (top) shows that this
modified network is coherent to input over a much wider range of ps than was the baseline
model network. This enhanced response is a direct result of an enhanced response of the paced
unit (the bottom panel of figure 3(a)). A more detailed investigation (controlling the level of the
paced unit’s connectivity to the rest of the network) reveals that the values of CS for the paced
element fall sharply as the number of its nearest neighbors (and/or the strength of the coupling to
them) is increased (the top left panel of figure 3(c)), and this kind of behavior could be attributed
to the smaller number of spikes that the pacer generated in a fixed time interval (the bottom left
panel of figure 3(c)). Consistent with this, a change in the signal’s amplitude leads to a change in
the coherence–connectivity relation of the paced element (right panels of figure 3(c)). However,
as the weaker coupling of the paced element increases its coherence with the input signal, the
reduced ability to relay the stimulus-related information to other elements results in a decrease
of averaged network coherence. This is evident from figure 3(d), where we show the averaged
CS of the paced unit’s neighbors versus the coherence of that same paced unit. We conclude
that the network’s coherence in the strong coupling/wiring limit becomes low because of the
feedback from the network to the paced element that reduces the latter’s ability to detect the
signal. This is similar to the dependence of rheobase currents on related parameters in models
of gap junction-coupled neuronal ensembles. Thus, in the currently studied excitable system,
having non-uniform connectivity, the network’s architecture in itself determines its propensity
to respond to a subthreshold signal. This complements and extends (to some extent) some of
the earlier results (although for a different network model) that showed how signal properties
determine the ability of a network to detect the signal [39].

We now offer an explanation for the degrading effect that the strong connectivity and/or
strong coupling have on the coherent response to the subthreshold stimulus. In networks of
diffusively coupled units, we can rewrite the coupling term in equation (1) as

D
N∑

j=1

εi j

[
u j(t) − ui(t)

]
=

N∑
j=1

εi j
u j(t) − ui(t)

D−1
. (6)

Therefore, the coupling between the units can be looked at as a linear relaxation term (assuming
the coupling coefficient is constant). The relaxation time τR of the coupling is inversely
proportional to the strength of coupling; therefore stronger coupling enforces faster relaxation
of weak perturbations in the dynamics of the paced unit, thus impairing its response to the
subthreshold stimulus (figure 3(c)). By the same token, higher connectivity (higher ps) also acts
to decrease the coupling-related relaxation time and thus also acts to impair the subthreshold
signal detection (figure 3(c)).

Recently, increasing theoretical [23, 24] and experimental [40] effort has been devoted
to understand the effects that dynamic rewiring of network connectivity might have on its
dynamics. In particular, for the small-world modeling framework, it has been shown that
various dynamic properties (such as the propensity to synchronize) can depend on the rate
with which shortcut connections are rewired [24]. In another study [23], it was shown that
fast dynamic rewiring could bring about the spatiotemporal order into an otherwise chaotic
network. We anticipated that in the currently studied excitable network, dynamic rewiring of
shortcuts could have strong effects by virtue of its redefining the effective connectivity of the
paced unit. Figure 4(a) demonstrates the dependence of CS on the fraction of shortcut links, for
different rates of random shortcut rewiring and different strengths of coupling between the units.
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Figure 3. Strong connectivity of the paced excitable unit impairs reliable
detection of subthreshold signals. (a) Network-averaged (top panel) and paced
unit’s (bottom panel) coherence of spiking CS versus the probability of having
shortcut connections ps for different values of the coupling strength D, as
indicated by blue squares and red circles. Closed symbols are for the baseline
model. Open symbols are for the modified model in which the paced unit is not
allowed to establish shortcut connections with other units. All data points are
averages over 100 independent realizations. (b) Raster plots of the network’s
activity showing the response for D = 3 × 10−3, ps = 10−3 (top panel) and
D = 3 × 10−3, ps = 10−2 (bottom panel). In both cases, the paced unit was
not allowed to establish shortcut connections with other units. (c) Top left:
coherence of spiking CS solely of the paced unit versus its connectivity for
different values of D. Bottom left: number of spikes fired by the paced unit in
the window of 2 × 105 iterations versus its connectivity for different values of
D (as in top left). Top right: coherence of spiking CS of the paced unit versus
its connectivity for different amplitudes of the weak signal (coupling strength
was fixed at D = 2 × 10−3). Bottom right: number of spikes fired by the paced
unit in the window of 2 × 105 iterations versus its connectivity for different
amplitudes of the weak signal (as in top right). All data points are averages over
100 independent realizations. (d) Top left: neighbor-averaged (average over all
neighbors of the paced unit) coherence of spiking versus the CS of solely the
paced unit for different values of D (as in top left of (c)). Bottom left: neighbor-
averaged number of spikes versus the number of spikes fired by the paced unit
for different values of D (as in bottom left of (c)). Top right: neighbor-averaged
coherence of spiking versus the CS of solely the paced unit for different values
of A (as in top right of (c)). Bottom right: neighbor-averaged number of spikes
versus the number of spikes fired by the paced unit for different values of A (as
in bottom right of (c)). In all the panels, the dashed line denotes slope 1, while
all data points are averages over 100 independent realizations.
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Figure 4. Fast random rewiring of the network impairs reliable detection
of subthreshold signals. (a) Network-averaged (left panel) and paced unit’s
(right panel) coherence of spiking CS versus the probability of having shortcut
connections ps for different values of the shortcuts rewiring time: TR = 5 × 103

(blue squares), TR = 5 × 102 (red circles) and TR = 5 × 101 (green diamonds).
Open symbols depict results for D = 3 × 10−3. The corresponding closed
symbols depict results for D = 2 × 10−3. All data points are averages over 100
independent realizations. (b) Network-averaged (left panel) and paced unit’s
(right panel) coherence of spiking CS versus the rewiring time of shortcuts
for different levels of shortcut abundance probability: ps = 6 × 10−3 (open blue
squares), ps = 1 × 10−2 (open green diamonds) and ps = 2 × 10−2 (closed black
squares). The strength of coupling between the units is D = 3 × 10−3. All data
points are averages over 100 independent realizations. (c) Network-averaged
(left panel) and paced unit’s (right panel) coherence of spiking CS versus the
rewiring time of shortcuts for different levels of shortcut abundance probability:
ps = 6 × 10−3 (open blue squares), ps = 1 × 10−2 (open green diamonds) and
ps = 2 × 10−2 (closed black squares). The strength of coupling between the units
is D = 2 × 10−3. All data points are averages over 100 independent realizations.

The generic effect of fast rewiring is to decrease the coherence of output activity with respect
to the input signal. In networks with dynamically rewired shortcuts, the effective shortcut
connectivity p∗

s of each unit is P∗

S ≈ PST −1
R , where TR is the period (measured in terms of the

number of iterations) with which the shortcut links are rewired [23]. Thus, either fast shortcut
rewiring or the abundant presence of fixed shortcuts increases the effective connectivity and,
according to our explanation, impairs the subthreshold signal detection by the paced unit. A
tangential observation is that the level of ps for which the peak coherence is observed scales
inversely with the rewiring time TR (figures 4(b) and (c)).
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4. Discussion

Several recent studies indicate that dynamic rewiring of interactions among units can have
important consequences for the organization of activity in networks of excitable units. Here,
we have investigated the effects of dynamic connectivity rewiring on the properties of
subthreshold signal detection in locally paced networks of diffusively coupled excitable units.
Quite counterintuitively, excessively strong connectivity and/or excessively strong coupling
was found to impair subthreshold signal detection. This negative effect of connectivity occurred
because stronger coupling enforced a faster relaxation on the dynamics of the paced unit, thus
reducing its response to the weak stimulus. Consistent with these ‘static’ effects, fast dynamic
rewiring also acted detrimentally on the collective response of the network to the weak stimulus.

The collective response of a locally paced network to the weak stimulus consists of
two stages. Firstly, the stimulus has to be locally detected, and secondly, it needs to be
quickly and efficiently relayed to the rest of the network. In the networks studied here, fast
random rewiring of connectivity impaired the collective reaction of the system to the weak
subthreshold stimulus. This raises an interesting question—what should be the rewiring strategy
so as not to compromise either one of the stages (detection or transmission of the input)
in signal processing? Clearly, the rewiring has to depend in some way on the pattern of
ongoing activity, i.e. render the network with adaptive features. This is reminiscent of activity-
dependent redistribution of connectivity in neural networks and is consistent with the idea of the
reciprocal function–form (dynamics–structure) relation. That is, the form (structure) determines
the function (dynamics), which in turn affects the form (structure). It remains to be investigated
what are the dynamical rules that give rise to optimal signal detection in diffusively coupled
networks of excitable units.

The presented results might improve our understanding of the dynamics of weak signal
detection and propagation in diffusively coupled excitable networks, such as networks of
neurons or astrocytes (a type of glial cells) coupled by diffusive gap junctions [41]. In
modeling studies, the connectivity of these networks is usually assumed to be regular (constant
number of gap junctions per neuron/astrocyte); however, in reality the distribution of gap
junction connectivity is quite broad [42]. How does this broad connectivity, and the emerging
heterogeneity of the network’s architecture [43], affect signal processing in such biological
networks is a question that seems worth exploring in the future by using more specific models.
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