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Abstract
If rock beats scissors and scissors beat paper, onemight assume that rock beats paper too. But this is
not the case for intransitive relationships thatmake up the famous rock-paper-scissors game.
However, the sole presence of papermight prevent rock frombeating scissors, simply because paper
beats rock. This is the blueprint for the rock-paper-scissors gamewith protection spillovers, which has
recently been introduced as a newparadigm for biodiversity inwell-mixedmicrobial populations.
Herewe study the game in structured populations, demonstrating that protection spillovers give rise
to spatial patterns that are impossible to observe in the classical rock-paper-scissors game.We show
that the spatiotemporal dynamics of the system is determined by the density of stable vortices, which
may ultimately transform to frozen states, to propagating waves, or to target waves with reversed
propagation direction, depending further on the degree and type of randomness in the interactions
among the species. If vortices are rare, the fixation towaves and complex oscillatory solutions is
likelier.Moreover, annealed randomness in interactions favors the emergence of target waves, while
quenched randomness favors collective synchronization.Our results demonstrate that protection
spilloversmay fundamentally change the dynamics of cyclic dominance in structured populations,
and they outline the possibility of programming pattern formation inmicrobial populations.

1. Introduction

Cyclical interactions are at the heart ofmarine benthic populations [1], plant systems [2–5], andmicrobial
populations [6–11]. Cyclic dominance also plays an important role in the overgrowth ofmarine sessile
organisms [12], themating strategy of side-blotched lizards [13], the genetic regulation in the repressilator [14],
and in explaining the oscillations of the population size of lemmings [15] and the Pacific salmon [16].More
generally, evolutionary games entailing cyclic dominance play a prominent role in explaining biodiversity
[17–27], and they are also able to provide insights intoDarwinian selection [28], structural complexity [29], and
prebiotic evolution [30], as well as into the effectiveness of positive and negative reciprocity [31], volunteering
[32, 33], rewarding [34, 35], and punishment [32, 36–39], to name but a few representative examples.

In agreement with the impressive implications fundamental research on cyclical interactions has, it is little
surprising that the classical rock-paper-scissors game—theworkhorse for research on cyclic dominance—has
been studied so extensively, not least bymethods of statistical physics [40–58], which are indispensable for a
comprehensive treatment of the game and its extensions in structured populations. Although the rules of the
game can bewritten down in a short sentence, the complexity of spatial patterns that emerge spontaneously as a
consequence of the simplemicroscopic rules is unparalleled. Labyrinthine clustering [59] and interfaces with
internal structure [60] are just two of themost intriguing recent examples attesting to this fact.
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Despite the overwhelming attention the rock-paper-scissors game has received [61], there is one important
aspect of the game that has till recently been overlooked. In particular, while the direction of invasion between
the rock, the scissors and the paper is intransitive, and thus conductive to species coexistence [62, 63], thismay
not be the case for the protection one species offers to the other. If one considers the game not from the
standpoint of dominance in that rock is wrapped by paper, paper is cut by scissors, and scissors are broken by a
rock, but rather from the standpoint of survival in that scissors protect itself frompaper’s toxin, paper protects
itself from rock’s toxin, and the rock protect itself from scissors’s toxin, then one quickly comes to realize that
such protectionmay be non-excludable, and that in fact it can spill over to the other strategy.Motivated by this
important consideration, Kelsic et al[25] have recently introduced cyclical interactionswith protection
spillovers as a newparadigm for biodiversity inwell-mixedmicrobial populations. By using simulations and
analyticalmodels, they have show that the opposing actions of antibiotic production and degradation enable
coexistence even if the interactions among the cyclically dominating species are random. In a commentary to the
original paper, Bergstrom andKerr [27] have generalized these results to the classical rock-paper-scissors game
in awell-mixed population, revealing a stable, attractive equilibrium containing all three species if the possibility
is given that a predator’s predator can protect the prey of the former.

However, since interactions inmicrobial populations are often not random [7, 11, 20], it is important to
determine themerits of protection spillovers also in structured populations.We therefore study the rock-paper-
scissors gamewith protection spillovers on the square lattice with annealed and quenched randomness. In a
structured population, the sole presence of rockmight prevent scissors frombeating paper, simply because rock
beats scissors. Aswewill show, this seemingly smallmodification of themicroscopic dynamics has rather
spectacular consequences for the collective behavior of the system.Unlike in the classical rock-paper-scissors
game, here the spatiotemporal dynamics is determined by the density of stable vortices, whichmay ultimately
transform to frozen states, to propagatingwaves, or to target waveswith reversed propagation direction. Since
the initial density of vortices is controllable in experimental setups, like for example in a Petri dishe [7] or in
bacterial biofilms [64], our results thus reveal a feasible way of programming pattern formation inmicrobial
populations. Different from the classical rock-paper-scissors game, wherewe can observe globally synchronized
oscillations in the frequency of strategies as we increase the level of randomness (either quenched or annealed),
here the consideration of these two different types of randomness can be a decisive factor that determines the
evolutionary outcome. Aswewill show, annealed and quenched randomness have a completely different impact
on the emergence of stable spatial patterns, thus demonstrating that protection spilloversmay fundamentally
change the spatiotemporal dynamics of cyclic dominance in structured populations.

The organization of this paper is as follows.We present the definition of the spatial rock-paper-scissors game
with protection spillovers and the details of theMonteCarlo simulation procedure in section2.Main results are
presented in section3.We concludewith the summary of the results and a discussion of their implications in
section4.

2. Rock-paper-scissors with protection spillovers

Weconsider amodified version of the classic rock-paper-scissors game, where the three species cyclically
dominate each other. For convenience, we refer to the species asR,P and S, where strategyR invades strategy S,
strategy S invades strategy P, and strategy P invades strategyR. However, due to the consideration of protection
spillovers, these invasions occur only if none of the direct neighbors of the prey is a predator to the original
predator. For example, rock is unable to invade scissors if one of the direct neighbors of the scissors is paper.
Similarly, scissors are unable to invade paper if one of the direct neighbors of the paper is rock, and paper is
unable to invade rock if one of the direct neighbors of the rock are scissors.

The described rock-paper-scissors gamewith protection spillovers is studied in structured populations.
Each species is thus located on the site x of a square lattice with periodic boundary conditions, where the grid
contains L×L sites. In addition, we also explore the impact of disorder, which has proven to be a decisive factor
in the classical rock-paper-scissors game [65, 66]. In particular, the introduction of structural randomness can
trigger a global oscillatory state, which is impossible to observe in the absence of long-range interactions.
Interestingly, previous research on the classical rock-paper-scissors game [65, 66] has emphasized that the type
of disorder bymeans of which long-range links are introduced has only second-order importance, given that
both annealed and quenched randomness have a qualitatively similar impact on pattern formation.However,
the introduction of protection spilloversmay significantly affect the dynamics of cyclic dominance [25], which is
whywe here consider the impact of annealed and quenched randomness separately. As panel (a) offigure 1
illustrates, annealed randomness is introduced so that at each instance of the game a potential target for an
invasion is selected randomly from thewhole populationwith probabilityϑ, while with probability 1−ϑ the
invasion is restricted to a randomly selected nearest neighbor [65, 66]. Forϑ=1we thus obtainwell-mixed
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conditions, while forϑ=0 only short-range invasions along the original square lattice interaction structure are
possible. Quenched randomness, illustrated in panel (b) offigure 1, is introduced by randomly rewiring a
fraction θ of the links that form the square lattice while preserving the degree of each site.We thereby obtain
regular small-world networks for small values of θ and a regular randomnetwork in the 1q  limit.
Importantly, the rewiring is performed only once before the start of the game, thus introducing quenched (time
invariant) randomness in the interactions among the species.

The evolution of species proceeds in agreement with a random sequential update, where during a fullMonte
Carlo step (MCS) every player receives a chance once on average to invade one randomly selected neighbor (or
anymember of the populationwith probabilityϑ in case annealed randomness is considered), as allowed by the
rules of the game. The average fraction of rock (ρR), paper (ρP), and scissors (ρS) in the population ismonitored
during thewhole evolutionary process.We have systematically applied different system sizes ranging from
L=40 to L=1 000 to reveal the possible size-dependence of the observed solutions.When determining the
fixation probability, we have averaged the outcome over 10 000 independent runs. Themonitoring time, which
exceeded 107MCS for the largest system size, was always chosen to be at least 100 times longer than the longest
measuredfixation time.

3. Results

Before presenting themain results, we briefly contemplate on the potential impact of protection spillovers in
cyclical interactions. Foremost, it is important to note that the introduction of protection spillovers raises an
interesting dilemma that is otherwise absent in the classical version of the rock-paper-scissors game.Namely, the
‘spillover protector’ of a species is simultaneously also its prey. Thus, each time an invasion ismade, the invading
species potentially (although not certainly because theremay be other instances of the same prey in the
neighborhood) looses the benefit of spillover protection. The predator is thus facedwith a difficult choice.
Perhaps evenmore frustratingly, the predator is unable to actuallymake a choice. The invasionwill go forward
with certainty if only the prey is not protected by a ‘spillover protector’. This dilemma is a good indicator of the
fact that a correct intuitive anticipation of the impact of protection spillovers is not at all trivial.

Regarding the potential impact of annealed and quenched randomness, previous research has revealed that
both sources of randomness have the same impact on cyclical interactions in that they evoke synchronized
oscillations among the competing species [65, 66]. Aswewill show in the following subsections, this conceptual
similarity no longer exists if protection spillovers are introduced.

3.1. Evolution on the square lattice
Webegin by presenting themain results obtained on the square lattice in the absence of both annealed and
quenched randomness. Thefirst key fact is illustrated in the four snapshots that are depicted infigure 2, which is
that the initial state determines significantly thefinal outcome of the game.More precisely, if the rock-paper-
scissors gamewith protection spillovers is launchedwith random initial conditions, as shown in the top left
panel, then the population terminates rather quickly in a frozen state, as shown in the top right panel. It can be
observed at a glance that both the configuration and the density of the three competing species remain practically
unchanged during the evolution. Of course, once the frozen state is reached, the invasions seize completely. On
the other hand, if the game is initiatedwith prepared initial conditions, as shown in the bottom left panel of
figure 2, then the propagatingwaves emerge that are qualitatively identical to those that have been observed so
often in the classical spatial rock-paper-scissors game [61] (for the correspondingmovie see [67]). The crucial
property that characterizes the special initial condition shown in the bottom left panel is that it contains two

Figure 1. Schematic illustration of annealed (left) and quenched (right) randomness. Annealed randomness preserves the regular
interaction structure, but a playermay invade a randomly chosen distant player with probabilityϑ (denoted by a dashed green line),
while with probability 1−ϑ the invasion remains bounded to nearest neighbors. Quenched randomness requires that a fraction θ of
nearest-neighbor links (denoted by light grey lines) is rewired randomly (denoted by thin green lines), all thewhile preserving the
degree of every node. This interaction structure does not change over time, and so the invasions can occur only via the partly
(depending on the value of θ) randomized interaction network.
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vortex-antivortex pairs, one vortex in themiddle of the lattice, and the rest of the vortices located at the edge of
the lattice due to periodic boundary conditions. These vortices act as sources for the propagatingwaves, as can be
deduced clearly from the stationary state that is depicted in the bottom right panel offigure 2.We emphasize that
ρR=ρP=ρS=1/3 holds for all four depicted snapshots, and that thus all four states are represented by the
same point in a simplex. Evidently, this illustrates that the representation of the actual state in a simplex is not
always satisfactory for a spatial system. Butmore importantly, the equality of the density of species in both
stationary states indicates that the biodiversity in the rock-paper-scissors gamewith protection spillovers can be
realized in very different ways.

To better understand and explain the two significantly different evolutionary outcomes depicted infigure 2,
we present infigure 3 two simple L×L=3×3 configurations inwhich there is no invasion between the
species due to themutual protection between predator-prey pairs. If we check the depicted configurations
carefully, it can be observed that a predator cannot invade a neighboring prey because there is always a
predator’(s) predator in the neighborhood of the prey, andwho thus protects the prey due to the consideration
of protection spillovers. These configurations represent axial or tilted stripes, which are actually the building
blocks of frozen states also inmuch larger populations. Evidently, a ‘random’ distribution of species can also
yield a frozen state, as it is illustrated in the top rowoffigure 2, but such an outcome requiresmany vortices be

Figure 2. Snapshots of the square lattice, showing a characteristic evolution as obtained from a random initial state (top row) and from
a prepared initial state (bottom row). If initially all three species are distributed uniformly at random, as shown in the top left panel, the
system quickly evolves to an almost unchanged frozen state (top right panel)where invasions no longer occur.However, if we use
special initial conditions where initially there are only two vortex-antivortex pairs (one in themiddle and the rest at the edge of the
lattice due to periodic boundary conditions), as shown in the bottom left panel, the system evolves into an active stationary state that is
characterized by propagatingwaves (bottom right panel). These propagatingwaves aremuch the same as thosewe can observe in the
classic rock-paper-scissors game. Interestingly, in all four depicted snapshots it holds that ρR=ρP=ρS=1/3, yet the stationary
realization of this biodiversity is lastly very different. For clarity, we have here used a small square latticewith linear size L=120.

Figure 3.Twopossible realizations of a frozen state, as obtained on a L×L=3×3 square latticewith periodic boundary conditions.
Due to the introduction of protection spillovers, the depicted configuration of species in both casesmutually prevents successful
invasions of other species. These tilted (left) and axial (right) stripes are the fundamental building blocks of frozen states in large
populations.
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present in the initial distribution of the species (or a fully random initial distribution, as is depicted in the top left
panel offigure 2).

The crucial role of the initial density of vortices for the final outcome of the game is illustrated infigure 4.
Unlike in the bottom left panel offigure 2, where only a few vortices are initially present, we now initiate the
gamewithmanymore vortices initially present in the population. As panel(a) offigure 4 shows, we initially have
a homogeneous state inwhich 80 vortices are inserted uniformly at random. These vortices all serve as potential
sources of propagatingwaves, and indeedmany do nucleate (for the correspondingmovie see [68]). The critical
point of evolution occurs when a relatively small frozen patch emerges, as illustrated in panel(b).We emphasize
that the pattern in the frozen patch is initially identical to the one that is depicted in the left panel of figure 3. In
fact, such frozen patches typically emergewhen propagatingwave collide and give rise to sizable patches that are
made up of stable patterns shown infigure 3.During the course of evolution the area that is occupied by such
stable patches grows, as shown in panel(c), while the areawhere invasions are still possible shrinks and becomes
limited to smaller and smaller adjacent domains. Eventually even the last remaining active areas, as shown in
panel(d), become frozen to yield thefinal frozen state (not shown infigure 3, but can be seen in the
correspondingmovie [68]). The latter ismade up of amixture of fundamental frozen patterns that are shown in
figure 3.

Evidently, the emergence of viable frozen domains that are able to grow depends sensitively not just on the
number, but also on the initial distribution of the vortices. Thefinal outcome could be different even if we start
with the same number of vortices, because their proximity on the lattice could be a decisive factor aswell.
Accordingly, the emergence of frozen states is a stochastic process. The probability to reach the frozen state (Φ f)
in dependence on the initial density of vortices (vi) is illustrated infigure 5, while the inset shows the scaled
version of curves to the reference system size L0=40. The depicted results indicate that the population becomes
more andmore sensitive to the initial presence of vortices as we increase its size.More precisely, the initial
density of vortices required to reachfixation decreases as we increase the system size. This counterintuitive
phenomenon is related to the application of periodic boundary conditions. In particular, the vortices serve as
permanent sources of propagating waves, and if the system size is small, then a specific source can easily interact
with its virtual ‘clone’ due to periodic boundary conditions. The real and virtual sources emit waves
synchronously which prevents blocking of akin propagatingwaves. Accordingly, we need a relatively larger
number of vortices to reachfixation here. Naturally, this effect becomesweaker aswe enlarge the system size,
and thus fewer initial vortices suffice to reach the samefixation probability. On the other hand, we note that a
‘non-frozen’ state actually corresponds to a stationary state with endlessly emerging propagatingwaves, rather
than a failure on our side towait sufficiently long for the system to get trapped in a frozen state. Just to illustrate
this fact, a systemwith linear size L=80 size remains in the active state up to 4×106MCS.While there is of
course afluctuation about the fixation time having normal distribution, themonitoring trial timewas always at
least 100 times longer than the longest observedfixation time.

3.2. Evolution on the square lattice with annealed randomness
Wefirst consider the impact of annealed randomness on the dynamics of biodiversity in the studied rock-paper-
scissors gamewith protection spillovers. As described in SectionII, during each instance of the game there is
thus a probabilityϑ that a potential target for invasionwill be selected from thewhole population rather than
from the nearest neighbors of a square lattice. In the classical rock-paper-scissors game, the introduction of
annealed randomness evokes a synchronized statewhere the densities of species oscillate in time (note that these

Figure 4. Snapshots of the square lattice, showing a characteristic evolution towards a frozen state from left to right, as obtained from
an initial configuration containing several vortices.While each vortex is potentially a source of propagatingwaves, once these waves
emerge they collide, eventually leading to the formation of a relatively small frozen patch (see panel b), which ultimately grows to
occupy the entire lattice. For clarity, we have here used a small square lattice with linear size L=120, with 80 vortices inserted at
random. Technically, we have inserted 80 pairs of the two species (yellow and blue) that are different from the ‘background’ species
(red). Here the frozen state is reachedwithin 600MCS.
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oscillations are absent in the absence of annealed randomness). The amplitude of these oscillations increased as
we increaseϑ, and at a critical value the system terminates into an absorbing phasewhere a single species
survives [65, 66].

In the rock-paper-scissors gamewith protection spillovers the impact of annealed randomness is
significantly different. If we start with an initial conditionwhere all three species are distributed uniformly at
random, then the population again, as on the square lattice, terminates rather quickly in a frozen state (see top
rowoffigure 2). Here the value ofϑ plays a negligible role. In exploring other initial conditions, wefind that the
key factor is again the density of vortices that are initially present in the population. If the vortices are sufficiently
common the frozen state is practically unavoidable, and indeed very similar fixation curves can be obtained aswe
have shown for the original square lattice topology infigure 5. This behavior can be observed regardless of the
strength of annealed randomnessϑ. However, if the vortices are initially rare, the non-frozen state is significantly
different from the propagatingwaves depicted in the bottom right panel offigure 2.

To illustrate what happens and to explain the origin of the difference, wemonitor the evolution at a
representative value ofϑ=0.22 from a prepared initial state, where only a single vortex is initially present in the
population (for the correspondingmovie see [69]). The relatedfigure 6 shows how the fraction of an arbitrary
species (top panel) and the spatial distribution of species (bottom row) evolve. In panel(a) the vortex is initially
placed at the center of the bottom left quadrant of the square lattice. Similarly as in the random-free case, this
vortexfirst serves as a source of propagating waves. The expansion of the initial waves can be observed in
panels(b) and (c). The background, however, changes intensively, which is thewell-known consequence of
synchronization that emerges due to the introduction of annealed randomness. A crucial difference here is that
the presence of the vortex does not allow the system to terminate into a homogeneous, absorbing phase.We note
that the systemwould in fact be in an absorbing phase at such a high value ofϑ in the classical rock-paper-
scissors game, as illustrated infigure 5 of[65]. In the present case, however, the vortex behaves like a fixed point
whose position does not change in time because neither nearest nor distant neighbors are able to invade the
species who form the vortex due to protection spillovers that warrant themmutual immunity.

As time goes by, target waves emerge as illustrated in panel(c) offigure 6. It is easy to see that the
configuration of species within thesewaves is practically identical to the fundamental building blocks of frozen
states that we have shown infigure 3. Accordingly, this ‘stripe-like’ targets are stable against the invasion
attempts of far-away other species, which happens frequently at nonzero values ofϑ. Interestingly, and unlike in
the absence of annealed randomness, however, these target waves do not represent frozen states. Instead, the
depicted target waves propagates towards the vortex in the bottom left quadrant of the lattice.When they arrive
at the vortex they simply vanish.More precisely, the vortex permanently erodes the nearest locally homogeneous
wavefront, which results in a continuous shift of the stripes toward the center of the vortex. The vortex thus acts
like a sink for the target waves, and its position never changes over time.We note that the reversed propagation
direction of the target waves can be inferred from the snapshots because the order of colors, and hence of the
species, is different from the order in the propagating front. This ‘dynamically stable’ domain around the vortex
will growth until it reaches the frontier of a similar domain (in panel (e) the domain actuallymeets itself due to
the periodic boundary conditions). In contrast to the random-free case, here the area in themiddle of the upper

Figure 5.The probability to reach the frozen state (Φf) in dependence on the initial density of vortices (vi), as obtained for different
system sizes (see legend). It can be observed that the smaller the system size, themore frequent initially vortices need to be for the
propagating waves to eventually terminate in a frozen state. The inset shows the scaled version of the curves depicted in themain panel
to the reference system size L0=40. Depicted results are averages over 104 independent runs.
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right quadrant of the lattice, where there is a ‘void’ between the target wave domains, changes color periodically
due to the invasions fromdistant sites (which ismade possible by annealed randomness), and thus acts like the
source of thewaves. Thewavefronts travel outward to join the target wave domains, and then continue towards
the center of the vortex which acts as their sink. In even larger populations, it is possible thatmore than one such
source-sink pairs emerge, resulting in a dynamically stable patternwhere the frequencies of all three species are
equal at all times. A representative evolution for the latter case can be seen in themovie [70].

3.3. Evolution on the square lattice with quenched randomness
An alternative way of introducing randomness in the interactions among the species is by randomly rewiring a
fraction θ of the links that form the square lattice, wherebywe obtain regular small-world networks for small
values of θ and a regular randomnetwork in the 1q  limit [65, 66]. Since the interaction topology does not
change over time, this setup corresponds to quenched randomness.

As in all previously considered cases, here too a random initial state terminates quickly in a frozen state, and
the initial fraction of vortices in the population is a key determinant of the spatiotemporal dynamics that
subsequently emerges. Themore frequent the vortices, the likelier the populationwill terminate in a frozen state.
Unlike by annealed randomness, however, here the value of θ plays an important role in determining the
conditions that lead tofixation. This fact is illustrated infigure 7, wherewe show thefixation probability in
dependence on the initial density of vortices for different values of θ. The presented results indicate that the less
ordered the interaction structure, the less likely is the fixation to a frozen state. Importantly, we emphasize that,
even in the 1q = limit, when the strength of quenched randomness ismaximal, completely random initial
conditionswill still inevitablyfixate to a frozen state.

On the other hand, if initially the vortices are only few and the system is hence able to avoid fixation, then the
resulting spatiotemporal dynamics is significantly different from the one depicted infigure 6 for annealed
randomness. Similarly as in the classical version of the rock-paper-scissors gamewithout protections spillovers
[65], in this case collective synchronization among the species emerges, yielding oscillations of their densities, or
equivalently, a periodic orbit in the ternary diagram. The introduction of protection spillovers thus does not
qualitativelymodify the impact of quenched randomness on the dynamics of the spatial rock-paper-scissors
game, if only the population can avoid fixation to a frozen state.

Nevertheless, protection spillovers do affect the stationary state in that sufficiently rare vortices facilitate the
emergence of collective synchronization. This effect is illustrated infigure 8, wherewe compare the level of

Figure 6.The time evolution of the density of an arbitrary species (top panel), and the corresponding snapshots of the square lattice
(bottom row), showing a characteristic evolution towards target waves with reversed propagation direction. Thesewaves are
practicallymoving backward (towards the center), while the area occupied by these concentric waves expands gradually. The only
vortex that is initially located in themiddle of the bottom left quadrant of the lattice (see panel a) ultimately acts as the sink for the
waves, while the locationwhere thewavefronts collide due to the periodic boundary conditions in the top right quadrant of the square
lattice acts like the source of the wavefronts. The stationary state is not frozen as the time course in the top panelmight suggest.
Instead, wavefronts emerge continuously at the source and travel towards the sink, in the direction that is opposite to the impression
onemight have if simply looking at the snapshot from left to right. The strength of annealed randomness isϑ=0.22, and for clarity,
we have again used a small square latticewith linear size L=120.
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synchronization in the rock-paper-scissors game, as obtainedwithout andwith protection spillovers. In the
latter case the applied initial density of vortices is low (vi= 0.001), where fixation to a frozen state is thus very
unlikely. The presented results indicates clearly that even aminute fraction of long-range links evokes a
synchronized state, whichwe quantify by the area of corresponding closed orbits (A) in the ternary diagram (see
inset). In comparison, if protection spillovers are not considered, there exists a critical value of θ=θc=0.067,
whichmust be reached for oscillations to emerge [65]. Even if we use the same initial conditions in the classical
version of the game, any initial deviations from the simplexwill be damped and the systemultimately returns
back to the center of the simplex for all θ<θc. Protection spillovers effectively lower this critical value less than
0.001. This effect can be understood if we consider the fact that vortices in the rock-paper-scissors gamewith
protection spillovers arefixed in space and incessantly act as triggers of synchronization. If protection spillovers
are absent, the vortices are no longer able to hold their position in a given spot of the population since there is
nothing to prevent them frommoving about. Thismovement acts as an additional source of noise that hinders
the onset of synchronization, which can thus emerge onlywhen the critical value of θ=θc=0.067 is exceeded.

Figure 7.The probability to reach the frozen state (Φf) in dependence on the initial density of vortices (vi), as obtained for different
values of θ that determine the strength of quenched randomness (see legend). It can be observed that themore the square lattice
approaches the regular randomgraph limit ( 1q  ), themore frequent initially vortices need to be for the propagatingwaves to
eventually terminate in a frozen state. In otherwords, the higher the randomness in the interactions, themore vortices are initially
allowed for the system to still avoid a frozen state. Depicted results are averages over 104 independent runs with a linear system size
L=640.

Figure 8.The area of closed orbits (A) that correspond to stationary non-frozen states in the ternary diagram in dependence on the
strength of quenched randomness (θ), as obtained for the classical rock-paper-scissors game (open squares) and the rock-paper-
scissors gamewith protection spillovers (filled squares). In the latter case, we have used the initial density of vortices vi=0.001 at a
linear system size L=1000. Although the impact of quenched disorder is in principle similar in both studied versions of rock-paper-
scissors game in that it promotes the emergence of collective synchronization in the system, the shift towards larger values ofA
demonstrates clearly that protection spillovers further enhance this effect. The inset shows the corresponding orbits in the ternary
diagram, as obtained at θ=0.01 (solid red line), θ=0.03 (dotted green line), and at θ=0.3 (dashed blue line) in the rock-paper-
scissors gamewith protection spillovers. The areas of these orbits aremarked by arrowswith the same color in themain panel.
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Lastly, we also consider the 1q  limit, where the initial density of vortices in the population can be
reasonably highwithout the systembeing destined to a frozen state (see figure 7). The obtained results are
summarized infigure 9, where the area of stationary orbits in the ternary diagram (A) is plotted in dependence
on the initial density of vortices (vi). Given that the value ofA decreases aswe increase vi, toomany vortices
evidently hinder the emergence of collective global synchronization. In fact, as the number of vortices that are
fixed in space increases, so does the number of propagatingwaves. Sooner or later thesewavesmeet and collide,
which disturbs the emergence of synchronization.Moreover, the inset offigure 9 illustrates that not only does
the amplitude of oscillations decreases, but also so does their frequency. Therefore, the frozen state in the v 1i 
limit can be considered as the zero-amplitude infinite-period limit of the depicted oscillations.

4.Discussion

Motivated by the preceding research of Kelsic et al[25], who have shown that the opposing actions of antibiotic
production and degradation enable stable coexistence, we have here studied the rock-paper-scissors gamewith
protection spillovers in structured populations. Although the introduction of protection spillovers seems like a
relativelyminor amendment to themicroscopic dynamics describing the rock-paper-scissors game, the
consequences are quite spectacular. Depending on the initial conditions, it is certainly surprising how little of the
original results that were obtainedwith the classical rock-paper-scissors game is recovered.While propagating
waves dominate in the later case, we have shown that in the rock-paper-scissors gamewith protection spillovers
the initial presence of vortices plays a key role.More precisely, we have shown that the spatiotemporal dynamics
of the system is determined by the density of these vortices, whichmay ultimately transform to frozen states, to
propagatingwaves, or to target waveswith reversed propagation direction. Since the initial density of vortices
might be controlled in experimental setups, our results thus reveal a feasible way of programming pattern
formation inmicrobial populations.

We have also shown that annealed and quenched randomness in the interactions among species have a
completely different impact on the dynamics of biodiversity. Importantly, this is not the case for the classical
rock-paper-scissors game and related evolutionary games that are governed by cyclic dominance, where both
sources of randomness have been shown to have the same impact in that they evoke synchronized oscillations
among the competing species [65, 66]. For the rock-paper-scissors gamewith protection spillovers, our research
reveals that, just like in the classical version of the game, quenched randomness facilitates collective
synchronization in the population, whichmanifests as oscillations of strategy densities. Annealed randomness,
however, favors the emergence of target waves, butwith a reversed propagation directionwhere the vortices
actually act as sinks for thewavefronts. To the best of our knowledge, we are unaware of other systems, either
biological or chemical, that would exhibit this type of spatiotemporal dynamics, i.e., target waveswith reversed

Figure 9.The area of closed orbits (A) that correspond to stationary non-frozen states in the ternary diagram in dependence on the
initial density of vortices (vi), as obtained in the rock-paper-scissors gamewith protection spillovers in the regular random
graph (θ = 1) limit with L=106 nodes. The inset shows the time evolution of the density of an arbitrary species, as obtained at a low
initial density of vortices (vi = 0.02, solid red line) and at a high initial density of vortices (vi = 0.4, dashed blue line). The areas of these
oscillations in the ternary diagram aremarked by arrowswith the same color in themain panel. These results demonstrate that as the
initial density of vortices increases (as we approach the random initial state limit), not only does the amplitude (and hence the area in
the ternary diagram; seemain panel) decreases, but also that the frequency of oscillations decreases (see inset). Accordingly, the frozen
state that is obtained at sufficiently high values of vi can be considered as the zero-amplitude infinite-period limit of the oscillations
that are depicted in the inset.
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propagation direction, effectivelymoving backward but looking like they aremoving forward. In conclusion, we
have shown that protection spilloversmay fundamentally change the dynamics of cyclic dominance in
structured populations, especially so under the impact of annealed randomness.

Our results have important and far-reaching implications. Protection spillovers are common inmicrobial
populations, and it is in fact surprising that this has not receivedmore attention in the past. In the standard
setup, each bacterial speciesmust protect itself from the toxin of its victim. For example, scissors protects itself
frompaper’s toxin. A neglected aspect of this protection is that itmay be non-excludable,meaning that
protectionmay spill over to other species [25, 27]. Such transitivity in protectionmay occur if a cell degrades the
antimicrobials of a competing species by secreting enzymes that do the job externally, or by deactivating the
competitor’s antimicrobials once they have entered the cell [71]. Regardless of the details, this reduces the
concentration of the antimicrobial in the environment, thus giving rise to the here considered protection
spillovers. As argued already byKelsic et al[25], these considerations have direct relevance for engineering
multi-speciesmicrobial consortia and shed light on the dynamics of biodiversity in populations that are
governed by cyclic dominance. Beyondmicrobial communities, cyclic dominance plays an important role also
inmarine benthic populations and plant systems, and the list of examples where the puzzle of biological diversity
can be explained by cyclical interactions in the governing foodwebs is indeed impressively long and inspiring
[61, 72]. Timewill tell inwhich examples protection spillovers play a key role. Based on the presented results,
however, it is certain that their impact is going to be a significant one, but also that reverse engineering this
impactmight be a difficult proposition.
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