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Abstract
Interactions amongst agents frequently exist only at particularmoments in time, depending on their
closeness in space andmovement parameters. Here we propose aminimalmodel ofmoving agents
where the network of contacts changes over time due to theirmotion. In particular, agents interact
based on their proximity in a two-dimensional space, but only if they belong to the same fixed
interaction zones. Our research reveals the emergence of global synchronization if all the interaction
zones are attractive. However, if some of the interaction zones are repulsive, they deflect synchrony
and lead to short-lasting but recurrent deviations that constitute extreme events in the network.We
use two paradigmatic oscillators for the description of the agent dynamics to demonstrate ourfindings
numerically, andwe also provide an analytical formulation to describe the emergence of complete
synchrony and the thresholds that distinguish extreme events fromother intermittent states based on
the peak-over-threshold approach.

1. Introduction

Research to understand the interplay between complex networks and the dynamical properties of coupled
oscillators has been a hotspot for the last few decades and the developing phenomenon of synchronization [1–4]
is one of themost important dynamical processes that has been in the center of these researches. Cooperation
[5, 6] and time series analysis [7, 8] in complex network have been studied in the past few years. From the
perspective of synchronization among coupled oscillators placed into a complex network [9, 10], the correlation
between the network’s topology and local dynamics is quite decisive. Here, synchronization signifies a process of
adaptation to a common collective behavior of oscillators due to their interaction. Inmost of the previous
studies of such systems, the network topology is assumed to be invariant over time and thus the system is
controlled by a deterministic static formation for all the course of time. But such a crude assumption regarding
the network connectivity inhibits one tomodel and studymost of the practical instances.

Recently, time-varying networks have grabbed the attention of the researchers due to their enormous
applications in various fields like functional brain network [11], epidemicmodeling [12], communication
systems [13, 14] andmanymore. Time-varying networks, also known as temporal networks [15] indicate those
networks inwhich links get activated for a certain course of time.On the assumption of time-invariant nodes
which are static over time,many network architecture is studied, e.g. power transmission elements are
considered as such nodes amongwhich haphazard links are treated as the coupling between elements of the
power transmission system [16]. Even for functional brain networks [11], these types of nodes are considered to
characterize the dynamical evolution. Particularly, the scenario of time-varying networks owing to themobility
in the nodes is really a significant platform to study several dynamical processes over them inwhich nodes can
move in the space and interact with each other based on their physical proximity. Collective behavior in random
geometric graphs and randomwalkers has been studied [17, 18]. For instance, in case of coordinatedmotion of
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robots [19], orderedmotion in a group of animals [20] and even in the process of chemotaxis [21], this
framework has a significant resemblance.

Emergence of complete synchronization fromdifferent aspects in temporal networks [22–32], particularly
among interactingmoving oscillators has been investigated previously [19, 33–41] andmost of these articles
considered the framework inwhich each and every agent always carries a vision shape based onwhich they create
neighbors and interact. In this paper, we consider a planar space inwhich some identicalmoving chaotic
oscillators interact with each other only when they visit the same restricted regions pre-defined in the planar
zone. This interactional platform is thus different frommost of the existing studies [19, 34–37, 41] in thefield on
synchronization ofmoving agents till now, inwhich eachmoving agent is associatedwith an interaction zone
thatmoves with the agent.

Under the setup chosen in this work, we encounter the emergence of complete global synchronization
among themoving agents while casting the local dynamical units by two paradigmatic chaotic systems, namely
Lorenz [42] andRössler [43] oscillators, whenever only attractive zones are incorporated inside the planar space.
Previously, synchronization has been surveyed [38] from a similar sort of view but nodes in any coupling zone
were supposed to interact among each other. But herewe are treating this issue differently where the nodes in a
particular zone is interactingwith each others, but not interactingwith any other nodes outside of that coupling
zone. In ourwork, we observe unanticipated abrupt large amplitude deflections from the synchronous regime
which is quite different from the usual well-defined formal synchronization state, whenever repulsive zones with
suitable strength are included in the space. Such exceptional, rare, repeated large amplitude states signify the
incarnation of extreme eventswhich are of colossal importance because they can indicate several unexpected
natural phenomena. Due to its unanticipated appearance, extreme event delivers a crucial understanding for a
variety offields like sharemarket crashes [44], electric power transmission system [45], earthquakes [46],
epileptic seizures in the human brain [47] andmanymore, though the precise reasoning behind their
appearance is yet to be acknowledged. In spite of the fact that there is no general definition of extreme events,
such events can be considered as infrequent stochastic events. Existence of such rare though recurrent incidents
can be demonstrated by a non-Gaussian probability distribution of amplitudes in a dynamical variable
[46, 48, 49]. Extreme events can also be determinedwhenever the occasional hike of the error from the
synchronousmanifold crosses a pre-defined threshold. Besides, some researchers are equally interested to
unfold themystery behind its occurrence from the point of view of dynamical systems. In this context, extreme
events are observed under the homogeneous network of FitzHugh–Nagumo oscillators coupledwith two-time
delays [50] due to bubbling transition and blowout bifurcation. Interior crisis, due to the collision of period
doubling and a period adding cascade, also leads to extreme events, as reported in the complex networks of
FitzHugh–Nagumounits without any influence of noise [51]. Roaming trajectories between various coexisting
orbits of varying amplitude under the influence of noisemay cause extreme events in amultistable system [52].
Extreme events can also bewitnessed along on–off intermitency among coupled chaotic oscillators [53].
Evidence of extreme events in coupledHindmarsh–Rosebursting neurons interacting through chemical
synaptic and gap junctional diffusive coupling is presented in the [54]. Intermittent large deviations of chaotic
trajectory indicating the emergence of such rare events in a laser based Ikedamap, has been reported very
recently [55].

Here we discuss the synchronization criteria, both analytically and numerically, among the agentsmoving in
a two-dimensional space inwhich interaction among themoving agents is only possible when they enter the
same pre-definedfixed zones. Besides, we observe on–off intermittency in terms of aperiodic switching from the
synchronous state as a result of the inclusion of repulsive zones with appropriate strength in the space.More
importantly, we present the origination of large amplitude extreme events and discriminate these events from
the low-amplitude intermittent states by providing analytical background for the appropriate choice of the
extreme event indicator threshold.Non-Gaussian distribution of the spike heights and the temporal away
journey of the error beyond the properly justified threshold value are provided as the evidence of the extreme
events.

The remaining parts of the paper are assembled as follows. In section 2, we describe themathematical frame
of ourmodel where the network topology varies due to themovement of the agents. Analytical results regarding
synchronization are discussed in section 3. Numerical results are shown for themoving oscillators’network
using chaotic dynamical systems andwe showhow the level of synchrony depends upon the parameters like the
speed ofmovement, attractive coupling strength and the number of attractive coupling zones. Section 4 deals
with the presence of a repulsive coupling zone and the origination of high amplitude deflections of the network
dynamics from the synchronous state signifying the extreme events. Finally, section 5 provides conclusions of
ourfindings.
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2.Mathematicalmodel for themoving oscillators

We start with describing themathematical framework of the networkmodel ofNmoving agents which are
distributed in a two dimensional (2D)XY-plane g g g g, ,å = - ´ -[ ] [ ]of size L g4 2= sq. units that contain
mnumber of restricted non-overlapping circular zones, each of radius runits. The interactions among the
agents are activated onlywhen they enter into the same pre-defined circular zone. In a similar fashion, other
types of interaction zones (closed) of square, rectangle or even ellipse shape could have been considered. But, we
are considering here simple circular zones, without any loss of generalization (later we show that the analytical
condition for synchronization only depends on the area of interaction coupling zone). For illustration, let us
consider the upper left interaction coupling zone infigure 1, which contains only one agent (smaller yellow
circle). So, this agent cannot interact with any other agents for that particular instant of time. Similarly, the
remaining 9moving agents (outside any coupling zone) in the space å are deprived ofmutual interactionwith
that agent and among each other. But for the coupling zone containing 2 agents in the upper right of the figure 1,
those two agents are only interacting between themselves for that occasion. The same logic is applicable for the
interaction among the 3moving agents in the lower left coupling zone in thefigure. At some time, itmay also
happen that therewill be a zone inwhich nomoving agent is present, e.g. the empty zone in the bottom right.

Nowwe discuss the scheme of randommovement ofN agents in the two-dimensional plane. Initially,N
identical agents are randomly placed in the region å . Any kind of bumping collision among those random
moving agents is forbidden. The agents are allowed tomove in any direction tiq ( )with velocity

t v t v tv cos , sini i iq q=( ) [ ( ) ( )], where v is themodulus of the agent velocity and t i N, 1, 2, ,iq = ¼( ) are
chosen arbitrarily from the interval 0, 2p[ ]. For better visualization, an exemplary trajectory of amoving agent is
depicted graphically infigure 2. To ensure the fact that themoving agents always remain confinedwithin the
region å , the periodic boundary condition is applied.We can relate thesemoving agents with vehicles equipped
with global positioning systemdevice, which enables to track location. Themovement of each agent is governed
by the dynamical upgrading rule t T t t Ty y vi i i+ D = + D( ) ( ) ( ) , where tyi( ) is the position of the ith agent in
the plane at any time t andΔT is themotion integrating step-size. At each integration step, tiq ( ) and therefore

tvi( ) are updated for the ith agent (i=1, 2,K,N).
Furthermore, a d-dimensional dynamical system is alliedwith eachmoving agent. As per the above stated

assumptions, the dynamical equation of each agent can bewritten as

x F x K g t H x i N, 1, 2, , 1i i

j

N

ij
j

1
å= - = ¼
=

˙ ( ) ( ) ( ) ( )

with x t x t x t x t F, , ..., , :i i i
d
i T d d

1 2  = ( ) [ ( ) ( ) ( )] given by the system’s dynamics,K is the coupling
constant,H(x j) is the vector coupling function for diffusive type of interaction and the time-varyingmatrix
G t g tij N N= ´( ) [ ( )] is the Laplacianmatrix describing the location of all agents and hence the connectivity
pattern of the network at any time twith respect to the pre-specified coupling zones. The LaplacianmatrixG(t) is
defined as a symmetric, positive semi-definite andM-matrix and deliberately calculated as the difference
between the degreematrix and the adjacencymatrix of the network. Particularly, gij(t)=gji(t)=−1 if both ith
and jth agents enter the same coupling zone at time t, and otherwise zero. Since any kind of self-interaction is
intolerable, sowe assign gii(t)=h, where h is the number of agents in the same coupling zone at time t, to expect
synchronization as one of the possible states of thewhole dynamical system. The system given in equation (1) is

Figure 1. Schematic diagramof a two dimensional spacewhereN=15 agents (smaller yellow circles) aremoving independently
without any influence of any other agents’motion, in the periodic planar space g g g g, ,å = - ´ -[ ] [ ]with g=10. Four disjoint
coupling zones (larger circles) are pre-defined in å .Whenever, themoving individuals enter the same zone, they interact with each
other. Note that the agents fromone coupling zone do not possess any kind of interactionwith the agents belonging to any other
coupling zones, they only bother about themembers within the same coupling zone, not about the othermembers of å .
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integrated using the Runge–Kutta–Fehlbergmethodwith afixed time step defined as7ΔT=0.01. The initial
conditions are chosen randomly from the phase spacewhere the chaotic attractor resides.

3. Synchronization due to attractive zones

3.1. Analytical condition for synchronization
In this section, we analytically derive the necessary condition for stable synchrony amongmoving agents in the
two-dimensional planewith two attractive interaction zones. Asmentioned earlier, synchronization refers to a
process inwhich coupled systems regulate their dynamics to achieve a coherent evolution, and time-averaged
Laplacianmatrix G gij= [ ]plays a crucial role to understand the synchronization behavior of a time-dependent

networked dynamical system. According to the [56], under fast switching among all the possible network
configurations, if the systemof coupled oscillators given by

x F x K g H x , 2i i

j

N

ij
j

1
å= -
=

˙ ( ) ¯ ( ) ( )

with time-static coupling topology G gij=¯ [ ¯ ]goes through stable synchrony and there is a constantλ such that

G Gd
t

t1
ò t t =

l

l+
( ) ¯ , then there exists ò0 such that for allfixed 0<ò<ò0, the systemdescribed as

x F x K g t H x , 3i i

j

N

ij
j

1

å= -
=

˙ ( ) ( ) ( ) ( )

(with the time-varying LaplacianG(t/ò)) also supports stable synchronization. So if the time-average of the

LaplacianmatrixG(t), given by G G d
t

t1
ò t t=

l

l+¯ ( ) exhibits synchrony of the system, then the time varying

networkwill also possess synchronization. The synchronization of the time-evolving network can thus be
predicted and assured if the time-averaged network G supports synchronization.Henceforth, we now focus to
calculate the time-averaged couplingmatrix G .

To simplify the calculations, first we consider two disjoint confined zones with the same area in the physical
space å . Let,A={1, 2,K,N} be the set of allmoving agents in the physical space å and B AÍ be the set of all
interacting agents lyingwithin any one of the pre-defined coupling zone and C AÍ be another set of all
interacting agents lying in any other disjoint pre-defined coupling zone, such that there is no common agents
lying in both setsB andC. In otherwords, B CÇ = Æ. LetGB denotes the corresponding Laplacianmatrix for
the setB andBi be the resulting sumover all the couplingmatrices generated by the ith agent. LetGA be the zero-
row sumLaplacianmatrix withGA(i, j)=−1 if i j¹ and G i i N, 1A = -( ) .

To computeBi, we consider j, k ä B ( j k¹ )with cardinality ofB equal to i. So, out of N 2-( ) agents except

the agents j and k, we have to choose i 2-( ) elements, which can be done in
N

i

2

2

-
-

⎜ ⎟⎛
⎝

⎞
⎠ different ways. Also, we

have the off-diagonal entries ofGB as G j k, 1B = -( ) . Then the ( j, k)th element of thematrixBi is

Figure 2.Tragectory of a particularmoving agent during a finite time interval with velocity t v t v tv cos , sinq q=( ) [ ( ) ( )], where
v=2.5 and tq ( ) is chosen arbitrarily from the interval 0, 2p[ ].

7
The observed results are also surveyedwith several different choices ofΔT (not shownhere), but perceived results remain unaltered. Thus,

we can conclude that the detected observations are independent of the integration time stepΔT.
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For diagonal entries of G k k,B ( ), where käB andwith the same assumption thatB contains only i agents, we
have to deal with (i−1) elements excluding the ith agent, which to be selected out of remaining (N−1)
elements. Hence, the diagonal elements ofBi are

B k k i
N

i

i

N

N

i
G k k

, 1
1

1

1

1

1

1
, . 5

i

A

= -
-
-

=
-
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⎛
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⎞
⎠
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⎞
⎠

( ) ( )
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Thus, from equations (4) and (5), we canwrite

B
i

N

N

i
G

1

1

1

1
. 6i A=

-
-

-
-

⎜ ⎟⎛
⎝

⎞
⎠ ( )

Let, out ofNmoving agents, i individuals go to one restricted zone, while jmoving individuals go to another
cramp zone. Note that those i agents are completely different from the other j agents and theirmotion is
completely independent fromothers. Let, pi be the probability that i agents are coupledwith each other. Then,

p P P1i
i N i= - -( ) , where P is the probability of an agent for lyingwithin a coupling zone. In our case, P r

L

2

= p ,

where r is the radius of the circular zones. Then the time-averagedmatrix becomes

G p B p B

P P
i

N

N

i
G P P

j

N i

N i

j
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j
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Similarly, we can derive G mP GA
2= form disjoint restricted zones with same area. Since,GA is a zero-sum

matrix so that themanifold of synchronous states is neutrally stable, G also possesses the same property. Hence,
the eigen values of G areλ1=0 and mP N ,i

2l = i=2, 3, ...,N.
Let us now consider themaster stability function (MSF) [57, 58] for which stability of the synchronization

manifold is assured in the interval ,a ¥[ ), i.e. theMSF maxl a( ) is negative only in that given interval ,a ¥[ ).
Hencewith the help of the eigen values of G , we can extract the critical interaction strengthKc for achieving

complete synchronization that satisfies mP NKc
2a = which implies

K
L

m r N
, 8c

2

2 4

a
p

= ( )

which is the value of the coupling strengthK required to initialize synchronization.

So, wheneverK exceeds L

m r N

2

2 4

a
p

, the coupling termprovides sufficient amount of coherence among the

oscillators to reach synchronization for thewhole system.
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3.2. Numericalfindings
In order to look at the dynamical behavior of the network numerically, we first define the synchronization error

E
x x x x x x

N 1
, 9i

N i i i

t

2 1 1
1 2

2 2
1 2

3 3
1 2å

=
- + - + -

-
=

( ) ( ) ( )
( )

( )

in terms of the standard Euclidean norm,where tá ñ··· stands for time average.Without loss of generality,
H x x0, , 0j j T

2=( ) [ ] is taken into consideration as the coupling function. In the following subsections, our
attentionwill be to identify the synchronization region by changing the network parameters, namely the
coupling strengthK, modulus of velocity v and the number of attractive interaction zonesm.Wefix the
parameters associatedwith the local dynamics of each individual agent in the chaotic regime.

3.2.1. Lorenz system
Wefirst consider the chaotic Lorenz system [42], where the state dynamics of eachmoving individuals is
represented by

F X

x x

x x x

x x x

10

28 . 10i

i i

i i i

i i i

2 1

1 3 2

1 2
8

3 3

=

-

- -

-

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

( )
( ) ( )

Without loss of any generality, we nowmeditate on the appearance of synchronization forN=100 identical
Lorenz oscillatorsmovingwithmodulus of velocity v=5.0 andm number of interaction zones of radius
r=4.0. Weperceive that the synchronization errorE descends to zero atK=1.0 andK=0.5 respectively for
m=2 andm=4 number of attractive coupling zones, which conveywell agreement with the critical
interaction strengthsKc=0.5 andKc=1.0 derived from the relation (8) reflecting the effect ofm, forα=3.15.
We detect that with the increasing number of interaction zones, the agents can communicate inmore space now,
as a result of that E decreased to zeromore rapidly for largerm.

Here we note that the obtained results remain valid for any other value of the network sizeN. Particularly,
higherNwould need lower values of the interaction strengthK to achieve synchronization forfixed values of
other network parameters (results not shown here). Even that inverse proportional relation betweenN andK is
obvious from equation (8). Since, interaction zones are fixed in plane,mobility of nodes have huge significance
in obtaining complete synchronization. On the other hand, themodulus of velocity v does not appear explicitly
in the relation (8). So, in order to understand the simultaneous influence ofK and v on synchrony, we plot the
phase diagram in theK–v parameter space, infigure 3.We affixm=2 interaction zones of radius r=4 in the
plane and observe variation in between the parametersK and v for randomlymoving oscillators initially in the
phase space.We notice that there exists an optimal interval of v for which complete synchronization can be
assured depending on the values of the interaction strengthK.

Figure 3. Synchronous behavior in theK–v parameter plane.We setm=2 coupling zones centered at g g2, 2( ) and
g g2, 2- -( ), where g=10. The other parameters arefixed atN=100 and r=4.0.
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3.2.2. Rössler system
Nextwe take chaotic Rössler oscillator [43] into considerationwhich is described as

F X

x x

x x

x x

0.2

0.2 5.7

. 11i

i i

i i

i i

2 3

1 2

3 1

=
- -

+

+ -

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
( )

( )
( )

With the same number of agents as before, and v=2.5withm=2 and r=4.0, the synchronization errorE
with respect toK, drops from anon-zero value to zero atKc=0.039 and continues to be zero. For the same
values ofN,m and rwithα=0.1232, equation (8) also results inKc=0.039. Thus our analytical result falls
exactly on the results obtained through numerical simulations.

Next, we simultaneously vary the coupling strengthK and themodulus v of agents’ velocity for different
values ofm infigure 4. For figure 4(a), we consider two coupling zones of radius r=4.0 as before, centered at
g g2, 2( ) and g g2, 2- -( ) and plot theK–v parameter space in terms of the emergence of synchronization.
As can be seen, for thewhole range ofKä [0, 0.1] and vä [0, 2.5], the higher theK, the lower the v is needed to
achieve synchrony. Next, we add twomore attracting coupling zones centered at g g2, 2-( ) and g g2, 2-( )
with all the other parameters fixed as before and plot theK–v parameter space infigure 4(b). A similar sort of
behavior as infigure 4(a), is observed here butwith a significant enhancement in the synchronization region, as
the agents are now able to interact inside twomore attracting coupling zones.

4. Inclusion of repulsive coupling zone and emergence of extreme events

Let us nowmove on to examine the impact of the presence of repulsive zones in themovement space. For this,
wewill investigate both Lorenz andRössler oscillators as before.

4.1. Lorenz system
To scrutinize the scenario, two interaction coupling zones centered at g g2, 2( ) and g g2, 2-( ), each of
radius r=4.0, are considered onwhichN=100 identical Lorenz oscillators are randomlymoving in any
directionwith uniformmodulus velocity v=5.0.We place the coupling zone centered at g g2, 2( ) as the
attractive one and treat the other one as repulsive coupling zone, withKa andKr as the attractive and repulsive
coupling strengths respectively. Under this arrangement, we spot that the error trajectory continues to be on the
invariant synchronousmanifold (i.e.E=0) formost of the time, but due to the presence of the repulsive
coupling zonewith adequate strength, error trajectory experiences non-uniform, uncertain extensive
expeditions from the synchronousmanifold (see figure 5(a)). This is because the attractormoves near a saddle
orbit fromwhere the trajectories get repelled resulting in large excursions. After such deviation, those
trajectories come back to the invariantmanifold due to stretching and folding nature of chaotic attractors. Such

Figure 4.Phase diagram in theK–v parameter plane discriminating synchronization and desynchronization states. For (a), we set
m=2 coupling zones centered at g g2, 2( ) and g g2, 2- -( ). For (b), we placem=4 coupling zones centered at

g g g g g g2, 2 , 2, 2 , 2, 2- -( ) ( ) ( ) and g g2, 2- -( )where g=10.
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locally repulsive deflection designates on–off intermittent [53, 59] like behavior of the invariantmanifold
containing nonlinear chaotic orbits.Whenever the error at a certain instant of time crosses the thresholdHS

(details discussed later), that event can be considered as an appropriate candidate for extreme events.
To confirmwhether the perceived spikes infigure 5(a) reveal the existence of extreme events or not, a

sufficiently long time series of the variable E is accumulated andwe have constructed a probability density
function (PDF) for the event sizesEn defined as the localmaximumvalues ofE. The collected time series is
sufficient enough so that due to statistical regularity, inclusion of new sample does not affect the structure of the
observed L-shaped PDF [52]. Fromfigure 5(b), it is quite evident that the occurrence of such event sizes ismuch
more than that according toGaussian distribution and the corresponding histogrampossesses a long tail, which
guarantees the existence of extreme events.

The presence of events with diverse sizes necessitates to prescribe a criterion that discriminate extreme
events fromother small-sized events. So, for further characterization of the extremeness, using peak over
threshold (POT) approach, wemake an attempt based on the specification of a threshold valueHS (say)
indicating a significant height that should be crossed by those rare events in order to be counted as an extreme
event.

According to the Fisher–Tippet theorem [60] in extreme value theory [61], three types of distributions are
mainly used tomodel themaximumorminimumof the collection of randomobservations from the same
distribution. Specifically, they are theGumbel, Fréchet, andWeibull distribution [62]. In general, Gumbel and
Fréchet distributions correlate with largest extreme value, whereasWeibullmodel deals with the smallest
extreme value [63–65].Moreover, theGumbel distribution is unbounded defined on the entire real axis and the
Fréchet distribution is bounded for the lower side, x>0 but has a heavy upper tail. So, in seek of the threshold of
extreme value indicator, we consider the PDF of aWeibull randomvariable as follows

f x p x

x
; , e 0

0 0
, 12

p x p 1 x p l =
<

l l

- - l⎪

⎪

⎧
⎨
⎩

( ) ( )
( ) ( )

where p>0 is the shape parameter andλ>0 is the scale parameter of the distribution [65].
Next we proceed by adopting themethod developed byMassel [66]. In the asymptotic limit of infinite time

observational window, the distribution function can be expressed in terms ofWeibull randomdistributionwith
p=2 and 2l s= , i.e. in terms of Rayleigh distribution function

f x x
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0 0,
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x x

2

2

2 2 s =
<

s
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⎪

⎧
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⎩
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whereσ is the the standard deviation of peaks from a time series and under this assumption, the error heightH is
twice the envelope, that is H x x2 for 0= . Thus,

Figure 5. (a) Synchronization error Ewith respect to time. The red horizontal line stands for the extreme event indicator thresholdHS.
Whenever, the trajectory of the error dynamics of the coupled system crosses the threshold, it qualifies as an extreme event. Here,
Ka=10.0,Kr=−0.40 are chosen andHS=M+8σ;34.58. (b)Histogram corresponding to the event sizes with observation
time 3×108 andm=2 coupling zones out of which one is attractive and the other one is repulsive. Extreme event indicator
thresholdHS is plotted in red over the histogram.
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In 1947, Sverdrup et al [67] suggested that the threshold error height H* should have the probability that
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where the rootmean square (rms) error height,Hrms is defined as square root of the second ordermoment of the
error heights and thisHrms can be calculated from the following formula for the kth ordermoments (about the
origin) of the error height:

E H
k

2 1
2

. 17k k m3
2 s= G +⎜ ⎟⎛

⎝
⎞
⎠( ) ( )

Hence, the effective error height,He is defined [68] as

H Hf H H

H
H

H

1

3
d

3

4
e d

3

2
erfc ln 3 ln 3 2 2 . 18

e
H

e
8 ln 3

2

2

H2

8 2

*ò

ò s
p

s

=

 =

= +

s

¥

¥
-

s

{ }

( )

( ) ( )

Using the error function,He can be approximated to 4σ . Then, with themeanM of the errors, extreme
events populate the tail of the probability distribution beyond H M H2S e= + , i.e.HS=M+8σ. This
significant height thresholdHS has been previously used in the context of roguewaves [68–70].

Now, for our networkmodel, we calculate themean and standard deviation of the error andwe have the
thresholdwhich is equal tomean plus eight times of the standard deviation calculated over the time interval as in
figure 5(a).We set this threshold as a horizontal line (red line) in thefigure 5(a) plotted over the variation of error
with respect to time.

Infigure 6, we identify different dynamical states, namely synchronization, intermittent spikes, extreme
events as a consequence of on–off intermittent states and desynchronization states in theKa–Kr coupling
parameter spacewithin the rangesKa ä [5, 10] andKr ä [−0.55, 0.0].We particularly demonstrate the
sensitivity of the negative coupling parameterKr on the network dynamics. For smaller values ofKr, the
attractive interactions dominate and the networked systemmaintains complete synchronization for suitable
optimal values ofKa. However, as soon asKr becomes higher, we needmuch higherKa to retain synchrony,
otherwise, with increasingKr depending onKa, the synchronization becomes intermittent and gradually
generate extreme events. This scenario is depicted through the EE region in the phase diagram. If we
continuously increaseKr, the synchrony gets completely deflected producing desynchronization.

Figure 6.Phase diagram in theKa–Kr coupling parameters’ plane, where regions of synchronization, intermittent, extreme events (EE)
and desynchronization are shown.N=100, v=5.0 andm=2 coupling zones of radius r=4.0 are chosen out of which one is
attractive and the other one is repulsive. Results are obtained from 25 independent numerical realizations, each having 3×108

observation time units. Note that, EE region is a subspace of intermittent region having huge deflected spikes of E from the
synchronizationmanifold. A point (Ka,Kr) is included in EE region if and only if it crossesHS=M+8σ of that time-series.
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4.2. Rössler oscillators
Again, we inspect the influence of the presence of a repulsive zone in themovement space by keeping fixed
Rössler oscillators in each of thesemoving agents.Wefix one attracting coupling zone centered at g g2, 2( )
and one repulsive coupling zone centered at g g2, 2-( ), each of same radius r=4.0, having the same area.
Under this framework,N=100Rössler oscillators, withmodulus velocity v=2.5, display high amplitude
fluctuation from the synchronousmanifold (see figure 7(a)) for attractive coupling strengthKa=1.0 and
repulsive coupling strengthKr=−0.1. As discussed earlier, the chaotic dynamics of the networkwas confined
to the original synchronizationmanifold as long as the coupling zones provide attractive interactions. But
whenever alongwith attractive zone themovement space consists of a zone bringing appropriate repulsive force,
the synchronization becomes intermittent and the dynamical network occasionally blows out of themanifold.

On–off intermittency in the formof aperiodic switching among the synchronous state (i.e. when the error is
zero) and chaotic eruption of the oscillation is observed in the error dynamics (see figure 7(a)).Whenever the
error at a certain instant of time crosses the thresholdHS, that event can be considered as an appropriate
candidate for extreme events. The spikes observed here are recurrent, aperiodic and of different amplitudes
indicating the origination of extreme events. For a better understanding of this scenario, infigure 7(b), the
histogram associated to the PDF of the event sizes is plotted from a sufficiently long time series of the dynamical
units where En stands for localmaximumvalues ofE (see equation (9)).We observe non-Gaussian (L-shaped)
distribution of the events in the semi-log scale [52], that clarifies the occurrence of events with heterogeneously
distributed sizes and hence of the extreme events.

In a similar fashion, we observed extreme events while considered different numbers of attractive or
repulsive coupling zones (figures not shown here) and the inclusion of repulsive coupling zones are identified as
necessary in order to realize extreme events.

5.Discussions and conclusions

Inmost of the previous works [50–55], the studies on extreme events are done either by considering only single
isolated dynamical systemor by considering static dynamical network formalisms and the possible temporal
evolution of the network itself are rather ignored. But, dynamical systems in nature are rarely isolated andmore
importantly, inmost of the cases interacting dynamical units in physical, biological and social networks undergo
through time-varying connections instead of being coupled via static regular topologies. In contrast, we here
have explored the phenomenon of synchronization togetherwith its deflection towards the emergence of
extreme events, based on fundamental principles ofmotion and network science, in a time-evolvingmodel of
interaction amongmoving agents, where each individual ismoving in a two-dimensional planewith some pre-
existing coupling zones. The agents are allowed to interact with each other onlywhen theymove into the same
coupling zone. The study of extreme events [71] have received less attention, although discovery of definitive

Figure 7. (a)Occasional excursion of the error E as a function of time. The red horizontal line indicates the extreme event indicator
thresholdHS that distinguishes extreme events from the other non-zero excursions of bounded error trajectory.Here,HS=M+8σ
; 8.66. (b)Histogram corresponding to the event sizes with observation time 3×105 andm=2 coupling zones out of which one is
attractive and the other one is repulsive.HS is plotted by the vertical red line, that characterizes the fat-tail of the distribution.
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extreme events indicating threshold is highly desirable for its scientific understanding, particularly for the
problems, such as earthquakes, epileptic seizures and social dynamics, where the governing equations are
unknown. Extreme events on complex networks play an important role due to its wide possible applications on
dynamical processes. The analysis of extreme events can also help in themanagement of disease, for example to
prevent sudden outbreaks. For instance, our studymay be beneficial to avoid extreme events inmany human-
made systems, e.g. reduction of overusage of antibiotics, which causes worseningmedical cost andmortality
especially for life-threatening bacteria infections [72]. Chen et al already showed that hysteresis can appear as an
unprecedented roadblock for the recovery of vaccination uptake [73]. Our perceived studymay be also useful to
understand this puzzling phenomenon too.

In order to authorize our results, we successfully dealtwith twowell known chaotic systems, Lorenz andRössler
oscillators. The emergence of synchronization in this described time-varying complexnetwork is thoroughly
investigated in presence of only attractive coupling zones. Parameter regions for the synchronization state have been
figuredout by varyingmodulus velocity vof themoving oscillators for different number of coupling zonesm.
Numerically, it is shown that themodulus velocity vof themoving agents plays a crucial role in order to obtain
synchronizationof the system.The interval of interaction strength that induces synchronyhas also been estimated
analytically. Besides, extreme event like behavior deflecting the synchronizationmanifold is observed in the network
whenever the repulsive coupling zonewith effective strengthhas been introduced in thephysical space.Non-
Gaussiandistributionof the event size is identified that explains the emergence of the extreme events.

In this paper, extreme events are considered as those short lasting events characterized by

• unpredictable appearancewith respect to time due to randommechanismwith very low probability,

• having amplitudes higher thanHS=M+8σ, and

• they appearmuchmore often than theywould according toGaussian statistics [74].

The extreme value distribution obtained through block extrema approach demands an extensive sequence of
data to conclude robust interpretation. This complication is somehow controlled to some extent using peak over
threshold approach by considering a suitable extreme event indicating threshold depending on their
probabilities of occurrence or on the point where they have potential consequences.

Next,we provide a proper justification for the choice of the threshold value that distinguishes extreme events
from theusual intermittency in synchrony, andwith the help of this threshold value, the occurrence of the extreme
events are established.Wehave also been able tomap the dynamical states of synchronization and extreme events in
the parameter plane of the attractive and repulsive interaction strengths,whichpoints out to the fact thatmere
inclusionof repulsive zonesmaypreserve stable synchrony regionor induce intermittent behavior or evenpurely
desynchronization region, but not necessarily extreme events. Toobtain extreme events like phenomena, the proper
choice of both coupling parameters is crucial. This also sheds light to the fact that proper choice of both coupling
parameters canhelp the systempush away fromextreme events, whichhelps tomitigate extreme events.
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