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Abstract
Research at the interface of statistical physics, evolutionary game theory, and network science has in
the past two decades significantly improved our understanding of cooperation in structured
populations.We know that networkswith broad-scale degree distributions favor the emergence of
robust cooperative clusters, and that temporal networksmight preclude defectors to exploit
cooperators, provided the later can sever their bad ties soon enough. In recent years, however, research
has shifted from single and isolated networks tomultilayer and interdependent networks. This has
revealed newpaths to cooperation, but also opened up newquestions that remain to be answered.We
here study how assortativity in connections between two different network layers affects public
cooperation. The connections between the two layers determine towhat extent payoffs in one network
influence the payoffs in the other network.We show that assortative linking between the layers—
connecting hubs of one networkwith the hubs in the other—does enhance cooperation under adverse
conditions, but does sowith a relativelymodestmargin in comparison to randommatching or
disassortativematching between the two layers.We also confirmprevious results, showing that the
bias in the payoffs in terms of contributions fromdifferent layers can help public cooperation to
prevail, and in factmore so than the assortativity between layers. These results are robust to variations
in the network structure and average degree, and they can be explainedwell by the distribution of
strategies across the networks and by the suppression of individual success levels that is due to the
payoff interdependence.

1. Introduction

Evolutionary games have a long history of research that is linked to the importance of network structure on
which the evolution takes place [1–6], with breakthrough discoveries still beingmade [7]. The impetus for this
fascinating development was the discovery of network reciprocity [8], which stands for the fact that a limited
interaction range, as dictated by lattices or other types of networks, facilitates the formation of compact clusters
of cooperators that are in this way protected against invading defectors. And this even if the temptation to defect
is strong. The interest of the physics community was further spurred on by the discovery that scale-free networks
provide a unifying framework for the evolution of cooperation [9], and over the past almost two decades,
methods of physics have been applied tomany contemporary societal challenges [10]. Examples include traffic
[11], crime [12], epidemic processes [13], vaccination [14, 15], cooperation [16], climate inaction [17], as well as
antibiotic overuse [18] andmoral behavior [19], to name just some examples.

While the bulk of research concerning evolutionary games on networks has been devoted to single and
isolated networks, such as small-world [20–26], scale-free [27–41], coevolving [42–50], hierarchical [51, 52] and
community [53]networks, the focus has in recent years been shifting towardsmultilayer and interdependent
networks [54–68]. This research has revealed interdependent network reciprocity, probabilistic
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interconnectedness, and information transmission across network layers as potent facilitators of cooperation in
social dilemmas. Apart from cooperation,many other process have been considered and studied, including
cascading failures [69–72], competitive percolation [73–75], diffusion [76], epidemic spreading [77], and abrupt
transition in structural formation [78], andmultilayer networks have indeed become a strong newparadigmof
network science [79–81].

Here we address an open problem in the evolution of cooperation inmultilayer networks, namely the role of
assortative and disassortativematching between the layers. Focusing on human societies for amoment, it is for
example easy to appreciate that leaders fromone networkwill want to linkwith the leaders of the other network,
hence giving rise to assortativematching. Imagining reasons for disassortativematching is a bitmore
challenging, but itmay apply to less intelligent biological systems, where the cognition to consciously choosing
partners from the other network is simply not there. Either way, it is of interest to determine how the two
different types ofmatching between two network layers affect public cooperation. To study this we use thewell-
knownpublic goods game [16, 82], where cooperators contribute to the commonpool, defectors do not, and
lastly all enjoy equal benefits regardless of their contribution. This is evidently a social dilemma, where
individual best interests are at oddswith the best interests of the group and the population as awhole. Knowing
whatworks best for public cooperation to bemaintained is therefore crucial for avoiding a tragedy of the
commons [83]. Aswewill show, assortativematching between the two layers does enhance cooperation, but
only with a relativelymodestmargin in comparison to randomor disassortativematching. This is true regardless
of the network degree and structural properties in the layers, and it can be explainedwell by looking at the
distribution of strategies and at the individual success levels of different groups of players in dependence on the
level of payoff interdependence.

Inwhat follows, wefirst present the public goods game and the procedure for the construction of
assortatively and disassortatively linked networks.We then continuewith themain results, and finally we discuss
their implications and outline open problems in this line of research.

2.Mathematicalmodel

We study the public goods game on two interconnected network layers, A andB,where each nodewithin a layer
is occupied by one player. Inmost of our calculations we use the Barabási–Albert scale-free networkmodel [84]
with an average degree 4 (or in some calculations 8) for each individual layer, so the degree distribution is a
power law p k k3~( ) . Alternatively, we also use the growing and adjacent random (non-preferential)
attachmentmodel to study the public goods game game on less heterogeneous network layers, where the degree
distribution is exponential P k e k k~ - á ñ( ) [85]. However, players that occupy nodes in different network layers
interact not onlywith their neighbors within the same layer, but alsowith players in the other network layer. In
particular, the interdependence between both layers is introduced bymeans of an interdependent utility
function, as explained inmore detail in what follows.

We are specifically interested in how the nature of connections between network layers affects the evolution
of pubic cooperation. To that effect, we propose a newmodel for connections between the layers that enables a
systematic realization of different degreemixing patterns that interpolate smoothly between assortative and
disassortativematching between players on different network layers. Firstly, nodes in both layers are ranked in
accordancewith their degrees. Then, each nodewithin the first layer A is connectedwith an interlayer link to a
node in the other layer Bwith the same rank, thereby leading to a completely assortative structure of the links
between both networks. To obtain a disassortative interlayermixing by degree, we introduce a rewiring
probability δ that determines the likelihood that the ith node in layer Awith rank degreeRDi(A)will get
disconnected from the ith node in layer Bwith the same rankRDi(B), and insteadwill become connectedwith
the jth node in layer Bwith rankRDj(B)=N− RDi(B). And simultaneously, that the jth node in layer Awith
rankRDj(A)=N− RDi(A)will get disconnected from the jth node in layer Bwith rankRDj(B), andwill then
become connectedwith the ith node in layer B. Accordingly, if δ=1, each interlayer connection is rewired so
that the nodes in layer Awith the highest rankwill be connectedwith the nodes in layer Bwith the lowest rank,
which represents amaximally disassortative interlayermixing pattern. By varying the parameter δ between 0 and
1, various degrees of assortative/disassortativemixing in the interlayer connections are thus attained, with
δ=0.5 corresponding to a random, i.e. non-correlated, interlayer connectivity. Infigures 1(a) and (b)we
present typical two-layer networks with an assortative and disassortativemixing pattern between the two layers.
The latter are quantified infigures 1(c) and (d), where the corresponding node degrees in layer A are plotted
against their interlayer neighbor degrees in layer B. Evidently, for δ=0 a clear tendency of hubs connecting with
other hubs and less connected nodes connecting with less connected nodes between the two layers can be
observed. For δ=1, on the other hand, an opposite correlation can be observed, such that connections between
the two layers exist primarily among high degree and low degree nodes.
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In terms of the governing public goods game, initially each player in layers A andB is assigned either as a
cooperator or defector with equal probability. The accumulation of payoffs Px and Px¢ on both networks follows
the same procedure, according to the rules of the public goods game.Namely, each individual x participates in
g=kx+1 groups, where kx is the number of its direct neighbors in the same network layer (the degree of
individual player). In each group the player will contribute 1 to each instance of the game it if adopts the
cooperation strategy (sx=1), while defectors contribute nothing (sx=0). Subsequently, the sumof
contributions ismultiplied by the factorR that is greater than 1.0 and reflects synergistic effects of cooperation.
The resulting amount is then divided equally among all players in the group. Thus, the payoff of a player x in
every group g obtained on the network layer A is
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whereNC
g is the number of cooperators in the group g. Likewise, the payoff of a player x′ in every group g ¢

obtained on the network layer B is P
x
g
¢. Accordingly, the total payoff received in all the groups can be calculated

as P Px g x
g= å and P Px g x

g= å¢ ¢. Importantly, different individuals have a different number of direct neighbors.
Therefore, to ensure a relevant comparison of the results, themultiplication factorR is normalizedwith the size
of the corresponding groups [35].

Aswe have noted above, there exist connections between both layers. Each player x in the network layer A
has exactly one external partner x′ in the network layer B, and vice versa. The interdependence between the
network layers A andB is introduced via the utility function

U P P U P P1 , 1 , 2x x x x x xa a a a= + - = - +¢ ¢ ¢( ) ( ) ( )

whereαdetermines the bias in the consideration of payoffs collected by the players x in the network layer A and
x′ in the network layer B. Accordingly, at lowα values player x is guided dominantly by the payoff of its external
partner x′, while the player x′ is only slightly influenced by the payoffs of the player x. Forα=0.5 bothPx andPx′
are taken into consideration equally strongly by both players x and x′, and the evolution on both network layers
is in this case virtually identical (lest the differences that emerge due to the differences in the initial distributions

Figure 1.Multilayer network structures for assortative, δ=0 (a), and disassortative, δ=1 (b), mixing of the interlayer connectivity.
Gray arrows indicate the connections between the nodes of a particular layer, as obtainedwith the Barabási–Albert algorithm. Black
arrows indicate the connections between the two layers. For illustration here only 15 nodes per network layer are shown, whilst
N=2500 nodes per network layer were used forMonte Carlo simulations. The corresponding interlayer degree correlations for the
assortative and disassortative case are shown in panels (c) and (d), respectively.
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of strategies and in the realization of network structure for each layer). Forα>0.5 the roles are exchanged and
the treatment is fully symmetric with respect toα<0.5. Evidently, atα=1 (α= 0) the game on network A (B)
behaves equally as if played on a single and isolated network, while the game on network B (A) is governed
exclusively by the payoffs of players in network A (B) [54].

We use the establishedMonteCarlomethod to simulate the evolutionary processes on themultilayer
network. Thefirst step involves randomly selecting one player x, one of its neighbors y on the layer A, and the
corresponding external partners x′ and y′ on layer B. Following the accumulation of payoffs Px andPy on layer A
and payoffs Px′ andPy′ on layer B as described above, the corresponding utility functions as per equation (2) can
be calculated. Finally, player y compares its payoff to that of player x, and adopts the strategy of player xwith a
probability determined by the Fermi function

W s s
U U K
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1 exp
, 3x y

y x

 =
+ -
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whereK denotes the uncertainty by strategy adoptions. As is standard practice, we useK=0.5without loss of
generality [16, 86]. Importantly, strategy invasions are possible fromnearest neighbors on a given network layer
only. Accordingly, the player x′ adopts the strategy fromplayer y′with a probability determined likewise, only
that utilitiesUx¢ andUy¢ are used in equation (3).

The simulation results presented belowhave been obtained on twonetwork layers, eachwithN=2500
nodes. During one fullMonte Carlo stepwe repeat the described elementary steps 2N-times, such that every
player in the two network layers has a chance to change its strategy once on average. The fraction of cooperators
( fC) has been determined as the averagewithin the last 104 out of the total of 105Monte Carlo steps, when the
system reaches a steady state. For each set of parameter values this procedure was repeatedwith 10 different
initial conditions. Since the degree distributions of players within each layer are scale-free and thus strongly
heterogeneous, thismight introduce additional uncertainties. Therefore, for thefinal results, we have
additionally averaged the outcome over 20 different network realizations.

3. Results

Webegin by showing the fraction of cooperators in dependence on the group size normalized value of the
multiplication factorR, as obtained for different combinations of the payoff biasα and the assortativity
parameter δ. Panels infigure 2 show the results for layers A andB on the left and right, respectively. It can be
observed that different δ values hardly evoke a visible difference in the fraction of cooperators. Only on the A
layer forα=0.2, where thus the evolution is by 80%determined by the payoffs of players on layer B and only by
the remaining 20%by the actual payoffs obtained on layer A, is a difference quite clearly visible. There, at best a
30%margin in the fraction of cooperators between the fully assortative (δ= 0) and the fully disassortative
matching (δ= 1) can be observed aroundR≈0.4. Notably, exactly the same results can be observed on the B
layer forα=0.8, given the symmetry in the payoff functions between the two network layers (see equation (2)).
As the value ofR increases, themargin for enhanced cooperation gradually vanishes, and by R 0.8» it is again
hardly visible. No other combinations ofα and δ produce a statisticallymore significant difference, and only for
α=0.49, in the bottom row, the assortativematching between the two layers seems to also confer a very slight
evolutionary advantage to cooperators in comparison to the disassortativematching.

Looking at these results from the perspective of the payoff biasα, as presented infigure 3, it can be observed
that the bias itself can enhance cooperationmoremarkedly, and this regardless of the level of assortativity
between the two network layers. Looking at the fraction of cooperators on the right side for layer B, there is a
consistent gap of almost 50%betweenα=0.01 andα=0.8 for sufficiently largeR values (aboveR≈ 0.6). This
is true asmuch for δ=0, where thematching is assortative such that hubs of one network are linkedwith the
hubs in the other network, as it is for δ=1, where thematching is disassortative such that the hubs of one
network are linkedwith the low-degree hubs in the other networks. As infigure 2, the same results would be
observed for layer A providedwewould start withα=0.99 and then decrease this value. Indeed, the reverse
trend can be clearly observed in panels on the left side offigure 3 that show the fraction of cooperators on layer A.
It is alsoworth pointing out that the comparativelymarginal benefits of assortativity for the evolution of
cooperation on layer A can still be observed, but one has to focus on theα=0.2 line (redwith circles), and then
compare the δ=0 and the δ=1 case atR≈0.4.

To corroborate the robustness of these results, we show infigure 4 the fraction of cooperators fC in
dependence on the normalizedmultiplication factorR/G, as obtained for different values of the rewiring
probability δ at afixed value of the payoff biasα=0.2.We remind that at the latter value ofα the difference
between assortative and disassortative linking between two scale-free network layers in promoting cooperation
was found to be the largest (see figure 2). For comparison, we show infigure 4 again the results obtained on two
interdependent scale-free network layers with an average degree k 4á ñ = in panels (a) and (b), while in panels (c)
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and (d)we show the same results obtained on two scale-free network layers with an average degree k 8á ñ = , and
in panels (e) and (f)we show these results obtained on two networks with an exponential degree distribution. It
can be observed that, regardless of the variations in the network structure and average degree, the promotion of
cooperation that is due to the nature of the linking between the two layers is rathermarginal (compare δ= 0 and
δ= 1 as the two extremes), albeit visible especially on the layer A (left three panels). Notably, due to the
symmetry of the payoff interdependence, the same results would be obtained on the B layer atα=0.8.

Given the robustness of the presented results, it remains of interest to explainwhy assortativity provides only
a narrowmargin for enhanced cooperation onmultilayer networks. To that effect we show infigure 5 the
distribution of the two competing strategies across the network nodes.We focus on the layer A at the payoff bias
α=0.2, whichwould be the same as network layer B at the payoff biasα=0.8. Comparing first the

Figure 2.Certain combinations of the payoff biasα and themultiplication factorR produce a visible difference in the fraction of
cooperators on interdependent networks between different values of the rewiring probability δ. For particularα values, the assortative
matching between networkA andB slightly promotes cooperation in comparison to the disassortativematching. Depicted is the
fraction of cooperators fC in dependence on the normalizedmultiplication factorR/G, as obtained on two interdependent scale-free
networks forα=0.01 (a) and (b),α=0.2 (c) and (d), andα=0.49 (e) and (f). The left three panels (a), (c) and (e) show results for
the layer A,while the right three panels (b), (d) and (f) show results for the layer B. In all panels results for five different δ values, from
δ=0.0 (fully assortativematching) to δ=1.0 (fully disassortativematching), are presented. The size of each network layer is
N=2500, and the average degree within each layer is k 4á ñ = .
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distributions obtained atR/G=0.42, it can be observed that for δ=0 (a), where thematching is assortative
such that hubs of one network are linkedwith the hubs in the other network, the hubs are only somewhatmore
commonly populatedwith cooperators (red), than for δ=1 (b), where thematching is disassortative such that
the hubs of one network are linkedwith the low-degree hubs in the other networks. This is indeed the parameter
region, where the difference is the largest. Going toR/G=0.8 in panels (c) and (d), the difference is basically not
there, which is also reflected in the results above. Thus, it can be argued that assortativematching between the
layers somewhat strengthens the positions of the hubs to be occupied by cooperators, but indeed only
marginally so.

We further support these observations quantitatively by determining the strategy change probabilities of
different groups of players on the two network layers. Asmentioned above, players in both layers are ranked in
accordancewith their degrees from r=0 (the nodewith the highest degree) to r=2499 (the nodewith the

Figure 3.The evolution of public cooperation on the two network layers depends significantly on the value of the biasα. The stronger
the bias, the higher the level of cooperation regardless of the nature of connections between the layers. All six panels present the
fraction of cooperators fC in dependence on the normalizedmultiplication factorR/G, as obtained on two interdependent scale-free
networks for three different rewiring probabilities: δ=0.0 (a) and (b), δ=0.5 (c) and (d), and δ=1.0 (e) and (f). The left three
panels (a), (c) and (e) show results for the layer A, while the right three panels (b), (d) and (f) show results for the layer B. In all panels
results for six differentα values, fromα=0.01 toα=0.8, are presented. The size of each network layer isN=2500, and the average
degree within each layer is k 4á ñ = .
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lowest degree). To quantify the suppression of individual success levels due to the payoff interdependence, the
probability of strategy changes pCwas calculated considering separately four groups: themost highly connected
nodes or hubs (1%of allNnodeswhere r0 25 < ), the high degree nodes (20%of allNnodeswhere

r0 500 < ), intermediate-low degree nodes (80%of allNnodeswhere 500�r<2500) and lowdegree
nodes (50%of allN nodeswhere 1250�r<2500).

The results presented infigure 6 show the comparison between the results obtained for three different
rewiring probabilities and the payoff biasα=0.2. The top two panels, depict the probability of strategy changes
of the hubs (group 1%) and lowdegree nodes (group bottom50%) in dependence on themultiplication factorR
for layer A (left panel) and layer B (right panel). Comparing first the probability of strategy changes of the hubs
and lowdegree nodes on the layer A, it can be observed that the success level of the hubs is evidently higher for
δ=0.0where thematching is assortative, than for δ=0.5 and δ=1.0, where thematching is random and

Figure 4.Assortativematching between network layers A andB slightly enhances cooperation under adverse conditions for different
variations in the network structure and average degree ká ñ. All six panels present the fraction of cooperators fC in dependence on the
normalizedmultiplication factorR/G, as obtained for different values of the rewiring probability δ. Panels (a) and (b) show results
obtained on scale-free networks with an average degree k 4á ñ = , panels (c) and (d) shows results obtained on scale-free networkswith
an average degree k 8á ñ = , and panels (e) and (f) shows results obtained onnetworks with an exponential degree distribution. The left
three panels (a), (c) and (e) show results for the layer A, while the right three panels (b), (d) and (f) for layer B. In all cases we use
N=2500 and the payoff biasα=0.2.
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Figure 5.The distribution of the two competing strategies across network hubs provides insights as towhy assortativity provides only
a narrowmargin for enhanced cooperation onmultilayer networks. Presented are characteristic snapshots of the distribution of
cooperators (red) and defectors (blue), as obtained for the network layer A, using two interdependent scale-free network layers with an
average degree k 4á ñ = . The following parameter valueswere used: (a)R/G=0.42, δ=0.0, (b)R/G=0.42, δ=1.0, (c)R/
G=0.8, δ=0.0, and (d)R/G=0.8, δ=1.0. In all cases we useN=2500 for each network layer and the payoff biasα=0.2.

Figure 6.Comparisons of strategy change probabilities of different groups of players obtained for three different rewiring probabilities
reveal that the success level of the hubs (group 1%) and high degree nodes (group 20%) is higher for assortative (δ = 0.0) than for
disassortativematching (δ = 1.0). On the other hand, the success level of the intermediate-low degree (group 80%) and low degree
nodes (group bottom 50%) is significantly higher for δ=1.0 than for δ=0.0. Depicted is the probability of strategy changes pC in
dependence on themultiplication factorR/G for different groups of players and three different rewiring probabilities, as obtained on
two interdependent scale-free layers A (left two panels) andB (right two panels). Top two panels (a) and (b) show results for the hubs
and low degree nodes for δ=0.0, δ=0.5 and δ=1.0. Bottom two panels (c) and (d) show results for the high degree and
intermediate-low degree nodes for the same rewiring probabilities. In all cases the size of one network layer isN=2500, the average
degree within each layer is k 4á ñ = , and the payoff biasα is set to 0.2.
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disassortative, respectively. For δ=0.0, where the hubs of one network are linkedwith the hubs in the other
network, the probability of strategy changes is nearly zero. An opposite correlation can be observed by
comparing the probabilities of strategy changes of lowdegree nodes (group bottom50%)where the success
levels are significantly higher for the disassortative than for assortativematching.While these differences are
clearly visible for all values of themultiplication factorR on layer A, the differences on layer B are growing as the
value ofR increases. Nevertheless, a relativelymodestmargin between different rewiring probabilities for each
group of nodes can be observed in comparison to layer A, which is also reflected in the above-presented results
concerning cooperation promotion.

The bottom two panels offigure 6 depict the probability of strategy changes of the high degree nodes (group
20%) and intermediate-low degree nodes (group 80%) in dependence on themultiplication factorR for layer A
(left panel) and layer B (right panel). In the group of high degree nodes, in addition to the hubs also nodes with
not the highest degrees are present, and subsequently the success levels in this group are smaller in comparison
to the success levels in just the hubs depicted infigures 6(a) and (b). On the other hand, since the intermediate-
lowdegree group (80%) consist of nodes with low and intermediate degree nodes, the success levels in this group
are higher in comparison to the success level of lowdegree nodes (group bottom50%). Comparing different
rewiring probabilities for each group of nodes on layer A (figure 6(c)), benefits of assortativematching (δ= 0.0)
can still be observed even though they are less significant. Looking at the probability of strategy changes in the
right panel for layer B (figure 6(d)), however, one can observe a relatively small difference between different
rewiring probabilities for each group of nodes. Taken together, these results corroborate and explain well the
results presented infigures 2–4, thus confirming that assortativity can provide only a narrowmargin for
enhanced cooperation onmultilayer networks.

4.Discussion

While the effects ofmixing patterns on the evolution of cooperation on single scale-free networks have been
studiedmore than a decade ago in a seminal paper byRong et al [29], the same problemhas remained open for
multilayer networks until now.Of course, while Rong et al focused on assortativity between the hubs and low
degree nodes in the single network, we here focus on assortativity in links between the two network layers.While
research in 2007 has shown that assortativity patterns play an important role on isolated networks, in particular
that assortativemixing destroys the sustainability of cooperators and promotes the invasion of defectors because
it increases the vulnerability of cooperator hubs because it links them together, and vice versa that disassortative
mixing promotes cooperation because it fosters the isolation of hubs andmakes it even less likely for defectors to
be able to invade successfully, we here observe a rathermoremarginal role onmultilayer networks. As
emphasized already in the title of this paper, assortativity provides a narrowmargin for enhanced cooperation.
Indeed, bias in the influence of payoffs from the two layers has a stronger overall impact on cooperation, while
assortativity has a noticeable impact only in a rather narrowwindowof the bias and themultiplication factor
values.

It is worth pointing out that, unlike on isolated networks, onmultilayer networks assortativity promotes
cooperation because the payoffs are composed fromboth layers. Hence, when hubs are linked together, they
reinforce themselves, without thereby giving defectors a larger chance to invade, given that strategy changes
across the layers are not permitted. Only the payoffs in one layer determine the evolutionary success in the other
layer, and vice versa. If wewould allow also for strategy transfer, the setupwould effectively become quite
identical as on a single and isolated network, and undoubtedly wewould observe the same results as Rong et al
[29].

Our observations can be explainedwell by the distributions of the two strategies across a particular network
layer, wherewe have observed that assortativematching between the layers somewhat strengthens the positions
of cooperative hubs, but in comparison to disassortativematching between the layers the difference is,
expectedly given the stationary fractions of cooperators, verymodest. This was also supported quantitatively by
determining the probability of strategy changes for different groups of nodes, in particular hubs, high degree,
intermediate-low, and low degree nodes, as was also done for isolated scale-free networks back in the day [9, 28].

Sincemultilayer networks go a step further in accurately reflecting the reality of human interactions, it would
be fascinating to try and confirm these theoretical results with human experiments.We hope this workwill
stimulate further research to help uncover optimal conditions for public cooperation and promote related
research along the fascinating interface of physics and societies [87].
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